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1. Root Locus.

2. Compensator design via Root Locus.

3. Physical Realization of Compensation.



Closed-loop system 
Equivalent Transfer Function

Root Locus Techniques
• Root locus is a graphical presentation of the closed-loop poles as a system parameter k is varied. 

• The graph of all possible roots of this equation (K is the variable parameter)  is called the root locus.

• The root locus gives information about the stability and transient response of feedback control systems.
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Zeros of T(s) are zeros of G(s) and poles of H(s).

Poles of T(s) depends on gain K 

CLCF is a function of K.

Root Locus graphically shows poles of T(s) as K varies

Rout-locus (poles motion graph) 
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Evaluation of a Complex Function via Vectors 

Problem: Given Find F(s) at the point 𝑠 = −3 + 𝑗4

Solution: Any complex number can be represented by a vector  

For zero ( point 𝑠1 = −1) the vector is:

Magnitude and phase 
(polar form)

For pole at 0: 

𝑠 − 𝑠1 = 𝑠 − (−1) = −3 + 𝑗4 − −1 = −2 + 𝑗4 = −2 2 + 4 2𝑡𝑎𝑛−1
4

−2
=

For pole at -2: 

Vector magnitude, 

Vector angle, 

Vector 

If  𝐹 𝑠 =
ς𝑖=1
𝑚 (𝑠+𝑧𝑖)

ς𝑗=1
𝑛 (𝑠+𝑝𝑗)

𝑀 =
ς𝑧𝑒𝑟𝑜 𝑙𝑒𝑛𝑔𝑡ℎ𝑠

ς𝑝𝑜𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑠
=
ς𝑖=1
𝑚 (𝑠 + 𝑧𝑖)

ς𝑗=1
𝑛 (𝑠 + 𝑝𝑗)

𝜃 =𝑧𝑒𝑟𝑜 𝑎𝑛𝑔𝑙𝑒𝑠 −𝑝𝑜𝑙𝑒 𝑎𝑛𝑔𝑙𝑒𝑠 =

𝑖=1

𝑚

≺ 𝑠 + 𝑧𝑖 −

𝑗=1

𝑛

≺ 𝑠 + 𝑝𝑗

Magnitude and phase Of F(s) at S

Any complex number, 𝜎 + 𝑗𝜔, described in Cartesian coordinates can be graphically represented by a vector,

𝑠 = −3 + 𝑗4
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Defining the Root Locus 

Poles location for 
different values of K

Gain less than 25, over-damped. 

Gain = 25, critically damped. 

Gain over 25, under-damped. 

Stable system, as no pole on right-hand plane. 

During underdamped, real parts are same; so settling 

time (which is related to real part) remains the same. 

Damping frequency (imaginary part) increases with gain, 

resulting in reduction of peak time. 
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Properties of Root Locus 
The closed-loop transfer function 𝑇 𝑠 =

𝐾𝐺(𝑠)

1+𝐾𝐺 𝑠 𝐻(𝑠)

𝑠0 is a pole if  1 + 𝐾𝐺 𝑠0 𝐻 𝑠0 = 0 ⟹ 𝐾𝐺 𝑠0 𝐻 𝑠0 = −1 = 1 ≺ 2𝑘 + 1 1800 𝑘 = 0,±1,±2,…

𝐾𝐺 𝑠 𝐻 𝑠 = −1 ⟹ 𝐾𝐺 𝑠 𝐻 𝑠 = 1 ⟹ 𝐾 =
1

𝐺 𝑠 𝐻 𝑠
=
Π 𝑝𝑜𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑠

Π 𝑧𝑒𝑟𝑜 𝑙𝑒𝑛𝑔𝑡ℎ𝑠

Find if the point -2+j3 is on root locus for some value of gain, K:

From the angle condition

Angle conditionModule condition

Not a multiple of 1800. So, −2 + j3 is not in the root locus

(can not be a pole for some value of K). 

Σ zero angle - Σ pole angle 

For the point −2 + j( ൗ2 2) which is on root locus, the gain K is: 

𝐾 =
ς𝑝𝑜𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑠

ς𝑧𝑒𝑟𝑜 𝑙𝑒𝑛𝑔𝑡ℎ𝑠
=
𝐿3𝐿4
𝐿1𝐿2

=

2
2
(1.22)

(2.12)(1.22)
= 0.33



CEN455: Dr. Nassim Ammour 6

Sketching the Root Locus1

1.Number of branches:  Equals the number of closed loop poles.  

2.Symmetry:  Symmetrical about the real axis (conjugate pairs of poles, real coefficients 

of the characteristic equation polynomial).  

3.Real axis segments:  For K > 0, root locus exists to the left of an odd number real 

axis poles and/or zeros (angle condition).  

4.Start and end points: The root locus begins at finite and infinite poles of 𝐺 𝑠 𝐻 𝑠 and ends 

at finite and infinite zeros of 𝐺 𝑠 𝐻 𝑠 .  

Complete root locus for the system

Real-axis segments of the root locus

5.Asymptotes: The root locus approaches straight lines as asymptotes as the locus 

approaches infinity. the equation of the asymptotes is given by:

𝜎𝑎 =
σ𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑜𝑙𝑒𝑠 − σ𝑓𝑖𝑛𝑖𝑡𝑒 𝑧𝑒𝑟𝑜𝑠

≠ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑜𝑙𝑒𝑠 −≠ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑧𝑒𝑟𝑜𝑠

𝜃𝑎 =
(2𝑘 + 1)𝜋

≠ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑜𝑙𝑒𝑠 −≠ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑧𝑒𝑟𝑜𝑠
𝑓𝑜𝑟 𝑘 = 0,±1, ±2, …

Intersection with 
Real axis

Angle in radian  of the 
asymptote with real axis

6.Real-Axis Breakaway and Break-in Points: 

σ1: Breakaway point (leave the real axis); 

σ2: Break-in point (return to the real axis ); . 

Breakaway point: at maximum gain on the real axis between -2 and -1. 

Break-in point: at minimum gain on real axis (increases 

when moving towards a zero) between +3 and +5. 



Asymptote

-1.45 3.82

CEN455: Dr. Nassim Ammour
7

Problem1: Sketch the Root Locus for the system shown in the following figure. 

Solution1: Calculate asymptotes to find real axis intercept:  

• The angles of the lines that intersect at Τ−4
3 is given by 𝜃𝑎:

• For higher values of k, the angles would begin to repeat. 

• There are four poles and one finite zero. Root locus begins at poles 

and ends at zeros.(Three zeros at infinity are at the ends of the 

asymptotes.)

Problem2: From root-locus graph on figure find break-in and break-away points 

Method 1:(transition method)

Method 2: (Differentiation method)

From figure, we get 

𝑧𝑖 and  𝑝𝑖 are negative of zero and 

pole values, respectively, of G(s)H(s).

𝐾𝐺 𝑠 𝐻 𝑠 =
𝐾(𝑠 − 3)(𝑠 − 5)

(𝑠 + 1)(𝑠 + 2)
=
𝐾(𝑠2 − 8𝑠 + 15)

(𝑠2 + 3𝑠 + 2)

Along the real axis ( 𝑠 = 𝜎) 𝑎𝑛𝑑 𝐾𝐺 𝑠 𝐻 𝑠 = −1

𝐾(𝑠2 − 8𝑠 + 15)

(𝑠2 + 3𝑠 + 2)
= −1 𝐾 =

−(𝜎2 + 3𝜎 + 2)

(𝜎2 − 8𝜎 + 15)

Solving for K

Differentiating K with respect to 𝜎 (max and min)

𝑑𝐾

𝑑𝜎
=

(11𝜎2 − 26𝜎 − 61)

(𝜎2 − 8𝜎 + 15)2
= 0

Solving for 𝜎,

𝜎 = −1.45 𝑎𝑛𝑑 𝜎 = 3.82

𝑎𝑛𝑑

Sketching the Root Locus2
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7.Imaginary-Axis Crossing 

Stability: the system's poles are in the left half-plane up to a particular value of gain K. 

PROBLEM: For the system, find the frequency and gain, K, for which the root locus 

crosses the imaginary axis. For what range of K is the system stable?

SOLUTION: The closed-loop transfer function

Characteristic Eq.:

We get Routh 

table as follows: 

A complete row of zeros yields the possibility for imaginary-axis roots. 

For K > 0, only 𝑠1 row can be zero. 

Gives 

Thus, the root locus crosses the imaginary-axis at 𝝎𝒅 = ±𝒋𝟏. 𝟓𝟗 at 

a gain of K= 9.65 So, the system is stable for 0 ≤ K < 9.65 

Forming the even polynomial by using the 𝑠2 row (above) with  K= 9.65, 

8.Angles of Departure and Arrival 
Departure: from complex poles.              Arrival: to complex zeros. 

Angle of departure: Poles:-3, -1+j, -1- jZero: -2

we calculate the sum of angles drawn to a point 

𝜀 close to the complex pole, -1 + j

𝜃 3 𝜃 4

Sketching the Root Locus3

= 0=



Improving System Response

b. Responses from poles at A and B

a. Sample root locus, showing possible design point via gain adjustment (A)

and desired design point that cannot be met via simple gain adjustment (B); 
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Desired transient response

Obtained transient 

response

Steady-state error  by adding an ideal compensator PI (pure integration 

using active amplifiers) or a Lag compensator (implemented with passive 

elements) in the forward path or feedback path.

Speed up the response : move pole from A to B without affecting the percent overshoot

Solution: move the root locus to put the desired pole on it for some value of gain k 

(compensation by adding poles and zeros).

Transient response by adding an ideal compensator PD (pure differentiation 

using active amplifiers) or a Lead compensator (implemented with passive 

elements) in the forward path or feedback path.

Compensators

Dynamic compensators (function of s) are designed to improve:

• Dynamic compensator is used if a satisfactory design cannot be 

obtained by adjustment of gain k alone.

lead compensation if 𝑧 < 𝑝 and lag compensation if 𝑧 > 𝑝 .

• Compensator transfer function : 𝐶 𝑠 = 𝐾
𝑠 + 𝑧

𝑠 + 𝑝



Ideal Integral Compensation (PI)
Improving Steady-State Error

• Steady-state error can be improved (without appreciably affecting the transient response) by placing an open-loop pole at the 

origin, because this increases the system type by one.

Pole at A is:

a. on the root locus without compensator; 

b. not on the root locus with compensator pole added; 

c. approximately on the root locus with compensator pole and zero added

System operating with closed-loop poles at A

(desirable transient response )

If we add a 

pole at the 

origin 

we have improved the steady-state error without appreciably 

affecting the transient response
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Changes root-locus 

(Point A not on 

root locus.)

Solution: add a zero close to the pole at the origin 

to pole cancel out the effect of the added pole on 

the root-locus.



Desired response

Figure (d)

Example1
Given the system of Figure (a), operating with a damping ratio of 0.174, show that the 

addition of the ideal integral compensator shown in Figure (b) reduces the steady-state 

error to zero for a step input without appreciably affecting transient response.

SOLUTION

Closed-loop system

a. before compensation;
b. after ideal integral
compensation

This gain yields Position constant  𝐾𝑝 = lim
𝑠→0

𝐺(𝑠) =
164.6

20
= 8.23. 
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Hence, the steady-state error is:

For gain  𝐾 = 164.6, searching along the line of  𝜁 = 0.174 for the uncompensated 

system :  dominant poles are 0.694 ∓ 𝑗3.926 (third pole at −11.61) Figure (c).

Figure (e)

Figure (c)

Figure

Figure

Damping Ratio unchanged (with K = 158:2). Steady State Error is ZERO!.

Same transient responsePoles and gain are approximately the same 

We add an ideal integral compensator with a zero at −0.1.
For gain  𝐾 = 158.2, searching along the line of  𝜁 = 0.174 for the compensated 

system :  dominant poles are 0.678 ∓ 𝑗3.837 (forth pole at −0.0902) Figure (e).



Lag Compensation
Improving Steady-State Error

• Similar to the Ideal Integrator, however it has a pole not on the origin but close to the origin (fig c) due to the passive networks.

Before compensation: The static error constant, 

KVo, for the system is:

After compensation:

• Steady State Improvement:

• The effect on the transient response is negligible:

Root locus:     a. before lag compensation;       b. after lag compensation

If the lag compensator pole and zero are close together, the angular contribution 

of the compensator to point P is approximately zero degrees. point P is still at 

approximately the same location on the compensated root locus.
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𝑘𝑣_𝑛𝑒𝑤 =
𝑧𝑐
𝑝𝑐

∙ 𝑘𝑣_𝑛𝑒𝑤



Example2
Compensate the system of Figure (a), whose root locus is shown in Figure (b), to improve the 

steady-state error by a factor of 10 if the system is operating with a damping ratio of 0.174.

SOLUTION

• From example 1: uncompensated system error was 0.108 with 𝐾𝑃
𝑜𝑙𝑑= 8.230. A tenfold improvement means a 

steady-state error of:

𝑒𝑛𝑒𝑤 ∞ =
𝑒𝑜𝑙𝑑 ∞

10
=
0.108

10
= 0.0108, 𝑠𝑖𝑛𝑐𝑒 𝑒 ∞ =

1

1 + 𝐾𝑃
𝑛𝑒𝑤 ⇒ 𝐾𝑃

𝑛𝑒𝑤 = 91.59

• For the compensated system
𝑧𝑐
𝑝𝑐

=
𝐾𝑃
𝑛𝑒𝑤

𝐾𝑃
𝑜𝑙𝑑

=
91.59

8.23
= 11.13

Arbitrarily selecting 𝑝𝑐 = 0.01 𝑧𝑐 = 11.13 ∙ 𝑝𝑐= 11.13 0.01

• The compensated system
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Root locus for uncompensated system

𝑧𝑐 ≈ 0.111



• The transient response of both systems is approximately the same with reduced steady state error

Example2-Conted

Less  Steady State Error 0.0108

the transient responses of the uncompensated

and lag-compensated systems are the same
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On the ζ= 0.174 line: (compensated system):

The second-order dominant poles are at 

- 0.678 ±j3.836 (K=158.1)

The third and fourth closed-loop poles 

are at -11.55 and - 0.101.

The fourth pole of the compensated 

system cancels its zero.

Root locus for compensated system

• Comparison of the Lag-Compensated and the Uncompensated Systems



Ideal Derivative Compensation (PD)
Improving Transient Response

• The transient response of a system can be selected by choosing an appropriate closed-loop pole location on the s-plane.

• If this point is on the root locus, then a simple gain adjustment is all that is required in order to meet the transient response

specification.

• If the closed loop root locus doesn’t go through the desired point, it needs to be reshaped (add poles and zeros in the forward 

path).

• One way to speed up the original system is to add a single zero to the forward path. 𝐺𝑐 𝑠 = 𝑠 + 𝑧𝑐
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• The objective is to design a response that has a desirable percent overshoot and a shorter settling time than the 
uncompensated system. (two approaches).

1. Ideal derivative compensation (Proportional-plus-Derivative (PD) active elements ): a pure differentiator is added 
to the forward path of the feedback control system. 

2. Lead Compensation: (not pure differentiation) approximates differentiation with a passive network by adding 
a zero and a more distant pole to the forward-path transfer function.

Distant 
pole

sensitive to high frequency noise.

Less sensitive to high frequency noise.



Observations and facts:

- In each case gain K is chosen such that percent overshoot is same.

- Compensated poles have more negative real part (smaller settling time) 

and larger imaginary part (smaller peak time).

- Zero placed farther from the dominant poles, compensated dominant 

poles move closer to the origin.

16CEN455: Dr. Nassim Ammour

Ideal Derivative Compensation (PD)
Improving Transient Response

• See how it affects by an example of a system operating with a damping ratio of 0.4: 

uncompensated

compensated,

zero at -2 
compensated,

zero at -3 compensated,

zero at -4 



Example31

Given the system of Figure (a), design an ideal derivative compensator 

to yield a 16% overshoot, with a threefold reduction in settling time.

SOLUTION

The performance of the uncompensated system operating with 16% overshoot fig (b).

Fig (a) Feedback 

control system

16% Overshoot ζ = 0.504,
along damping ratio line

Dominant second-order poles
-1,205 ±j2.064.

Settling time

𝑇𝑠 =
4

ζ𝜔𝑛
=

4

1.205
= 3.320

(𝑤𝑖𝑡ℎ 𝑘 = 43.35 and third pole at -7.59.)
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Location of the compensated system's dominant poles.(Desired poles)

threefold reduction in the settling time𝑇𝑠
𝑛𝑒𝑤 =

𝑇𝑠
𝑜𝑙𝑑

3
= 1.107

real part of the compensated system's

dominant, second-order pole𝜎 =
4

𝑇𝑠
𝑛𝑒𝑤 =

4

1.107
= 3.613

𝜔𝑑 = 3.613 𝑡𝑎𝑛 180𝑜 − 120.26 0 = 6.193 Imaginary part of the compensated 

system's  dominant pole on line ζ = 0.504

Fig (b) Compensated 

dominant pole 



Example32
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Fig (c) Root locus for the compensated system

Fig (d) Uncompensated and compensated system step responses

Design the location of the compensator zero

- The angle contribution of poles for the desired pole location:−275.60.
- To achieve −1800 the angle contribution of the placed zero should be: −275.60 + 𝑥 = −1800 → 𝑥 = 95.60

- From the fig (c):
6.193

3.613 − 𝜎
= tan(180 − 95.6) 𝜎 = 3.006

Zero contribution angle > 
900 → zero position less than 

desired pole real part. 

Fig (c) Evaluating the location 
of the compensating zero

Adding zero



Lead Compensation
Basic Idea: The difference between 180° and the sum of the angles must be the 

angular contribution required of the compensator.

Example: looking at the Figure, we see that:

𝜃2 − 𝜃1 − 𝜃3 − 𝜃4 + 𝜃5 = 2𝑘 + 1 1800

𝑤ℎ𝑒𝑟𝑒 𝜃1 − 𝜃2 = 𝜃𝑐 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟

19
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• There are infinitely many choices of zc and pc providing same 𝜃𝑐

Design three lead compensators for the system in Figure to reduce the settling 

time by a factor of 2 while maintaining 30% overshoot. 

SOLUTION

Example41

• Characteristics of the uncompensated system operating at 30% overshoot

30% 

Overshoot ζ = 0.358,
along damping ratio line

Dominant second-order 
pair of poles

-1,007 ±j2.627.

damping 
ratio 

From pole's real part

𝑇𝑠 = ൗ4 1.007 = 3.972 s

settling time

• Design point (Desired Poles location)

twofold reduction
in settling time

𝑇𝑠 = ൗ3.972
2 = 1.986 s −ζ𝜔𝑛 = − ൗ4 𝑇𝑠

= −2.014

real part of the desired 
pole location

Imaginary part of the 
desired pole location

𝜔𝑑 = −2.014 tan 110.980 = 5.252



• Lead compensator Design.
Place the zero on real axis at -5 (arbitrarily as possible solution). 

sum the angles (this zero and uncompensated system's poles and zeros),

Example42

resulting angle

𝜃𝑐 = −1800 + 172.690 = −7.310

the angular contribution required
from the compensator pole

𝜃0 = −172.690

Fig (a) 5-plane picture used to calculate the location

of the compensator pole

location of the
compensator pole

From geometry
in fig(a)

5.252

𝑝𝑐 − 2.014
= tan(7.310)

compensator pole

𝑝𝑐 = 42.96

Fig (b) Compensated system root locus
Fig (c) Uncompensated system and lead compensation responses (zeros at a:-5, b:-4 c: -2)

approximation is not 

valid for case C

20
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Improving Steady-State Error 
and Transient Response

• Combine the design techniques to obtain improvement in steady-state error and transient response independently.

- First improve the transient response.(PD or lead compensation). 

- Then improve the steady-state response. (PI or lag compensation).

• Two Alternatives

- PID (Proportional-plus-Integral-plus-Derivative) (with Active Elements).

- Lag-Lead Compensator. (with Passive Elements).
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PID Controller Design

• Transfer Function of the compensator  (two zeros and one pole):

Fig (a) PID controller implementation 

𝐺𝑐 𝑠 = 𝑘1 +
𝑘2
𝑠
+ 𝑘3 𝑠 =

𝑘1 𝑠 + 𝑘2 + 𝑘3 𝑠
2

𝑠
=

𝑘3( 𝑠
2+

𝑘1
𝑘3

𝑠 +
𝑘2
𝑘3
)

𝑠

• Design Procedure (Fig (a) )

1. From the requirements figure out the desired pole location to meet transient response specifications.

2. Design the PD controller to meet transient response specifications.

3. Check validity (all requirements have been met) of the design by simulation.

4. Design the PI controller to yield the required steady-state error.

5. Determine the gains, 𝑘1, 𝑘2𝑎𝑛𝑑 𝑘3 (Combine PD and PI).

6. Simulate the system to be sure all requirements have been met.

7. Redesign if simulation shows that requirements have not been met.
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Example51

SOLUTION

Given the system of Figure (a), design a PID controller so that the 

system can operate with a peak time that is two-thirds that of the 

uncompensated system at 20% overshoot and with zero steady-

state error for a step input.
Fig (a) Uncompensated feedback control system

• Evaluation of the uncompensated system

A third pole at -8.169

between - 8 and -10 for a gain 
equivalent to that at the dominant poles

20% 

Overshoot ζ = 0.456,
along damping ratio line

Dominant second-order 
pair of poles

-5,415 ±j10.57 with gain of 121.5.
damping ratio 

Peak time
𝑇𝑝 =

𝜋

𝜔𝑑
= 0.297 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

• To reduce the peak time to two-thirds. (find the compensated system's dominant pole location)

The imaginary part

𝜔𝑑 =
𝜋

𝑇𝑝
=

𝜋

( ൗ2 3)(0.297)
= 15.87

The real part
𝜎 =

𝜔𝑑

tan(117.130)
= −8.13
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tan 117.130 = - tan(180 − 117.130)



Example52

• Design of the compensator 

Fig (a) Calculating the PD compensator zero

(sum of angles from the uncompensated system's poles and zeros to the 

desired compensated dominant pole is −198.370)

the required contribution
from the compensator zero 𝑧𝑐

−198.370 + 𝜃𝑐 = −1800

From geometry
in Fig(a)

compensating 
zero's location.

15.87

𝑧𝑐 − 8.13
= 𝑡𝑎𝑛18.370 𝑧𝑐 = 55.92

the PD controller.

𝐺𝑃𝐷(𝑠) = (𝑠 + 55.92)

Fig (b) Root locus for PD-compensated system

gain at the design point

𝑘 = 5.34

• The PD-compensated system is simulated. Fig (b) (next slide)  shows the reduction 

in peak time and the improvement in steady-state error over the uncompensated 

system. (step 3 and 4)
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𝜃𝑐 = 18.370



Fig (b) Step responses for uncompensated, PD compensated, and PID compensated systems

Example53

• A PI controller is used to reduce the steady-state error to zero 

(for PI controller the zero is placed at -0.5 close to the origin)

PI controller is used as 

𝐺𝑃𝐼(𝑠) =
𝑠 + 0.5

𝑠

Fig (a) Root locus for PID-compensated system

Searching the 0.456 
damping ratio line

−7.516 ± 𝑗 14.67 𝑤𝑖𝑡ℎ 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑔𝑎𝑖𝑛 𝑘 = 4.6
we find the dominant,

second-order poles

• Now we determine the gains (the PID parameters),

𝐺𝑃𝐼𝐷 𝑠 =
𝑘 𝑠 + 55.92 𝑠 + 0.5

𝑠
=
4.6 𝑠 + 55.92 𝑠 + 0.5

𝑠

= 256.5 + 128.6
1

𝑠
+ 4.6 𝑠 = 𝑘1 + 𝑘2

1

𝑠
+ 𝑘3𝑠

Matching: 𝑘1 = 256.5, 𝑘2= 128.6, 𝑘3= 4.6
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Lag-Lead Compensator Design
(Cheaper solution then PID)

• First design the lead compensator to improve the transient response. Next we design the lag compensator to meet the steady-

state error requirement.

• Design procedure:

1. Determine the desired pole location based on specifications. (Evaluate the performance of the uncompensated system).

2. Design the lead compensator to meet the transient response specifications.(zero location, pole location, and the loop gain).

3. Evaluate the steady state performance of the lead compensated system to figure out required improvement.(simulation).

4. Design the lag compensator to satisfy the improvement in steady state performance.

5. Simulate the system to be sure all requirements have been met. (If not met redesign)
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Design a lag-lead compensator for the system of Figure so that the 

system will operate with 20% overshoot and a twofold reduction in 

settling time. Further, the compensated system will exhibit a tenfold 

improvement in steady-state error for a ramp input.

Fig (a) Uncompensated system
SOLUTION

• Step 1: Evaluation of the uncompensated system

20% 

Overshoot ζ = 0.456,
along damping ratio line

Dominant second-order 
pair of poles

-1,794 ±j3.501 with gain of 192.1.
damping ratio 

• Step 2 : Lead compensator design (selection of the location of the compensated system's dominant poles).

lead compensator design.

Twofold reduction 
of settling time 

the real part of
the dominant pole

−ζ 𝜔𝑛= −2 1.794 = −3.588

the imaginary part of
the dominant pole

𝜔𝑑 = ζ 𝜔𝑛 tan(117.13
0) = 7.003

Arbitrarily select a location
for the lead compensator zero.

𝑧𝑐 = −6

- compensator zero coincident with the open-loop pole to eliminate a zero and leave the lead-compensated  system 

with three poles. (same number that the uncompensated system has)
27
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Fig (a) Root locus for uncompensated system

Compensator pole.

- Finding the location of the compensator pole. 

- Sum the angles to the design point from the uncompensated system's poles 

and zeros and the compensator zero and get -164.65°.

- The difference between 180° and this quantity is the angular contribution     

required from the compensator pole (—15.35°).
- Using the geometry shown in Figure (b)

7.003

𝑝𝑐−3.588
= tan(15.35°) 𝑝𝑐 = −29.1

Fig (b) Evaluating the compensator pole

Fig (c) Root locus for lead-compensated system

- The complete root locus for the lead-compensated system is sketched in Figure (c)
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• Steps 3 and 4: Check the design with a simulation. (The result for the lead compensated system is shown in Figure(a) and is 

satisfactory.)

• Step 5: design the lag compensator to improve the steady-state error.

uncompensated system's 
open-loop transfer function

𝐺 𝑠 =
192.1

𝑠 𝑠 + 6 (𝑠 + 10)

static error 
constant

𝑘𝑣𝑂 = 3.201

inversely 
proportional to 

the steady-
state error

𝐺𝐿𝐶 𝑠 =
1977

𝑠 𝑠 + 10 (𝑠 + 29.1)

static error 
constant

𝑘𝑣 = 6.794

the addition of lead 
compensation has improved
the steady-state error by a 

factor of 2.122

Need of tenfold
improvement

lag compensator factor

for steady-state error
improvement

𝑘𝑣𝑁 =
10

2.122
= 4.713

Step 6: We arbitrarily choose the lag compensator pole at 0.01,

lag compensator 
zero

𝑧𝑐 = 𝑝𝑐
𝑘𝑣𝑁
𝑘𝑣𝑂

= 0.01
4.713

3.201
= 0.04713 𝐺𝐿𝑎𝑔 𝑠 =

(𝑠 + 0.04713)

𝑠 + 0.01

lag 
compensator

lag-lead-compensated
Open loop TF

𝐺𝐿𝐿𝐶 𝑠 =
𝐾 (𝑠 + 0.04713)

𝑠 𝑠 + 10 (𝑠 + 29.1) 𝑠 + 0.01

- The uncompensated system pole at - 6 canceled the lead compensator zero at -6.

- Drawing the complete root locus for the lag-lead-compensated system and by searching along the 0.456 damping ratio line
closed-loop 

dominant poles
𝑝𝑐 = −3.574 ± 𝑗 6.976 with a gain of 1971.

29
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6.794

3.201
= 2.122

lead-compensated system's 
open-loop transfer function
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Fig (a) Root locus for lag-lead-compensated system Fig (b) Improvement in step response for lag-lead-compensated system

Step 7: The final proof of our designs is shown by the simulations of Figure (b) 

- Fig (b) shows the complete draw of the lag-lead-compensated root locus. 

- The lag-lead compensation has indeed increased the speed of the system (settling time or the peak time).
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Feedback Compensation

The design of feedback compensation consists of finding the gains, such as 𝐾,𝐾1 𝑎𝑛𝑑 𝐾𝑓. 

Similar to cascade compensation. Consider compensation as adding poles and zeros to feedback section for the equivalent 

system.
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𝐾1

1

𝐾

𝐺1(𝑠)

𝐾𝑓𝐻𝑐(𝑠)
1

𝐺2(𝑠)

𝐺2(𝑠)𝐾

1

𝐾𝐾1𝐺1(𝑠)𝐺2(𝑠)

𝐾𝑓𝐻𝑐(𝑠)

𝐾𝐺2(𝑠)

𝐾𝐾1𝐺1(𝑠)𝐺2(𝑠)

𝐾𝑓𝐻𝑐(𝑠)

𝐾𝐺2(𝑠)
+ 1

Two blocks in parallel 
(sum of blocks) 

Moving a 
pickoff point 

behind a block

Moving a 
summing 

point ahead 
of a block

Blocks in cascade 
(product of blocks) 

Compensator 𝐻𝑐 𝑠 is used at the minor feedback to reshape the 

root-locus and improve transient response and steady-state response 

independently (𝐺2 𝑠 can be unity). 
• Can be more complicated than cascade.

• Can provide faster response.

• Can be used in cases where noise is a concern if we use 

cascade compensators.

• May not require additional gain.



Example71

SOLUTION

Given the system of Figure (a), design rate feedback compensation, as shown in 

Figure (b), to reduce the settling time by a factor of 4 while continuing to operate 

the system with 20% overshoot.

• First design a PD compensator.

- For the uncompensated system,  Search along the 20% overshoot line (𝜁 = 0.456)

the dominant
poles

−1.809 ± 𝑗 3.531 (𝑠𝑒𝑒 𝑓𝑖𝑔 𝑒 )

System

system with rate feedback compensation

equivalent compensated system;

equivalent compensated system showing unity feedback
(e) Root locus for uncompensated system

- The settling time is 2.21 seconds and must be reduced by 

a factor of 4 to 0.55 second.

• Next determine the location of the dominant 

poles for the compensated system.

- To achieve a fourfold decrease in the settling time, the real 

part of the desired pole must be increased by a factor of 4.

Real part of 
Compensated pole 4 −1.809 = −7.236

Imaginary  part of 
Compensated pole

𝑤𝑑 = −7.236 tan 117.13° = 14.12

The angle of the 20% 
overshoot line 180° − arccos(𝜁) = 117.13°
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Equivalent BD from fig (b) 
unity feedback

𝐾𝑓𝑠 + 1 feedback, 

zero at 
1

𝐾𝑓



Compensated dominant
pole position 

Example72

𝑝𝑐 = −7.236 ± 𝑗 14.12

• Sum of the angles from  the uncompensated system's poles (add zero to yields 180°)

𝜃 = −277.33°

(a) Finding the compensator zero

compensator
zero contribution

𝜃𝑧 − 277.33° = −180° → 𝜃𝑧 = +97.33°

• Using the geometry shown in Figure (a)

Compensator's
zero location 

14.12

7.236 − 𝑧𝑐
= tan(180° − 97.33°) 𝑧𝑐=5.42

(b) Root locus for the
compensated system

• The root locus for the equivalent compensated system (fig (c) previous slide) is shown in Figure (b)

The gain at 
the design point, 𝐾1 = 1388

Since 𝐾𝑓 is the reciprocal 

of the compensator zero, 𝐾𝑓 =
1

𝑧𝑐
= 

1

5.42 = 0.185

• steady-state error characteristic (fig (d) slide 32 )

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) =
𝐾1

75 + 𝐾1𝐾𝑓
= 4.18
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𝑧𝑐 =
1

𝐾𝑓 𝐾1𝐾𝑓 = 256.7



Example73

• The closed-loop transfer function is (fig (d) slide 32)

34

𝑇 𝑠 =
𝐺(𝑠)

1 + 𝐺 𝑠 𝐻(𝑠)
=

𝐾1

𝑠3 + 20 𝑠2 + 75 + 𝐾1𝐾𝑓 𝑠 + 𝐾1

• The results of the simulation are shown in  Figure (a) and (b)

(b) Step response for the compensated system

over-damped response 

with a settling time of 0.75 second

(a) Step response for uncompensated system

The settling time is 2.21 seconds
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Physical Realization of Compensation

Fig (a) Operational amplifier for transfer function realization

Active-Circuit Realization

• 𝑍1(𝑠)and 𝑍2(𝑠)are used as a building block to implement the compensators and controllers, such as PID controllers.

• The transfer function of an inverting operational amplifier

𝑉0(𝑠)

𝑉𝑖(𝑠)
= −

𝑍2(𝑠)

𝑍1(𝑠)
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Table 1 Active realization of controllers and compensators, using an operational amplifier

• Table1 summarizes the realization  of PI, PD, and 

PID controllers as well  as lag, lead, and lag-lead 

compensators using  Operational amplifiers.

Fig (a) Lag-lead compensator implemented with operational amplifiers

• Fig (a) : lag-lead compensator can be formed by 

cascading the lag compensator with the lead 

compensator.
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Example8
Implement the PID controller of Example 5

SOLUTION

• The transfer function of the PID controller is 𝐺𝑐 𝑠 =
4.6 𝑠 + 55.92 𝑠 + 0.5

𝑠

• which can be put in the form 𝐺𝑐 𝑠 = 𝑠 + 56.42 +
27.96

𝑠

• Comparing the PID controller in Table 1 with this equation we obtain 

the following three relationships:

• Shnbd sgdrd ard ent rt nk nnw nr anc sgrdd dpt ashnnr

we arbitrarily select a practical value: 

𝑅2
𝑅1

+
𝐶1
𝐶2

= 56.42 𝑅2𝐶1 = 1
1

𝑅1𝐶2
= 27.96

𝐶2 = 0.1 𝜇𝐹 𝑅1 = 357.65 𝑘Ω, 𝑅2= 178.891 𝑘Ω 𝑎𝑛𝑑 𝐶1 = 5.59𝜇𝐹

• The complete circuit is shown in Figure (a) where the circuit element values have been rounded off.

Fig (a) PID controller
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Passive-Circuit Realization

• Lag, lead, and lag-lead compensators can also be implemented with passive networks (Table 2) .

TABLE 2 Passive realization of compensatorsCEN455: Dr. Nassim Ammour
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Example9

Realize the lead compensator designed in Example 4 (Compensator b zero at -4).

SOLUTION

• The transfer function of the lead compensator is 𝐺𝑐 𝑠 =
𝑠 + 4

𝑠 + 20.09

• Comparing the transfer function of a lead network shown in Table 2 with The equation, we obtain the 

following two relationships:

1

𝑅1𝐶
= 4 𝑎𝑛𝑑

1

𝑅1𝐶
+

1

𝑅2𝐶
= 20.09

• Since there are three network elements and two equations, we may select one of the element values 

arbitrarily

𝑅1 = 250 𝑘Ω 𝑎𝑛𝑑 𝑅2 = 62.2 𝑘Ω𝐶 = 1 𝜇𝐹
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