# Design via Root Locus 

1. Root Locus.
2. Compensator design via Root Locus.
3. Physical Realization of Compensation.

## Root Locus Techniques

- Root locus is a graphical presentation of the closed-loop poles as a system parameter k is varied.
- The graph of all possible roots of this equation ( K is the variable parameter) is called the root locus.
- The root locus gives information about the stability and transient response of feedback control systems.



## Evaluation of a Complex Function via Vectors

Any complex number, $\sigma+j \omega$, described in Cartesian coordinates can be graphically represented by a vector,

Magnitude and phase Of $\mathrm{F}(\mathrm{s})$ at S
If $F(s)=\frac{\prod_{i=1}^{m}\left(s+z_{i}\right)}{\prod_{j=1}^{n}\left(s+p_{j}\right)}$

$$
\begin{aligned}
& M=\frac{\prod \text { zero lengths }}{\prod \text { pole lengths }}=\frac{\prod_{i=1}^{m}\left|\left(s+z_{i}\right)\right|}{\prod_{j=1}^{n}\left|\left(s+p_{j}\right)\right|} \\
& \theta=\sum \text { zero angles }-\sum \text { pole angles }=\sum_{i=1}^{m}<\left(s+z_{i}\right)-\sum_{j}^{n}<\left(s+p_{j}\right)
\end{aligned}
$$

Problem: Given $F(s)=\frac{(s+1)}{s(s+2)}$ Find $F(\mathrm{~s})$ at the point $s=-3+j 4$

## Solution: Any complex number can be represented by a vector

For zero ( point $s_{1}=-1$ ) the vector is:
$s-s_{1}=s-(-1)=(-3+j 4)-(-1)=-2+j 4=\sqrt{(-2)^{2}+(4)^{2}} \tan ^{-1}\left(\frac{4}{-2}\right)=\sqrt{20} \angle 116.6^{\circ}$
For pole at 0: $5 \angle 126.9^{\circ}$
For pole at -2: $\quad \sqrt{17} \angle 104.0^{\circ}$

> Magnitude and phase (polar form)

Vector magnitude, $\quad M=\frac{\sqrt{20}}{5 \sqrt{17}}=0.217$
Vector angle, $\quad \theta=\angle\left(116.6^{\circ}-126.9^{\circ}-104.0^{\circ}\right)$




During underdamped, real parts are same; so settling time (which is related to real part) remains the same.

Damping frequency (imaginary part) increases with gain, resulting in reduction of peak time.

## Properties of Root Locus

The closed-loop transfer function $T(s)=\frac{K G(s)}{1+K G(s) H(s)}$

$s_{0}$ is a pole if $1+K G\left(s_{0}\right) H\left(s_{0}\right)=0 \Rightarrow K G\left(s_{0}\right) H\left(s_{0}\right)=-1=1<(2 k+1) 180^{0} \quad k=0, \pm 1, \pm 2, \ldots$

$$
K G(s) H(s)=-1 \Rightarrow|K G(s) H(s)|=1 \Rightarrow K=\frac{1}{|G(s)||H(s)|}=\frac{\Pi \text { pole lengths }}{\Pi \text { zero lengths }}
$$


(a)


Find if the point $-2+j 3$ is on root locus for some value of gain, $K$ :


From the angle condition
$\Sigma$ zero angle $\Sigma \Sigma$ pole angle
$\theta_{1}+\theta_{2}-\theta_{3}-\theta_{4}=56.31^{\circ}+71.57^{\circ}-90^{\circ}-108.43^{\circ}=-70.55^{\circ}$
Not a multiple of $180^{\circ}$. So, $-2+j 3$ is not in the root locus (can not be a pole for some value of $K$ ).

For the point $-2+\mathrm{j}(\sqrt{2} / 2)$ which is on root locus, the gain K is:

$$
K=\frac{\prod \text { pole lengths }}{\prod \text { zero lengths }}=\frac{L_{3} L_{4}}{L_{1} L_{2}}=\frac{\frac{\sqrt{2}}{2}(1.22)}{(2.12)(1.22)}=0.33
$$

## Sketching the Root Locus ${ }_{1}$

1. Number of branches: Equals the number of closed loop poles.
2.Symmetry: Symmetrical about the real axis (conjugate pairs of poles, real coefficients of the characteristic equation polynomial).
3.Real axis segments: For $\mathrm{K}>0$, root locus exists to the left of an odd number real axis poles and/or zeros (angle condition).
2. Start and end points: The root locus begins at finite and infinite poles of $G(s) H(s)$ and ends at finite and infinite zeros of $G(s) H(s)$.
5.Asymptotes: The root locus approaches straight lines as asymptotes as the locus approaches infinity. the equation of the asymptotes is given by:

$$
\begin{aligned}
\sigma_{a} & =\frac{\sum \text { finite poles }-\sum \text { finite zeros }}{\neq \text { finite poles }-\neq \text { finite zeros }} \underbrace{\sqrt{\text { nntersection with }} \text { Real axis }}_{\underbrace{(2 k+1) \pi}}
\end{aligned} \text { for } k=0, \pm 1, \pm 2, \ldots .
$$

## 6. Real-Axis Breakaway and Break-in Points:

$\sigma_{1}$ : Breakaway point (leave the real axis);
$\sigma_{2}$ : Break-in point (return to the real axis ); .
Breakaway point: at maximum gain on the real axis between -2 and -1 .
Break-in point: at minimum gain on real axis (increases when moving towards a zero) between +3 and +5 .



## Sketching the Root Locus

Problem1: Sketch the Root Locus for the system shown in the following figure.
Solution1: Calculate asymptotes to find real axis intercept:

$$
\sigma_{a}=\frac{\sum \text { finite poles }-\sum \text { finite zeros }}{\# \text { finite poles }-\# \text { finite zeros }}=\frac{(-1-2-4)-(-3)}{4-1}=-\frac{4}{3} \quad \text { and }
$$

- The angles of the lines that intersect at ${ }^{-4} / 3$ is given by $\theta_{a}$ :
- For higher values of $k$, the angles would begin to repeat.
- There are four poles and one finite zero. Root locus begins at poles and ends at zeros.(Three zeros at infinity are at the ends of the asymptotes.)
Problem2: From root-locus graph on figure find break-in and break-away points
Method 1:(transition method)

$$
\sum_{1}^{m} \frac{1}{\sigma+z_{i}}=\sum_{1}^{n} \frac{1}{\sigma+p_{i}} \quad \begin{aligned}
& z_{i} \text { and } p_{i} \text { are negative of zero and } \\
& \text { pole values, respectively, of } \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s}) .
\end{aligned}
$$

From figure, we get $\left\lvert\, \frac{1}{\sigma-3}+\frac{1}{\sigma-5}=\frac{1}{\sigma+1}+\frac{1}{\sigma+2}\right.$

## Method 2: (Differentiation method)

$$
K G(s) H(s)=\frac{K(s-3)(s-5)}{(s+1)(s+2)}=\frac{K\left(s^{2}-8 s+15\right)}{\left(s^{2}+3 s+2\right)}
$$

Along the real axis $(s=\sigma)$ and $K G(s) H(s)=-1$

$$
\frac{K\left(s^{2}-8 s+15\right)}{\left(s^{2}+3 s+2\right)}=-1 \quad \square K=\frac{-\left(\sigma^{2}+3 \sigma+2\right)}{\left(\sigma^{2}-8 \sigma+15\right)}
$$

$$
\begin{gathered}
\text { Differentiating } K \text { with respect to } \sigma \text { (max and min) } \\
\frac{d K}{d \sigma}=\frac{\left(11 \sigma^{2}-26 \sigma-61\right)}{\left(\sigma^{2}-8 \sigma+15\right)^{2}}=0 \\
\text { Solving for } \sigma, \\
\sigma=-1.45 \text { and } \sigma=3.82
\end{gathered}
$$

$$
=\pi / 3 \quad \text { for } k=0
$$

$$
=\pi \quad \text { for } k=1
$$

$$
=5 \pi / 3 \text { for } k=2
$$

$$
\Rightarrow 11 \sigma^{2}-26 \sigma-61=0
$$

$$
\frac{1}{+2}
$$

$$
\Rightarrow \sigma=-1.45,3.82
$$

## 7.Imaginary-Axis Crossing

Sketching the Root Locus $_{3}$
Stability: the system's poles are in the left half-plane up to a particular value of gain K . PROBLEM: For the system, find the frequency and gain, $K$, for which the root locus
crosses the imaginary axis. For what range of K is the system stable?
SOLUTION: The closed-loop transfer function

$$
T(s)=\frac{K(s+3)}{s^{4}+7 s^{3}+14 s^{2}+(8+K) s+3 K}
$$

Characteristic Eq.: $s(s+1)(s+2)(s+4)+K(s+3)$

$$
=s^{4}+7 s^{3}+14 s^{2}+(8+K) s+3 K=0
$$

We get Routh table as follows:

| $s^{4}$ | 1 | 14 | $3 K$ |
| :---: | :---: | :---: | :---: |
| $s^{3}$ | 7 | $8+K$ |  |
| $s^{2}$ | $(90-K) / 7$ | $3 K$ |  |
| $s^{1}$ | $\frac{-K^{2}-65 K+720}{90-K}$ |  |  |
| $s^{0}$ | $3 K$ |  |  |

A complete row of zeros yields the possibility for imaginary-axis roots.
For $K>0$, only $S^{1}$ row can be zero. $\quad-K^{2}-65 K+720=0$

$$
\Rightarrow K=9.65
$$

Forming the even polynomial by using the $s^{2}$ row (above) with $K=9.65$, $(90-K) s^{2}+21 K=80.35 s^{2}+202.7=0$ Gives $s= \pm j 1.59$

[^0] a gain of $K=9.65 \mathrm{So}$, the system is stable for $0 \leq K<9.65$

## 8. Angles of Departure and Arrival

Departure: from complex poles.
Arrival: to complex zeros.


Angle of departure: Zero: -2 Poles: $-3,-1+j,-1-j$
we calculate the sum of angles drawn to a point $\varepsilon$ close to the complex pole, $-1+j$

Sum (zero angles) - Sum (pole angles) $=(2 k+1) 180^{\circ}$
$-\theta_{1}-\theta_{2}+\theta_{3}-\theta_{4}=$
$=-\theta_{1}-90^{\circ}+\tan ^{-1}\left(\frac{1}{1}\right)-\tan ^{-1}\left(\frac{1}{2}\right)=180^{\circ}$
$\Rightarrow \theta_{1}=-251.6^{\circ}=108.4^{\circ}$

## Improving System Response

Speed up the response : move pole from A to B without affecting the percent overshoot Solution: move the root locus to put the desired pole on it for some value of gain $k$ (compensation by adding poles and zeros).

- Dynamic compensator is used if a satisfactory design cannot be obtained by adjustment of gain $k$ alone.


## Compensators

Dynamic compensators (function of s) are designed to improve:

Transient response by adding an ideal compensator PD (pure differentiation using active amplifiers) or a Lead compensator (implemented with passive elements) in the forward path or feedback path.

Steady-state error by adding an ideal compensator PI (pure integration using active amplifiers) or a Lag compensator (implemented with passive elements) in the forward path or feedback path.

- Compensator transfer function : $C(s)=K \frac{s+z}{s+p}$
lead compensation if $z<p$ and lag compensation if $z>p$.

(a)
a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment $(B)$; $c(t)$


## Ideal Integral Compensation (PI)

## Improving Steady-State Error

- Steady-state error can be improved (without appreciably affecting the transient response) by placing an open-loop pole at the origin, because this increases the system type by one.


$$
-\theta_{1}-\theta_{2}-\theta_{3}=(2 k+1) 180 \curlyvee
$$

(a)

## Pole at $A$ is:

a. on the root locus without compensator;
b. not on the root locus with compensator pole added;
c. approximately on the root locus with compensator pole and zero added

| If we add a |
| :--- |
| pole at the |
| origin |$\Rightarrow$ | Changes root-locus |
| :--- |
| (Point A not on |
| root locus.) |


(b)

Solution: add a zero close to the pole at the origin to pole cancel out the effect of the added pole on the root-locus.


(c)
we have improved the steady-state error without appreciably affecting the transient response

## Example1

Given the system of Figure (a), operating with a damping ratio of 0.174 , show that the addition of the ideal integral compensator shown in Figure (b) reduces the steady-state error to zero for a step input without appreciably affecting transient response.


## SOLUTION

## -

Figure (a)

For gain $K=164.6$, searching along the line of $\zeta=0.174$ for the uncompensated system: dominant poles are $0.694 \mp j 3.926$ (third pole at -11.61 ) Figure (c).

This gain yields Position constant $K_{p}=\lim _{s \rightarrow 0} G(s)=\frac{164.6}{20}=8.23$.
Hence, the steady-state error is: $\quad e(\infty)=\frac{1}{1+K_{p}}=\frac{1}{1+8.23}=0.108$
We add an ideal integral compensator with a zero at -0.1 .
For gain $K=158.2$, searching along the line of $\zeta=0.174$ for the compensated system : dominant poles are $0.678 \mp j 3.837$ (forth pole at -0.0902 ) Figure (e).



## Lag Compensation

## Improving Steady-State Error

- Similar to the Ideal Integrator, however it has a pole not on the origin but close to the origin (fig c) due to the passive networks.
- Steady State Improvement:

Before compensation: The static error constant,
$K_{v}$, for the system is:

$$
K_{v_{0}}=\lim _{s \rightarrow 0} s G(s)=K \frac{z_{1} z_{2} \ldots}{p_{1} p_{2} \ldots} .
$$



After compensation: $K_{v_{\text {new }}}=\frac{z_{c}}{p_{c}} \underbrace{K \frac{z_{1} z_{2} \ldots}{p_{1} p_{2} \ldots}}_{K_{v_{0}}} \Rightarrow k_{v_{-} \text {new }}=\frac{z_{c}}{p_{c}} \cdot k_{v_{-} n e w}$

- The effect on the transient response is negligible:

If the lag compensator pole and zero are close together, the angular contribution of the compensator to point P is approximately zero degrees. point P is still at approximately the same location on the compensated root locus.


(a)

(b)
(b)

(c)


- From example 1: uncompensated system error was 0.108 with $K_{P}^{\text {old }}=8.230$. A tenfold improvement means a steady-state error of:

$$
e^{\text {new }}(\infty)=\frac{e^{\text {old }}(\infty)}{10}=\frac{0.108}{10}=0.0108, \quad \text { since } e(\infty)=\frac{1}{1+K_{P}^{\text {new }}} \Rightarrow K_{P}^{\text {new }}=91.59
$$

- For the compensated system $\frac{z_{C}}{p_{c}}=\frac{K_{P}^{\text {new }}}{K_{P}^{\text {old }}}=\frac{91.59}{8.23}=11.13$

Arbitrarily selecting

$$
\begin{aligned}
p_{c}=0.01 & \longmapsto \\
z_{c} & =11.13 \cdot p_{c}=(11.13)(0.01) \\
& \longmapsto z_{c} \approx 0.111
\end{aligned}
$$

- The compensated system
(a)

- The transient response of both systems is approximately the same with reduced steady state error

- Comparison of the Lag-Compensated and the Uncompensated Systems

| Parameter | Uncompensated | Lag-compensated |
| :--- | :--- | :--- |
| Plant and compensator | $\frac{K}{(s+1)(s+2)(s+10)}$ | $\frac{K}{(s+1)(s+2)(s+0.111)}$ |
| $K$ | 164.6 | 158.1 |
| $K_{p}$ | 8.23 | 87.75 |
| $e(\infty)$ | 0.108 | 0.011 |
| Dominant second-order poles | $-0.694 \pm j 3.926$ | $-0.678 \pm j 3.836$ |
| Third pole | -11.61 | -11.55 |
| Fourth pole | None | -0.101 |
| Zero | None | -0.111 |

On the $\zeta=0.174$ line: (compensated system):
The second-order dominant poles are at - $0.678 \pm \mathrm{j} 3.836(\mathrm{~K}=158.1)$

The third and fourth closed-loop poles are at -11.55 and -0.101 .
The fourth pole of the compensated system cancels its zero.

## Ideal Derivative Compensation (PD) <br> Improving Transient Response

- The objective is to design a response that has a desirable percent overshoot and a shorter settling time than the uncompensated system. (two approaches).

1. Ideal derivative compensation (Proportional-plus-Derivative (PD) active elements ): a pure differentiator is added to the forward path of the feedback control system. $G_{1}(s)=s+z_{c} \quad$ sensitive to high frequency noise.
2. Lead Compensation: (not pure differentiation) approximates differentiation with a passive network by adding a zero and a more distant pole to the forward-path transfer function.

$$
G_{1}(s)=K \frac{s+z_{c}}{s+p_{c}} \underbrace{}_{\substack{\text { Distant } \\ \text { pole }}} \quad \text { Less sensitive to high frequency noise. }
$$

- The transient response of a system can be selected by choosing an appropriate closed-loop pole location on the s-plane.
- If this point is on the root locus, then a simple gain adjustment is all that is required in order to meet the transient response specification.
- If the closed loop root locus doesn't go through the desired point, it needs to be reshaped (add poles and zeros in the forward path).
- One way to speed up the original system is to add a single zero to the forward path. $G_{c}(s)=s+z_{c}$


## Ideal Derivative Compensation (PD) <br> Improving Transient Response

- See how it affects by an example of a system operating with a damping ratio of 0.4:






## Observations and facts:

- In each case gain K is chosen such that percent overshoot is same.
- Compensated poles have more negative real part (smaller settling time) and larger imaginary part (smaller peak time).
- Zero placed farther from the dominant poles, compensated dominant poles move closer to the origin.


Example3 $_{1}$
Given the system of Figure (a), design an ideal derivative compensator to yield a $16 \%$ overshoot, with a threefold reduction in settling time.

## SOLUTION

The performance of the uncompensated system operating with $16 \%$ overshoot fig (b).


Location of the compensated system's dominant poles.(Desired poles)

$$
T_{S}^{\text {new }}=\frac{T_{S}^{o l d}}{3}=1.107 \quad \text { threefold reduction in the settling time }
$$

$$
\sigma=\frac{4}{T_{s}^{\text {new }}}=\frac{4}{1.107}=3.613 \begin{gathered}
\text { real part of the compensated system's } \\
\text { dominant, second-order pole }
\end{gathered}
$$

$$
\omega_{d}=3.613 \tan \left(180^{\circ}-120.26^{0}\right)=6.193 \begin{aligned}
& \text { Imaginary part of the compensated } \\
& \text { system's dominant pole on line } \zeta=0.504
\end{aligned}
$$



Fig (b) Compensated dominant pole

## Example3 $_{2}$

## Design the location of the compensator zero

Zero contribution angle > $90^{\circ} \rightarrow$ zero position less than desired pole real part

- The angle contribution of poles for the desired pole location:-275.6 ${ }^{0}$.
- To achieve $-180^{\circ}$ the angle contribution of the placed zero should be: $-275.6^{\circ}+x=-180^{\circ} \rightarrow x=95.6^{\circ}$
- From the fig (c):

$$
\frac{6.193}{3.613-\sigma}=\tan (180-95.6) \square \sigma=3.006
$$



Fig (d) Uncompensated and compensated system step responses

## Lead Compensation



- There are infinitely many choices of $\mathrm{z}_{\mathrm{c}}$ and $\mathrm{p}_{\mathrm{c}}$ providing same $\theta_{c}$


## Example4

Design three lead compensators for the system in Figure to reduce the settling time by a factor of 2 while maintaining $30 \%$ overshoot.

## SOLUTION

- Characteristics of the uncompensated system operating at $30 \%$ overshoot


Basic Idea: The difference between $180^{\circ}$ and the sum of the angles must be the angular contribution required of the compensator.

Example: looking at the Figure, we see that:

$$
\theta_{2}-\theta_{1}-\theta_{3}-\theta_{4}+\theta_{5}=(2 k+1) 180^{0}
$$

where $\theta_{1}-\theta_{2}=\theta_{c}$ is the angular contribution of the compensator
$\begin{gathered}30 \% \\ \text { Overshoot } \stackrel{\text { datio }}{\text { damping }}\end{gathered} \zeta=0.358, \underset{\text { along damping ratio line }}{\substack{\text { Dominant second-order } \\ \text { pair of poles }}}-1,007 \pm \mathrm{j} 2.627 . ~ \xrightarrow[\text { From pole's real part }]{\text { settling time }} T_{s}=4 / 1.007=3.972 \mathrm{~s}$

- Design point (Desired Poles location)
twofold reduction
in settling time part of the desired
pole location

$$
\stackrel{\text { in settling time }}{ } T_{S}=3.972 / 2=1.986 \mathrm{~s} \stackrel{\square}{\square}-\zeta \omega_{n}=-4 / T_{s}=-2.014
$$

Imaginary part of the desired pole location

$$
\omega_{d}=-2.014 \tan \left(110.98^{0}\right)=5.252
$$



## Example42

- Lead compensator Design.

Place the zero on real axis at -5 (arbitrarily as possible solution). sum the angles (this zero and uncompensated system's poles and zeros),
$\left.\square \theta_{0}=-172.69^{0} \longrightarrow \begin{array}{c}\text { the angular contribution required } \\ \text { from the compensator pole }\end{array}\right] \theta_{c}=-180^{\circ}+172.69^{0}=-7.31^{0}$
location of the
compensator pole

From geometry in fig(a)

$$
\frac{5.252}{p_{c}-2.014}=\tan \left(7.31^{0}\right) \stackrel{\text { compensator pole }}{\square} p_{c}=42.96
$$



Fig (c) Uncompensated system and lead compensation responses (zeros at a:-5, b:-4 c: -2)


$$
\begin{aligned}
& \mathbf{X}=\text { Closed-loop pole } \\
& \mathbf{X}=\text { Open-loop pole }
\end{aligned}
$$

Note: This figure is not drawn to scale.
Fig (a) 5-plane picture used to calculate the location of the compensator pole


Note: This figure is not drawn to scale.

## Improving Steady-State Error and Transient Response

- Combine the design techniques to obtain improvement in steady-state error and transient response independently.
- First improve the transient response.(PD or lead compensation).
- Then improve the steady-state response. (PI or lag compensation).
- Two Alternatives
- PID (Proportional-plus-Integral-plus-Derivative) (with Active Elements).
- Lag-Lead Compensator. (with Passive Elements).


## PID Controller Design

- Transfer Function of the compensator (two zeros and one pole):

$$
G_{c}(s)=k_{1}+\frac{k_{2}}{s}+k_{3} s=\frac{k_{1} s+k_{2}+k_{3} s^{2}}{s}=\frac{k_{3}\left(s^{2}+\frac{k_{1}}{k_{3}} s+\frac{k_{2}}{k_{3}}\right)}{s}
$$

- Design Procedure (Fig (a) )


Fig (a) PID controller implementation

1. From the requirements figure out the desired pole location to meet transient response specifications.
2. Design the PD controller to meet transient response specifications.
3. Check validity (all requirements have been met) of the design by simulation.
4. Design the PI controller to yield the required steady-state error.
5. Determine the gains, $k_{1}, k_{2}$ and $k_{3}$ (Combine PD and PI).
6. Simulate the system to be sure all requirements have been met.
7. Redesign if simulation shows that requirements have not been met.

## Example5 ${ }_{1}$

Given the system of Figure (a), design a PID controller so that the system can operate with a peak time that is two-thirds that of the uncompensated system at $\mathbf{2 0 \%}$ overshoot and with zero steadystate error for a step input.

## SOLUTION



Fig (a) Uncompensated feedback control system

## - Evaluation of the uncompensated system

20\% damping ratio
Overshoot $\xrightarrow{\text { pair of poles }} \zeta=0.456, \xrightarrow{2}-415 \pm \mathrm{j} 10.57$ with gain of 121.5. $\xrightarrow{\text { Peak time }} T_{p}=\frac{\pi}{\omega_{d}}=0.297$ seconds
between - 8 and -10 for a gain
equivalent to that at the dominant poles
A third pole at -8.169

- To reduce the peak time to two-thirds. (find the compensated system's dominant pole location)

The imaginary part

$$
\omega_{d}=\frac{\pi}{T_{p}}=\frac{\pi}{(2 / 3)(0.297)}=15.87
$$

The real part

$$
\sigma=\frac{\omega_{d}}{\tan \left(117.13^{0}\right)}=-8.13
$$

$\tan \left(117.13^{0}\right)=-\tan \left(180-117.13^{\circ}\right)$
$\mathrm{X}=$ Closed-loop pole
$X=$ Open-loop pole

## Example52

- Design of the compensator
(sum of angles from the uncompensated system's poles and zeros to the desired compensated dominant pole is $-198.37^{\circ}$ )
the required contribution
from the compensator zero $Z_{C}$

$$
-198.37^{0}+\theta_{c}=-180^{0} \longmapsto \theta_{c}=18.37^{0}
$$



$$
\mathrm{X}=\text { Closed-loop pole }
$$

Note: This figure is not drawn to scale. Fig (a) Calculating the PD compensator zero
compensating zero's location.
$\underset{\substack{\text { From geometry } \\ \text { in Fig(a) }}}{\text { zeros location. }} \frac{15.87}{z_{c}-8.13}=\tan 18.37^{0} \Rightarrow z_{c}=55.92 \stackrel{\text { the PD controller. }}{ } G_{P D}(s)=(s+55.92)$

## gain at the design point

$$
k=5.34
$$

- The PD-compensated system is simulated. Fig (b) (next slide) shows the reduction in peak time and the improvement in steady-state error over the uncompensated system. (step 3 and 4)


## Example5 $_{3}$

- A PI controller is used to reduce the steady-state error to zero (for PI controller the zero is placed at -0.5 close to the origin)

PI controller is used as

$$
G_{P I}(s)=\frac{s+0.5}{s}
$$

Searching the 0.456
damping ratio line

$$
-7.516 \pm j 14.67 \text { with associated gain } k=4.6
$$

we find the dominant, second-order poles


- Now we determine the gains (the PID parameters),

$$
\begin{aligned}
G_{P I D}(s) & =\frac{k(s+55.92)(s+0.5)}{s}=\frac{4.6(s+55.92)(s+0.5)}{s} \\
& =256.5+128.6 \frac{1}{s}+4.6 s=k_{1}+k_{2} \frac{1}{s}+k_{3} s
\end{aligned}
$$

Matching: $k_{1}=256.5$,

$$
k_{2}=128.6,
$$

$$
k_{3}=4.6
$$



## Lag-Lead Compensator Design (Cheaper solution then PID)

- First design the lead compensator to improve the transient response. Next we design the lag compensator to meet the steadystate error requirement.
- Design procedure:

1. Determine the desired pole location based on specifications. (Evaluate the performance of the uncompensated system).
2. Design the lead compensator to meet the transient response specifications.(zero location, pole location, and the loop gain).
3. Evaluate the steady state performance of the lead compensated system to figure out required improvement.(simulation).
4. Design the lag compensator to satisfy the improvement in steady state performance.
5. Simulate the system to be sure all requirements have been met. (If not met redesign)

## Example6 $_{1}$

Design a lag-lead compensator for the system of Figure so that the system will operate with $20 \%$ overshoot and a twofold reduction in settling time. Further, the compensated system will exhibit a tenfold improvement in steady-state error for a ramp input.

## SOLUTION



Fig (a) Uncompensated system

- Step 1: Evaluation of the uncompensated system

- Step 2 : Lead compensator design (selection of the location of the compensated system's dominant poles).
\(\xrightarrow[$$
\begin{array}{c}\text { the real part of } \\
\text { the dominant pole }\end{array}
$$]{\substack{Twofold reduction <br>

of setting time}}-\zeta \omega_{n}=-2(1.794)=-3.588 \xrightarrow{\)|  lead compensator design.  |
| :---: |$} z_{c}=-6$

Arbitrarily select a location
for the lead compensator zero.

- compensator zero coincident with the open-loop pole to eliminate a zero and leave the lead-compensated system with three poles. (same number that the uncompensated system has)


## Example6 $_{2}$

- Finding the location of the compensator pole.
- Sum the angles to the design point from the uncompensated system's poles and zeros and the compensator zero and get $-164.65^{\circ}$.
- The difference between $180^{\circ}$ and this quantity is the angular contribution required from the compensator pole $\left(-15.35^{\circ}\right)$.
- Using the geometry shown in Figure (b)



Fig (a) Root locus for uncompensated system

- The complete root locus for the lead-compensated system is sketched in Figure (c)



## Example6 $_{3}$

- Steps 3 and 4: Check the design with a simulation. (The result for the lead compensated system is shown in Figure(a) and is satisfactory.)
- Step 5: design the lag compensator to improve the steady-state error.
inversely
uncompensated system's
open-loop transfer function
$G(s)=\frac{192.1}{s(s+6)(s+10)}$
lead-compensated system's
open-loop transfer function
proportional to compensation has improved
static error
$\xrightarrow{\text { constant }} k_{v O}=3.201$
the steady-
state error the steady-state error by a
factor of 2.122

Need of tenfold

$$
\frac{6.794}{3.201}=2.122
$$

improvement

$$
G_{L C}(s)=\frac{1977}{s(s+10)(s+29.1)} \stackrel{\begin{array}{c}
\text { static error } \\
\text { constant }
\end{array}}{\longrightarrow} k_{v}=6.794
$$

improvement
.

Step 6: We arbitrarily choose the lag compensator pole at 0.01 ,
\(\stackrel{\substack{lag compensator <br>

zero}}{\square} z_{c}=p_{c} \frac{k_{v N}}{k_{v o}}=0.01 \frac{4.713}{3.201}=0.04713 \stackrel{\)|  lag  |
| :---: |
|  compensator  |$}{\square} G_{L a g}(s)=\frac{(s+0.04713)}{(s+0.01)} \stackrel{\text { lag-lead-compensated }}{\text { Open loop TF }} \Rightarrow G_{L L C}(s)=\frac{K(s+0.04713)}{s(s+10)(s+29.1)(s+0.01)}$

- The uncompensated system pole at -6 canceled the lead compensator zero at -6 .
- Drawing the complete root locus for the lag-lead-compensated system and by searching along the 0.456 damping ratio line closed-loop
dominant pole

$$
p_{c}=-3.574 \pm j 6.976 \text { with a gain of } 1971 .
$$

## Example6 $_{4}$

- Fig (b) shows the complete draw of the lag-lead-compensated root locus.
- The lag-lead compensation has indeed increased the speed of the system (settling time or the peak time).

Step 7: The final proof of our designs is shown by the simulations of Figure (b)


X $=$ Open-loop pole
Note: This figure is not drawn to scale.


## Feedback Compensation

Compensator $H_{c}(s)$ is used at the minor feedback to reshape the root-locus and improve transient response and steady-state response independently ( $G_{2}(s)$ can be unity).

- Can be more complicated than cascade.
- Can provide faster response.
- Can be used in cases where noise is a concern if we use
 cascade compensators.
- May not require additional gain.

The design of feedback compensation consists of finding the gains, such as $K, K_{1}$ and $K_{f}$.
Similar to cascade compensation. Consider compensation as adding poles and zeros to feedback section for the equivalent system.


## Example7 $_{1}$

Given the system of Figure (a), design rate feedback compensation, as shown in Figure (b), to reduce the settling time by a factor of 4 while continuing to operate the system with $20 \%$ overshoot.

(a)

## SOLUTION

## - First design a PD compensator.

- For the uncompensated system, Search along the $20 \%$ overshoot line $(\zeta=0.456)$

| The angle of the $20 \%$ <br> overshoot line <br> the dominant <br> poles |
| :--- |$\quad 180^{\circ}-\arccos (\zeta)=117.13^{\circ}$

- The settling time is 2.21 seconds and must be reduced by a factor of 4 to 0.55 second.
- Next determine the location of the dominant poles for the compensated system.
- To achieve a fourfold decrease in the settling time, the real part of the desired pole must be increased by a factor of 4 .

| Real part of |
| :--- |
| Compensated pole |$\longrightarrow 4(-1.809)=-7.236$


| Imaginary part of |
| :--- |
| Compensated pole |$\longrightarrow w_{d}=-7.236 \tan \left(117.13^{\circ}\right)=14.12$

System

(b)

> system with rate feedback compensation

(c)
equivalent compensated system;

## Equivalent BD from fig (b)


(d)

$$
p_{c}=-7.236 \pm j 14.12
$$

- Sum of the angles from the uncompensated system's poles (add zero to yields $180^{\circ}$ ) compensator
zero contribution

$$
\theta=-277.33^{\circ} \quad \theta_{z}-277.33^{\circ}=-180^{\circ} \rightarrow \quad \theta_{z}=+97.33^{\circ}
$$

- Using the geometry shown in Figure (a)
$\begin{aligned} & \text { Compensator's } \\ & \text { zero location }\end{aligned} \frac{14.12}{7.236-z_{c}}=\tan \left(180^{\circ}-97.33^{\circ}\right) \square z_{c}=5.42$
- The root locus for the equivalent compensated system (fig (c) previous slide) is shown in Figure (b)

| The gain at <br> the design point, |
| :--- |
| $\square$ |$K_{1}=1388$

$\begin{aligned} & \text { Since } K_{f} \text { is the recirocal } \\ & \text { of the compensator zero, }\end{aligned} \square z_{c}=\frac{1}{K_{f}} \square K_{f}=\frac{1}{z_{c}}=\frac{1}{5.42}=0.185 \square K_{1} K_{f}=256.7$

- steady-state error characteristic (fig (d) slide 32 )

$$
K_{v}=\lim _{s \rightarrow 0} s G(s)=\frac{K_{1}}{75+K_{1} K_{f}}=4.18
$$

(b) Root locus for the compensated system

## Example7 $_{3}$

- The closed-loop transfer function is (fig (d) slide 32)

$$
T(s)=\frac{G(s)}{1+G(s) H(s)}=\frac{K_{1}}{s^{3}+20 s^{2}+\left(75+K_{1} K_{f}\right) s+K_{1}}
$$

- The results of the simulation are shown in Figure (a) and (b)

(a) Step response for uncompensated system


## Physical Realization of Compensation Active-Circuit Realization

- $Z_{1}(s)$ and $Z_{2}(s)$ are used as a building block to implement the compensators and controllers, such as PID controllers.
- The transfer function of an inverting operational amplifier

$$
\frac{V_{0}(s)}{V_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)}
$$



- Table1 summarizes the realization of PI, PD, and PID controllers as well as lag, lead, and lag-lead compensators using Operational amplifiers.
- Fig (a) : lag-lead compensator can be formed by cascading the lag compensator with the lead compensator.


Fig (a) Lag-lead compensator implemented with operational amplifiers

| Function | $Z_{1}(s)$ | $Z_{2}(s)$ | $G_{c}(s)=-\frac{Z_{2}(s)}{Z_{1}(s)}$ |
| :---: | :---: | :---: | :---: |
| Gain | $-\mathrm{M}^{R_{1}}$ | $-\mathrm{M}^{R_{2}}$ | $-\frac{R_{2}}{R_{1}}$ |
| Integration | $\mathcal{M}^{R}$ | $\begin{gathered} c \\ -1( \end{gathered}$ | $-\frac{1}{R C}$ |
| Differentiation | $\begin{gathered} c \\ -1( \end{gathered}$ | $\stackrel{M}{\mathrm{M}}^{R}$ | $-\mathrm{RCs}$ |
| PI controller |  | $-M^{R_{2}} H^{C}(-$ | $-\frac{R_{2}}{R_{1}} \frac{\left(s+\frac{1}{R_{2} C}\right)}{s}$ |
| PD controller |  | $\sim_{M}^{R_{2}}$ | $-R_{2} C\left(s+\frac{1}{R_{1} C}\right)$ |
| PID controller |  | $-\mathrm{M}_{\mathrm{M}}^{R_{2}} \stackrel{C}{2}_{-}^{( }$ | $-\left[\left(\frac{R_{2}}{R_{1}}+\frac{C_{1}}{C_{2}}\right)+R_{2} C_{1} s+\frac{\frac{1}{R_{1} C_{2}}}{s}\right]$ |
| Lag compensation |  |  | $-\frac{C_{1}}{C_{2}} \frac{\left(s+\frac{1}{R_{1} C_{1}}\right)}{\left(s+\frac{1}{R_{2} C_{2}}\right)}$ <br> where $R_{2} C_{2}>R_{1} C_{1}$ |
| Lead compensation |  |  | $-\frac{C_{1}}{C_{2}} \frac{\left(s+\frac{1}{R_{1} C_{1}}\right)}{\left(s+\frac{1}{R_{2} C_{2}}\right)}$ <br> where $R_{1} C_{1}>R_{2} C_{2}$ |

## Example8

## SOLUTION

- The transfer function of the PID controller is $G_{c}(s)=\frac{4.6(s+55.92)(s+0.5)}{s}$
- which can be put in the form $G_{c}(s)=s+56.42+\frac{27.96}{s}$
- Comparing the PID controller in Table 1 with this equation we obtain the following three relationships:

$$
\frac{R_{2}}{R_{1}}+\frac{C_{1}}{C_{2}}=56.42 \quad R_{2} C_{1}=1 \quad \frac{1}{R_{1} C_{2}}=27.96
$$

- Rlmbd sgdqd `qd ent qt mim mv mr`me sgqdd dpt `smm we arbitrarily select a practical value:


Fig (a) PID controller

$$
C_{2}=0.1 \mu F \quad \square R_{1}=357.65 \mathrm{k} \Omega, R_{2}=178.891 \mathrm{k} \Omega \text { and } C_{1}=5.59 \mu \mathrm{~F}
$$

- The complete circuit is shown in Figure (a) where the circuit element values have been rounded off.


## Passive-Circuit Realization

- Lag, lead, and lag-lead compensators can also be implemented with passive networks (Table 2) .
Function


## Example9

Realize the lead compensator designed in Example 4 (Compensator b zero at -4).

## SOLUTION

- The transfer function of the lead compensator is $\quad G_{c}(s)=\frac{s+4}{s+20.09}$
- Comparing the transfer function of a lead network shown in Table 2 with The equation, we obtain the following two relationships:

$$
\frac{1}{R_{1} C}=4 \quad \text { and } \quad \frac{1}{R_{1} C}+\frac{1}{R_{2} C}=20.09
$$

- Since there are three network elements and two equations, we may select one of the element values arbitrarily

$$
C=1 \mu F \quad \square R_{1}=250 \mathrm{k} \Omega \quad \text { and } \quad R_{2}=62.2 \mathrm{k} \Omega
$$


[^0]:    Thus, the root locus crosses the imaginary-axis at $\omega_{d}= \pm j 1.59$ at

