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Abstract: In the present work, six protic ionic liquid (PIL) compounds based on p-toluene sulfonic
acid [PTSA] anion along with different cations viz. tetraethylenepentammonium [TEPA], triethy-
lammonium [TEA], pyridinium [Py], N-methylpiperidinium [Pip], 1-methylimidazolium [Im], and
N-methylpyrrolidinium [Pyrr] were synthesized using the standard neutralization reaction method.
The structural characterization of these compounds was achieved using FTIR, 1H and 13C NMR
spectroscopies. Thermal behavior was studied using differential scanning calorimetry to determine
the melting point (Tm) and crystallization (Tc) temperatures. Thermogravimetric analysis was carried
out to determine the thermal stability and degradation temperatures (Tdec) and to ascertain the hy-
groscopic or hydrophobic nature of the synthesized compounds. Structural effects on the outcome of
various properties were witnessed and discussed in detail. Electrochemical impedance spectroscopy
was utilized to study the electrical transport properties of the PILs at different temperatures. Cyclic
voltammetry was performed to analyze the electrochemical stability of these PILs. Low values of
activation energy indicating easy proton transportation along with good electrochemical stability
make the PILs a potential candidate for use in the preparation of polymer electrolytes membranes for
fuel cell applications.

Keywords: protic ionic liquids; p-toluene sulfonic acid; ionic conductivity; FTIR spectroscopy;
NMR analysis

1. Introduction

Proton exchange membrane fuel cells (PEMFCs), also known as H2/O2 fuel cell tech-
nology, are a clean, renewable energy technology with a relatively lower environmental
impact. Their high efficiency and flexibility of use on a modular basis are important ad-
vantages of H2/O2 fuel cells for energy production [1,2]. Nafion is currently the most
widely used polymer electrolyte membrane for H2/O2 fuel cells because of its high proton
conductivity and excellent chemical and mechanical stability. The proton conductivity of
Nafion is heavily dependent on its water content, which limits its maximum operating tem-
perature to approximately 80 ◦C [3,4]. Several other hydrocarbon backbone-based PEMs
are employed in fuel cells, such as poly(styrene sulfonic acid), sulfonated poly(phenylene
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sulfide) and sulfoarylated polybenzimidazole. Although these compounds are cheaper
than Nafion, environmentally friendly (no fluorine chemistry is involved), and easy to
recycle, they remain dependent on water for proton conduction [4,5]. Ideally, a polymer
electrolyte for an H2/O2 fuel cell should be chemically and mechanically stable and display
high proton conductivity without humidification at temperatures near 120 ◦C; these charac-
teristics will enable superior heat and water management and increase the tolerance of the
electro-catalysts to CO poisoning [6–9]. Thus, the development of a polymer electrolyte that
does not rely on hydration for proton conduction has important scientific and economic
potential. Proton-conducting protic ionic liquids (PILs) have recently demonstrated their
potential in the development of polymer electrolyte membranes for applications in H2/O2
fuel cells as they do not require hydration for proton conduction.

Ionic liquids (ILs), are compounds that are solely made up of ions and have much
lower melting points compared to molten salts. Due to their ionic nature, ILs exhibit
high-ionic conductivity, wide electrochemical window, high thermal stability, negligible
vapor pressure and good solvation capacity [10–16]. The most important aspect of ILs is
their designer nature. The properties and functionality of ILs can be altered by careful
selection of the combination of cation and anion. ILs are either aprotic [13–16], which
indicates that they do not contain a mobile proton associated with a cation, or protic [10–12],
which indicates that they contain a mobile proton associated with a cation. Aprotic ionic
liquids have been successfully utilized as electrolytes in lithium-ion batteries [17] and
dye-sensitized solar cells [18–21], as well as in other electrochemical devices e.g., sensors
and actuators [22–24]. Protic ionic liquids (PILs) contain an active proton, which makes
them suitable for application as fuel cell electrolytes. The PILs, on incorporation in a
suitable polymer matrix, make the electrolyte material of choice for applications at elevated
temperatures in non-humidified fuel cell systems [25–30].

To utilize ionic liquids in PEMFCs their melting point should be below 130 ◦C. Com-
pared to conventional electrolytes ionic liquids-based polymer electrolytes are safer and
highly thermostable with a wide operating temperature window since PILs do not evapo-
rate readily even above 100 ◦C. Watanabe et al. [27] reported the operation of a hydrogen
fuel cell employing anhydrous diethylmethylammonium trifluoromethanesulfonate PIL
as an electrolyte which has high thermal stability (360 ◦C) and high ionic conductivity
(4.3 × 10−2 S cm−1 at 120 ◦C). Siddique et al. [31] reported the synthesis of liquid PILs
from secondary and tertiary ammonium cations with trifluoroacetate, methanesulfonate,
trifluoromethanesulfonate, and tosylate anions. These salts had a high ionic conductivity
value 1.4–4.9 mS cm−1 at 70 ◦C and were thermally stable up to 200–300 ◦C.

Keeping the potential of PILs to be used as an alternative material for fuel cell
application, herein, we report the synthesis and characterization of six protic ionic liq-
uids (PILs) based on p-toluene sulfonic acid [PTS] anion attached to different cations
viz. tetraethylenepentammonium [TEPA], triethylammonium [TEA], pyridinium [Py], N-
methylpiperidinium [Pip], 1-methylimidazolium [Im], and N-methylpyrrolidinium [Pyrr].

2. Experimental
2.1. Materials

p-Toluenesulfonic acid monohydrate (ACS reagent, ≥98.5%), Tetraethylenepentamine
(technical grade), Triethylamine (≥99.5%) Pyridine (ACS reagent,≥99.0%), 1-Methylimidazole
(ReagentPlus®, 99%), N-Methylpiperidine (99%), and N-Methylpyrrolidine (99%) were
procured from Sigma-Aldrich and were used without any further purification.

2.2. Methods
2.2.1. Synthesis of p-Toluene Sulfonic Acid Based Ionic Liquids

The synthesis was performed in a clean, dry two-necked round-bottomed flask
equipped with a thermometer and gas inlet for purging nitrogen gas. The flask was
placed in an ice bath for safety to control the heat generated during the reaction. PTSA
(0.1 mol, 17.2 gm) was added carefully in small amounts using a spatula to 0.1 mol of the
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base with continuous stirring over a specified period as mentioned below for each base
under solvent free conditions and under a nitrogen environment. The mixture was dried
for 8 h under a vacuum at 90 ◦C for further analysis except for TGA analysis which was
performed without drying the samples to quantify the amount of water in the samples.

p-Toluenesulfonic acid monohydrate (0.1 mol, 17.2 g) and Tetraethylenepentamine
(0.1 mol, 9.46 g) at 40 ◦C and product obtained viscous yellowish liquid at room temperature.

p-Toluenesulfonic acid (0.1 mol, 17.2 g) and Triethylamine (0.1 mol, 10.10 g) at 27 ◦C
and the product obtained was light brown solid salt at room temperature.

p-Toluenesulfonic acid (0.1 mol, 17.2 g) and Pyridine (0.1 mol, 7.91 g) 50 ◦C and the
product obtained was whitish solid at room temperature.

p-Toluenesulfonic acid (0.1 mol, 17.2 g) and 1-Methylimidazole (0.1 mol, 8.21 g) at
60 ◦C and the product obtained light yellowish semi-solid at room temperature.

p-Toluenesulfonic acid (0.1 mol, 17.2 g) and N-Methylpiperidine (0.1 mol, 9.91 g) at
80 ◦C and the product obtained almond color solid at room temperature.

p-Toluenesulfonic acid (0.1 mol, 17.2 g) and N-Methylpyrrolidine (0.1 mol, 8.51 g) at
80 ◦C and product obtained off white semi-solid at room temperature.

The structures of the synthesized protic ionic liquids (PILs) are shown in Figure 1 below.
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Figure 1. Structures of the 6 synthesized protic ionic liquids (PILs) based on p-toluene sulfonate
anion [PTS].

2.2.2. 1H and 13C NMR Analysis

Nuclear magnetic resonance (NMR) 1H NMR and 13C-NMR spectra were obtained for
synthesized PILs using an NMR Spectrometer (JEOL DPX400MHz, Chiyoda, Tokyo, Japan).
Deuterated chloroform (CDCl3) was used as a solvent for the preparation of samples and
tetramethylsilane (TMS) as the internal standard.
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2.2.3. FTIR Spectroscopy

FTIR spectroscopy was used for vibrational characterization of all the PILs. The
infrared spectrum was recorded in the frequency region of 4000–400 cm−1 by means of
a Perkin Elmer FTIR spectrophotometer (Spectrum 100, Perkin Elmer Cetus Instrument,
Norwalk, CT, USA). The analysis was performed on KBr cell window at room temperature.

2.2.4. Differential Scanning Calorimetry (DSC)

The melting and crystallization behaviors of the protic ionic liquids were examined
by Differential Scanning Calorimetry (DSC-60A, Shimadzu, Tokyo, Japan). The samples
were heated from an ambient temperature to 150 ◦C with a heating rate of 10 ◦C/min, then
held at 150 ◦C for 10 min to stabilize the system and avoid drifting due to the addition of
liquid nitrogen to the refrigerant reservoir; then, it was cooled to −50 ◦C at 10 ◦C/min to
obtain the exothermic crystallization curve. It is again held at −50 ◦C for 10 min to ensure
the complete removal of liquid nitrogen from the refrigerant reservoir and stabilize the
system. Finally, the sample is heated again to 150 ◦C at 10 ◦C/min to obtain the melting
endothermic curves in the second heating run. All measurements were performed under a
nitrogen atmosphere.

2.2.5. Thermogravimetric Analysis (TGA)

The thermal stability of the ionic liquids was investigated as a function of temperature
using a thermogravimetric analyzer, a Mettler Toledo AG, Analytical CH-8603 (Schwerzen-
bach, Switzerland). All samples (8–10 mg) were heated in alumina pan from 30 to 110 ◦C
and held at 110 ◦C for 30 min to quantify the amount of water present in the samples and
then the samples were finally heated up to 800 ◦C under. The TGA analysis was performed
under argon atmosphere at flow rate of 50 mL/min using a heating rate of 10 ◦C/min.

2.2.6. Electrochemical Impedance Spectroscopy (EIS)

Before the measurement, the PIL was kept at ~125 ◦C for the whole night to remove
any moisture present in the sample. The electrical conductivity (σ) was measured from
120 ◦C to 65 ◦C using the EIS. The ionic liquid was poured into a space produced by a
Teflon spacer and sandwiched between platinum plates (blocking electrode), which was
kept at ~125 ◦C [32,33]. This was subjected to 20 mV AC voltage, and real and imaginary
impedances were recorded from 100 kHz to 10 Hz by a Palmsens4 Impedance Analyzer
(PalmSens BV, Houten, The Netherlands). The bulk resistance (Rb) was obtained from the
Nyquist plot. We estimated the electrical conductivity using the formula:

σ = l/(A Rb), where l and A are the thickness and area of the PIL, respectively.

2.2.7. Cyclic Voltammetry (CV)

The cyclic voltammetry was performed by an Autolab Potentiostat (Metrohm, Am-
sterdam, The Netherlands) utilizing a hermetic three-electrode electrochemical cell. The
potential scan rate was 0.01 V s−1 and the measurements were performed at different
temperatures. The working, counter, and reference electrodes were made of platinum.

3. Results and Discussion

3.1. 1H and 13C NMR Chemical Shifts

The 1H and 13C NMR spectra of all the PILs are presented in Figure 2A,B, respectively
along with those of the common acid, PTSA. It is evident from Figure 2A that the 1H spectra
shows a chemical shift relative to the pure PTSA which occurs due to the formation of the
PILs by the substitution of the proton with the different cations from the respective bases
used. 13C NMR shown in Figure 2B also demonstrates similar chemical shifts compared
to the pure PTSA. Table 1 summarizes the 1H and 13C NMR chemical shifts of pure PTSA
along with the different PILs in CDCl3. The chemical shifts reported herein agree with the
ones reported elsewhere for similar protic ionic liquids [34,35].
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ILs δH(ppm) δC(ppm)

CH3
CH Near

CH3
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SO3H CH3 C-C-SO3

− C-C-CH3 C-CH3 C-SO3
−

PTSA 2.096 6.946 7.438 20.638 124.98 128.497 140.125 140.430

[Im][PTS] 2.302 7.128 7.698 21.220 121.410 125.722 136.319 140.020

[Pyrr][PTS] 2.321 7.130 7.673 21.239 125.760 128.868 140.373 141.603

[Pip][PTS] 2.099 7.248 7.759 21.325 125.960 128.860 140.382 141.517

[TEA][PTS] 2.311 7.140 7.718 21.268 125.855 128.726 139.962 142.223

[TEPA][PTS] 2.249 6.983 7.581 20.991 125.207 128.612 139.772 142.109

[Py][PTS] 2.329 7.150 7.784 21.325 125.960 128.860 140.373 141.546
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3.2. FTIR Spectroscopy

FTIR measurements were carried out to characterize the synthesized PILs based on the
interactions between the p-TSA and the Bronsted bases of different nature. The vibrational
spectra over the whole frequency range of the PILs along with the starting components are
presented in Figure 3. In PTSA, the stretching vibration of S-OH is attributed to the peak
at 850 cm−1, whereas the symmetric stretching and antisymmetric stretching vibration
of S=O bond can be assigned to 1122 cm−1 and 1182 cm−1, respectively. Additionally,
the three oxygen atoms are equivalent in sulfonate, and various peaks can be seen in the
antisymmetric stretching vibration band which appears in the spectra of the final PIL salt
compounds. The sharp peak at 1182 cm−1 is converted to a broad peak in all the salts, and
the symmetric stretching of S=O bond was found to shift from 1122 cm−1 to 1121 cm−1

[TEPA], 1128 cm−1 [TEA], 1124 cm−1 [Py], 1175cm−1 [Pip] 1130 cm−1 [Im], 1125 cm−1[Pyrr],
respectively. Moreover, the existence of the ionic bond N+—H . . . O is indicated by the peak
around 3754 cm−1 [36]. The N–H peaks in aliphatic amines/aromatic amines appear in the
range of 3200–3100 cm−1 while the new broad peak at around 2230 cm−1 can be attributed
to the interaction between the cations and the tosylate anion. The OH peak is found to red
shift from 3415 cm−1 to 3405 cm−1 in the PILs indicating the presence of hydrogen bonds.
All these changes indicate the formation of equimolar salts of the corresponding amines
and confirm the occurrence of the acid-base neutralization reactions between the PTSA and
all the amines.
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3.3. DSC Analysis

The melting temperature and the temperature of decomposition of the ionic liquids
are the most vital properties since they determine the actual temperature range in which
the ionic liquid exists in the liquid state. Many of the ionic liquids due to the incorporation
of bulky ions have the tendency of super cooling and glass formation, and thus do not
show any melting [37]. However, for majority of ILs, the melting point temperatures can
be determined easily and accurately. There is always a possibility of minor variations in
the reported melting points of the ionic liquids which occur due to various factors such
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as different cooling and heating rates, sample preparation, presence of water or other
impurities to name a few [38].

Technically, the crystallization temperature is the same as the melting temperature.
However, for ionic liquids a considerable super cooling is observed when the ionic liquids
are cooled from temperatures relatively higher than their melting temperature due to the
complex packing of the ions. Figure 4 shows the DSC thermograms for the PILs. The
studied protic ionic liquids show the typical PIL crystallization behavior except for the
N-methyl Piperidinium p-toluenesulfonate which shows the crystallization peak during
the heating process indicating a cold crystallization phenomenon in this particular PIL. The
thermal properties of the synthesized protic ionic liquids are shown in Table 2. It should
also be pointed out that the melting and crystallization peaks in the case of Tetraethylene-
pentammonium p-toluenesulfonate were very small compared to the other PILs since it is
in semi-solid form which may be due to the long aliphatic chain in the TEPA cation. The
other PILs showed considerable super cooling behavior and had crystallization tempera-
tures below 60 ◦C except for pyridinium p-toluenesulfonate which had a crystallization
temperature of 74.71 ◦C. It can also be observed that the conductivity data of this particular
PIL show an abrupt decrease/increase in conductivity due to this phase change behavior
in this temperature region. It can be observed that no glass transition temperature was seen
for all the PILs under the present experimental conditions.
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Shmukler et al. [34] reported a Tm of 67.5 ◦C and 80.2 ◦C for triethylammonium p-
toluenesulfonate with a water content of 3.4 wt. % and <1 wt. %, respectively, which is
in good agreement with the Tm of 76.75 ◦C reported herein. The lowest Tm of 76.75 ◦C
among the studied PILs was observed for triethylammonium p-toluenesulfonate, whereas
the highest Tm value of 117.82 ◦C was observed for Pyridinium p-toluenesulfonate. This
behavior can easily be understood by looking at the structural asymmetry in these PILs
(Figure 1). Among the synthesized PILs, [TEA][PTS] has an open structure with relatively
loose packing, and thus the melting is easy, whereas [Py][PTS] exhibits the most robust
structure, which indicates strong packing of the ions therefore it shows an elevated melting
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temperature. Since the anion, [PTS] is common for the PILs the trend observed for melting
point is as follows: [Py] > [TEPA] > [Pip] > [Im] > [Pyrr] > [TEA].

Table 2. Important thermal properties of the p-toluene sulfonic acid [PTS] anion based protic ionic
liquids (PILs).

Compound
Symbol Compound Name Tm

◦C ∆Tm
(J/g) Tc ◦C ∆Tc

(J/g) Tdec
◦C

[TEPA][PTS] Tetraethylenepentammonium
p-toluenesulfonate 113.72 0.54 101.28 5.89 241

[TEA][PTS] Triethylammonium
p-toluenesulfonate 76.75 96.80 20.05 95.21 270

[Py][PTS] Pyridinium
p-toluenesulfonate 117.82 48.09 74.71 43.04 213

[Im][PTS] 1-Methylimidazolium
p-toluenesulfonate 89.71 22.16 59.32 39.92 284

[Pip][PTS] N-methyl Piperidinium
p-toluenesulfonate 106.81 54.90 23.67 52.09 286

[Pyrr][PTS] N-methyl Pyrrolidinium
p-toluenesulfonate 87.12 42.61 26.01 51.38 276

Tc is the crystallization temperature; Tm is the melting temperature; Tdec is the de-
composition temperature, stated as the temperature corresponding to a 5% loss of the
sample weight.

3.4. TGA Analysis

The thermogravimetric analysis plots of the as synthesized PILs are shown in Figure 5.
The thermal stability of the studied p-toluene sulfonate anion based ionic liquids lies
within the temperature range of 225–300 ◦C. In order to quantify the amount of water
present in the synthesized PILs the samples were held at 110 ◦C for an extended period
to remove the water present in the samples. The water can be present in the samples
due to two reasons: (i) p-toluenesulfonic acid monohydrate was used for their synthesis
and (ii) the synthesized PILs are hygroscopic in nature. Tetraethylenepentammonium
p-toluenesulfonate, 1-Methylimidazolium p-toluenesulfonate and N-methyl Pyrrolidinium
p-toluenesulfonate shows the loss of around 3 wt. %, 4 wt. % and 7 wt. % water, respectively,
from the samples as evident from the step at 110 ◦C showing this weight loss for these
PILs. Whereas, Triethylammonium p-toluenesulfonate, Pyridinium p-toluenesulfonate
and N-methyl Piperidinium p-toluenesulfonate samples showed almost no weight loss
at 110 ◦C, therefore, indicating the hydrophobic nature of these 3 PILs. The remaining
three PILs are hygroscopic in nature. Tdec is the decomposition temperature, which is the
temperatures corresponding to a 5% loss in sample weight. The lowest decomposition
temperature (Table 2) of 213 ◦C was observed for the pyridinium p-toluenesulfonate and
the highest Tdec of 286 ◦C was observed for N-methylpiperidinium p-toluene sulfonate.
The following trend was observed for the decomposition temperature: [Pip] > [Im] > [Pyrr]
> [TEA] > [TEPA] > [Py].
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3.5. Electrochemical Impedance Spectroscopy (EIS) Analysis

Figure 6 shows Nyquist plots for the PILs at ~65 ◦C. These plots exhibited the blocking-
electrode effect in the low-frequency domain and the ionic diffusion effect in the high-
frequency domain [39]. As discussed in Section 3.3, the [Py][PTS] has a crystallization
temperature of 74.71 ◦C and due to the change in state (crystallization) below this tem-
perature the [Py][PTS] portrayed a prominent semi-circle in the high-frequency domain
at 65 ◦C; while the remaining PILs being in the super-cooled melt state at 65 ◦C exhib-
ited the blocking-electrode effect only. As observed by Ganapatibhotla et al. [39,40] and
Pires et al. [41], the super-cooled liquids have stronger cation–anion interactions. The
[TEA][PTS] possessed a little change in the slope, which is probably due to a higher cation–
anion interaction, as evinced by the lowest TC peak at ~20 ◦C associated with this PIL.
The high-frequency domain yielded the intercept at the Z′-axis, corresponding to the bulk
resistance (Rb) of the PIL. Table 3 lists the evaluated σ-value for the PILs at ~65 ◦C. The PILs
with the [TEA], [Im], [Pip], and [Pyrr] cations exhibited σ65 ◦C-value more than 10−3 S cm−1

with the highest value of ~8.1 × 10−3 S cm−1 for the N-methyl Pyrrolidinium [Pyrr] cation,
which is less than those of liquid electrolytes (σ25 ◦C ~10−2 S cm−1). The conductivity of
[TEA][PTS] was found here to be 2.8 × 10−3 at 65 ◦C, which is in good agreement with that
reported by Shmukler et al. [34] (0.46× 10−3 S cm−1 at 25 ◦C). We did not find conductivity
data in the literature for the other PILs reported herein.

As mentioned earlier, the electrical conductivity was measured from 120 ◦C to 65 ◦C.
Figure 7 shows log σ vs. T−1 plots of the PILs. The value of electrical conductivity increased
with increasing temperature and formed a downward log σ vs. T−1 curve for all the PILs.
The [Py][PTS], however, showed two conductive regions, I and II, which is due to a change
in its state (crystallization) in the lower temperature region (cf. Table 2 and Section 3.3). The
[Py][PTS] is in a liquid (super-cooled) state in the high-temperature region (II) and turned
into solid around 75 ◦C (crystallization temperature) (Region I). The conductivity value was,
therefore, higher in region II (liquid state) followed by a sharp drop in region I (crystallized
state). Whereas for all the other PILS no such transition was observed since they existed in
liquid state without any state change throughout the temperature range of conductivity
measurement. The downward curves indicated the highly viscous nature of the ionic liquid
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having a strong cation-anion interaction [39–41]. This type of behavior is expressed by the
empirical relation: σ = AT−1/2 exp[−B/kB(T − To)] proposed by Vogel–Tamman–Fulcher
(VTF), where B is the pseudo-activation energy and To is the temperature at which the free
volume vanishes. Figure 8 shows the log σT1/2 vs. (T − To)−1 plot for the PILs, which
exhibited a linear trend and the slope of the linear curve resulted in a B-value. Table 3 lists
the B-value for all the PILs, which are quite low, 0.028–0.079 eV. This indicated an easy
transport of ions in the PILs, which is the pre-requisite for the potential usage of PILs in the
preparation of polymer electrolyte for fuel cell applications.
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Table 3. Values of electrical conductivity (σ65 ◦C) and pseudo-activation energy (B) for the ionic liquids.

Compound
Symbol Compound Name σ65 ◦C (S cm−1) B (eV)

[Pyrr][PTS] N-methyl Pyrrolidinium
p-toluenesulfonate 8.1 × 10−3 0.038

[Im][PTS] 1-Methylimidazolium
p-toluenesulfonate 4.4 × 10−3 0.028

[Pip][PTS] N-methyl Piperidinium
p-toluenesulfonate 3.4 × 10−3 0.063

[TEA][PTS] Triethylammonium
p-toluenesulfonate 2.8 × 10−3 0.038

[TEPA][PTS] Tetraethylenepentammonium
p-toluenesulfonate 4.3 × 10−4 0.063

[Py][PTS] Pyridinium p-toluenesulfonate 6.8 × 10−5 0.079, 0.054
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3.6. Voltammetric Analysis

The electrochemical stability of the PILs depends on their electrochemical window
(ECW). The electrochemical window was determined using the CV measurements. Among
several factors that influence the electrochemical window of the PILs the electrode material
has a considerable influence on it. The PILs being characterized here seek their potential
utilization as electrolyte materials for the development of composite polymer electrolyte
membranes for fuel cell application which widely uses platinum and thus platinum was
used as the electrode material for the electrochemical window measurements. Generally,
electrochemical characterizations are performed at elevated temperatures above the glass
transition temperature of the ionic liquids, and it has been widely reported that increasing
the working temperature leads to contraction of the electrochemical window of the PILs.
Figure 9 shows the cyclic voltammograms of the [Pyrr][PTS] obtained at different tempera-
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tures and the contraction in the ECW of the PIL is evident as reported earlier for different
PILs [34,42].
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Figure 10 shows the cyclic voltammograms of PILs at 120 ◦C where all the PILs existed
in liquid state. The voltammograms did not show any oxidation-reduction peaks, revealing
good ionic properties of the abovementioned ionic liquids. The [TEA][PTS] showed the
voltammogram similar to that reported earlier by Shmukler et al. [34]. The electrochemical
window values of 3.1, 3.3, 2.0, 2.7, 3.1 and 3.0 V were obtained for the PILs with [TEPA],
[TEA], [Py], [Im], [Pip], and [Pyrr] cations, respectively, at 120 ◦C.

Crystals 2022, 12, x FOR PEER REVIEW 13 of 15 
 

 

 
Figure 10. Cyclic voltammograms of the synthesized PILs at 120 °C. 

4. Conclusions 
The evaluation of the thermal and the physical properties of the prepared PILs is 

crucial for their potential application in electrochemical devices. PILs have enormous po-
tential for their application in the fabrication of electrolyte membranes for fuel cell appli-
cation. Six PILs based on p-Toluene sulfonate as anion along with structurally different 
bases were synthesized. The NMR and FTIR studies confirmed the formation of the PILs. 
Thermal characterization and phase behaviors were mapped by employing TGA and DSC 
studies. Impedance spectroscopy was used to evaluate their proton conductivity. The 
ionic conductivity for most of the synthesized salts was found to be in the range 10−3 S 
cm−1. The Vogel–Tamman–Fulcher equation was used to fit the temperature dependencies 
of the ionic conductivity of all these PILs. The low value of activation energy (0.028–0.079 
eV) indicated an easy ion transport in the ionic liquids, which is required for device ap-
plications. The low melting point along with good ionic conductivity and the electrochem-
ical window was observed for N-methyl Pyrrolidinium p-toluenesulfonate and 1-Me-
thylimidazolium p-toluenesulfonate. Thus, these optimal properties make these as prom-
ising PILs potential electrolytes for electrochemical applications. 

Author Contributions: Conceptualization, A.A.; methodology, A.A., M.A. and M.A.A.; formal anal-
ysis, A.A., M.A., R.K.G., H.S. and M.T.; investigation, A.A., M.A., A.A.H. and R.K.G.; resources, 
A.A., M.A. and S.M.A.-Z.; writing—original draft preparation, A.A., M.A. and R.K.G.; writing—
review and editing, A.A., M.A.A., A.M.P., H.S., M.T. and S.M.A.-Z.; supervision, S.M.A.-Z.; funding 
acquisition, A.A. All authors have read and agreed to the published version of the manuscript. 

Funding: This project was funded by the National Plan for Science, Technology and Innovation 
(MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award 
Number (2-17-01-001-0042). 

Institutional Review Board Statement:  Not applicable. 

Informed Consent Statement:  Not applicable. 

Data Availability Statement:  Data are contained within the article. 

Figure 10. Cyclic voltammograms of the synthesized PILs at 120 ◦C.



Crystals 2022, 12, 507 13 of 15

4. Conclusions

The evaluation of the thermal and the physical properties of the prepared PILs is
crucial for their potential application in electrochemical devices. PILs have enormous
potential for their application in the fabrication of electrolyte membranes for fuel cell
application. Six PILs based on p-Toluene sulfonate as anion along with structurally different
bases were synthesized. The NMR and FTIR studies confirmed the formation of the PILs.
Thermal characterization and phase behaviors were mapped by employing TGA and DSC
studies. Impedance spectroscopy was used to evaluate their proton conductivity. The ionic
conductivity for most of the synthesized salts was found to be in the range 10−3 S cm−1.
The Vogel–Tamman–Fulcher equation was used to fit the temperature dependencies of the
ionic conductivity of all these PILs. The low value of activation energy (0.028–0.079 eV)
indicated an easy ion transport in the ionic liquids, which is required for device applications.
The low melting point along with good ionic conductivity and the electrochemical window
was observed for N-methyl Pyrrolidinium p-toluenesulfonate and 1-Methylimidazolium
p-toluenesulfonate. Thus, these optimal properties make these as promising PILs potential
electrolytes for electrochemical applications.
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