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ABSTRACT
As muscles fatigue, their passive and active mechanical

properties change increasing the susceptibility of the human
body to damage. The state-of-the-art technique for muscle
fatigue detection, EMG signals, is cumbersome. This paper
presents a technique to detect fatigue by tracking a kinematic
parameter of the musculoskeletal system. The method uses
the time-history of a single joint angle to detect fatigue in the
lower limbs. A sensor is mounted to the knee joint to measure
the knee flexion angle. Time delay embedding is used to track
the orbit of knee joint motions in a reconstructed phase-space.
The reconstructed phase-space allows us to obtain information
about other body parts and joints of the lower limb in addition
to the knee joint, since they are all connected in an open
kinematic chain. Long-time drift in the orbit location and shape
in phase-space is quantified and used as a measure of lower limb
fatigue. The proposed technique presents a mobile, wireless, and
cheap method to assess fatigue that can act as an early warning
system for the lower limb.
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INTRODUCTION
Fatigue in human bodies is a natural process that result from

the prolonged use of muscles under their threshold limits or the
use of extensive muscle force for short periods of time. Unlike
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many mechanical systems, fatigue process in the human body
can result from the application of low magnitude of constant
force for prolonged periods of time or can result from the ap-
plication of cyclic loads with frequency time below the rest time
allowance provided by [1, 2]. As muscles fatigue, their passive
and active mechanical properties change increasing the suscepti-
bility of the human body to damage. Detecting fatigue can help
to protect against potential injury.

The state-of-the-art technique in muscle fatigue detection is
through the use of EMG signals obtained by placing electrodes
on the skin. EMG detects the level of action potential in the
muscles. The analysis of EMG reveals if the muscle started to
fatigue by observing its state and comparing it to its state when
it was healthy. Acquiring EMG signals limits human motion and
results in altered motion patterns due to electrode entanglement.
EMG signals are weak in amplitude; thus, an amplifier is con-
nected to the input signal before interfacing it to the computer,
which introduces a white noise to the collected EMG signal. Af-
ter this, the analysis work begins. Furthermore, Hardware used
in collecting EMG signals also has its drawbacks because, due
to the fact the human is wired to the station to collect the EMG,
the human subjects tend to change the way they perform the task,
which introduces noise to the signal. More important is that the
EMG signal is collected inside labs. This prohibits the use of
EMG to track the fatigue process among workers in real-life sit-
uations e.g. workers in production lines or in construction field.
Furthermore, the use of these electrodes requires a laboratory en-
vironment.

In North America, the largest number of injuries among

1 Copyright c© 2014 by ASME



workers is Musculoskeletal Disorders (MSDs) [3, 4]. There are
four main risk factors for MSD: forceful work, repetitive work,
work above head level, and tools vibration [5]. All these risk fac-
tors have muscles fatigue in common. In other words, the pro-
longed exposure to these risk factors what makes the injury [6].
Through the prolonged exposure to these risk factors, the muscle
dynamics change in an attempt to cope with the level of demand.
This adaptation is through changing the synergy of muscles acti-
vated to perform certain motion or the alternative firing of muscle
fiber, which can be observed as the human muscle starts shaking
when performing a task for prolonged time. The change in syn-
ergy and muscle firing scheme is to comprise the fatigue happen-
ing to the muscle.

Muscle fatigue detection outside the lab setting can decrease
the number of injuries. Through the detection of fatigue, many
decisions can be made to avoid the MSD by changing the task
that a worker is performing or introducing rest-time allowance
for the muscles to regain its original shape and condition before
the injury happen. However, there is no method to date that can
measure the level of fatigue outside the lab environment.

The principles of damage tracking in dynamical systems can
be used to track the slow dynamic process of muscle fatigue hid-
den in the kinematics of the human musculoskeletal system. San-
jari et al. [7] used the method of phase space warping (PSW) to
detect fatigue in the upper limb using information embedded in
the time-history of the elbow flexion angle. They collected the
kinematic angle data using electrogoniometer at 50 Hz sampling
rate.

This paper presents a technique to detect fatigue through the
use of time delay embedding and PSW. The method uses kine-
matic information obtained from a single joint. In the presented
work, It allows for free mobility outside a lab environment. The
use of time delay embedding allows us to track the orbit of the
knee joint flexion angle in the reconstructed phase-space. Long-
time drift in the orbit location and shape represent the state of
the knee health (fatigue). This technique will allow for mobile,
wireless, and cheap sensing fatigue and provide an early warning
system for potential damage to the lower limb.

METHODOLOGY
The fatigue detection method proposed here requires data

collection for a single kinematic state from a single joint in the
lower limb kinematic chain. Any kinematic measurement system
can be used for data collection. In this implementation, a direct
measurement system [8], Fig. 1, was used to track the knee flex-
ion angle. The system utilizes an optical encoder mounted non-
invasively to an exoskeleton and placed along the joint rotation
axis. The exoskeleton has two arms: one aligned with the thigh
and another aligned with the shank. It saves collected data to an
on-board SD card.

A healthy male right hand dominant volunteer was instru-

FIGURE 1: Data collection system.

mented with a direct measurement system to measure the left
knee flexion angle. The subject was directed to wear the system
and walk on a treadmill. He was asked to stand on the treadmill
while at rest, then data collection was commenced. The treadmill
speed was increased from 0 to 4.5 km/h within 10 s and main-
tained at that speed throughout data collection. The subject was
directed to walk on the treadmill until he experiences a fatigue
level that prevents him from keeping up with the treadmill. The
treadmill was then brought to rest and data collection was termi-
nated.

The collected knee flexion data was processed using time
delay embedding [9] and PSW [10, 11] techniques to track fa-
tigue in the left lower limb. Time delay embedding is used to
reconstruct the phase-space of a coupled dynamic system using
the time-history of a single system state y(t). It can reveal in-
formation about the minimum dimension d◦ required to repre-
sent the coupled dynamic system under consideration; the open
kinematic chain of the lower limb in this case. The technique
determines the proper time delay τ of y necessary to reconstruct

2 Copyright c© 2014 by ASME



phase-space, represent the missing states, and the overall number
of states d◦, system dimension, embedded in the signal.

We used the fill factor algorithm [9] to determine the proper
time delay and minimum dimension of the dynamic system si-
multaneously. The algorithm defines the function

F(τ) =
∑

Ns
i=1 |Det[Md ]|

Ns(ymax− ymin)d (1)

where Det[Md ] is a measure of the hyper-area occupied by the
orbit in phase-space of dimension d, Ns is the number or random
evaluations of the hyper-area, and ymax and ymin are the largest
and smallest angles, respectively, recorded in the time series. It
calculates F(τ) as a measure of the area occupied by orbits in
the reconstructed phase-space of dimension d as a function of
the delay time τ . This process is repeated as the dimension of
the reconstructed state vector d is increased.

The minimum system dimension d◦ is determined as the
dimension beyond which the features in the F(τ) curve do not
change. That is, d◦ is taken as the dimension beyond which the
curve F(τ) does not add additional minima or maxima as d in-
creases. Therefore, curves obtained for dimensions higher than
d◦ are essentially parallel to each other.

As a result, the system state vector is reconstructed as

y(t) =


y(t)

y(t + τ)
...

y
(
t + τ(d−1)

)
 (2)

In this analysis, PSW calls for a distinction between three
time-scales:

1. a fast-time scale of the same order as the sampling period Ts.
2. an intermediate time-scale of the same-order as the average

gait cycle period Tg.
3. a slow time-scale where muscle fatigue can be observed.

To reduce signal noise at the fast and intermediate time-scales,
the reconstructed phase-space is divided into two subsets: a ref-
erence subset made of the initial M1 gait cycles and snap shots
each of size M2 gait cycles in the subsequent time-history. The
times required to take the samples M1 and M2 are of the same
order as Tg.

At each point yn in the reference subset, the nearest N points
are used to construct a linear map representing a linearization
of the return map at that location in the reconstructed phase-
space [10]:

yn+1 = P(yn) (3)

The reference subset is chosen to encompass a long-time record
representing multiple gait cycles. As a result, each local return
map represents averaging of the dynamics of the rested limb over
the inter-mediate time-scale.

The local return maps represent the rested state of the lower
limb before fatigue onset. As muscles fatigue, the measured state
vector represents the return map

yn+1 = P̂(yn,φ) (4)

where φ is a parameter representing the fatigue of the muscles.
Therefore, fatigue can be estimated as the difference between the
rested return map prediction of the kth return and the fatigued
return map:

en+k = ||P̂(yn+k−1,φ)−Pk(yn)|| (5)

Alternatively, the fatigue tracking metric en can be calcu-
lated by comparing the kth return predicted by the rested return
map to the reconstructed state vector at that point in time:

en+k = ||yn+k−Pk(yn)|| (6)

The fatigue metric is averaged out over each gait cycle period Tg
to reduce fast and intermediate time-scales noise. Therefore, the
fatigue metric is written as:

EM =
1

M2

M2

∑
i=0

ei (7)

where M is the number of data points per gait cycle Tg.

RESULTS
The data collection session lasted for four minutes until the

participant could no longer keep up with the treadmill. The knee
flexion angle was sampled at the rate of 500 Hz (Ts = 2 ms),
which is one order-of-magnitude higher than the standard rate
for comparable biomechanical data. The average gait cycle was
found to be Tg ≈ 1.2 s.

The time delay τ◦ and minimum system dimension d◦ were
determined using the fill factor algorithm 1. Towards that end,
the fill factor function F(τ) was evaluated, Fig. 2, for state vec-
tor dimension in the range of d = 2–10 and time delays in the
range of τ = 1–300Ts incremented in steps of 24Ts. Inspecting
the Figure, we observe that no new minima or maxima are added
beyond d◦ = 5, which indicates that the minimum dimension re-
quired to represent the coupled dynamic system of the lower limb
is five.
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FIGURE 2: Log of the fill factor F(τ) as a function of the time
delay for stat vector dimensions in the range of d=2–10.
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FIGURE 3: The fill factor of the reconstructed phase-space (d◦ =
5) as a function of time delay.

The second step in reconstructing phase-space is to deter-
mine a proper time delay that reflects the essential features of the
dynamic system. Thus, we closely inspected the fill factor func-
tion F(τ) as the time delay is increased in steps of 1Ts, Fig. 3,
for the first curve maxima. The proper time delay was found to
be τ◦ = 100Ts.

We used d◦ and τ◦ to reconstruct the pseudo phase-portrait
of the knee flexion angle shown in Figure 4. For comparison, we
present in Figure 5 the phase-portrait of the knee flexion angle
obtained from the measured kinematic data of the gait cycle [12].
The two figures are in qualitative agreement establishing the dy-
namic equivalence of the two orbits. Specifically, both phase-
portraits show two loops; a large loop representing the leg swing
phase and a small loop representing the heal strike-toe off phase
of the human gait cycle.

The local linear map is composed of a parameter matrix An
and a parameter vector an that describe the kth return of the state
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FIGURE 4: The pseudo phase-portrait of the knee angle obtained
from delay embedding.
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FIGURE 5: The phase-portrait of the knee angle extracted
from [12].

vector yn according to:

y(n+k) = Anyn +an (8)

The map parameters An and an, are calculated following the pro-
cedure described in [10] from a matrix

Yn = [y1
n y2

n . . . yN
n ] (9)

constructed out of the N = 15 nearest neighbors of yn in the ref-
erence set.

The reference times series was made of the initial M1 = 10
gait cycles and each of the snap shots were taken to be M2 = 10
gait cycles. The tracking function en was calculated for each gait
cycle Tg in the reference and tracking snap shots. The results
are shown in Fig 6. The numerical values on the y-axis repre-
sent the average change in the reconstructed phase-space of each
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FIGURE 6: Tracking metric en as a function of time.

gait cycle. The average gait cycle was estimated from the ref-
erence times series representing the healthy state of lower limb.
Superimposed on the figure is a quadratic fit of the tracking met-
ric en as a function of time representing the slow-time trend of
the lower limb health (fatigue state). As shown in Fig. 6, fatigue
starts to appear after 15 s and increases monotonically reaching
a maximum as the subject fails to keep up with the treadmill.

DISCUSSION
The system examined in this work is the open kinematic

chain of the lower limb that starts from the trunk and ends at
the foot. The measured state is the knee flexion angle θ rep-
resenting partial information on a part of the kinematic chain.
The flexion angle was obtained using a direct measurement sys-
tem [8] that provides drift-free angle measurements, unlike other
systems used to measure kinematic parameters outside a labora-
tory environment which suffer from long-time drift.

The time-history of the measured flexion angle carries infor-
mation about the other states of the coupled dynamic system of
the lower limb. Using time delay embedding, we determined that
the minimum system dimension was d◦= 5 and reconstructed the
pseudo phase-space.

We hypothesis that those states correspond to a two-rigid
bodies dynamic model of the lower limb in the sagittal plane,
namely the shank and thigh connected by a hinge joint. This
model consists of four independent states, representing knee and
thigh flexion angles θ and α and their angular speeds θ̇ and α̇ ,
and a fifth state representing the forcing phase angle β (t) im-
posed on the system by the treadmill. Thus, the state vector of
the dynamic system can be written as y(t) = [θ , θ̇ , α, α̇, β ].

The pseudo phase-space is, therefore, reconstructed to rep-
resent the discrete time evolution of the state vector Yn =
[θ , θ̇ ,α, α̇,β ]. Orbits of knee flexion obtained in the pseudo
phase-space show qualitative agreement with those measured by
Winter [13]. However, the orbits obtained here show significant
‘noise’ cycle-on-cycle orbit variability.

There are various possible sources for this noise observed
in the response of the lower limb. Previous tests have shown
that the accuracy of the direct angle measurement system is bet-
ter than 0.3◦ [8] indicating that the contribution of measurement
noise to the overall signal noise is relatively low. An important
source of ‘noise’ is the neural input of the central nervous sys-
tem (CNS) to the gait cycle. As shown by Winter [13], human
gait approximates an inverted pendulum whose mass is located
at the center of body mass, located anterior to the foot center
of pressure throughout the gait cycle, which requires continuous
feedback by the CNS to stabilize posture. This effect can be ob-
served as cycle-on-cycle variation in the gait cycle dynamics. It
represents fast intra-cycle signal variations of the same order as
the sampling period Ts.

A local linear map constructed at time n, when the muscles
are in their baseline healthy state, allows us to track the slow-time
changes occurring due to muscles fatigue by comparing map pre-
diction of the state vector at time n+ k to the actual, fatigued,
state vector at the same point in time. PSW estimates the differ-
ence between the predicted and measured state vector and aver-
age it out per gait cycle to obtain a damage metric en. The time
history of this metric en, Fig6, represents the damage (muscle
fatigue) evolution over slow time.

Therefore, the combination of delay time embedding and
PSW provides a ‘big picture’ estimator of fatigue in the lower
limb using the time-history of a single joint angle. Unlike state-
of-the-art fatigue detection techniques [14], this method can sup-
ply information about fatigue evolution outside a laboratory en-
vironment. This open doors to applications such as tracking the
physical state of players in a field, workers in a plant, and patients
undergoing in-home rehabilitation.

CONCLUSION
This paper presented a technique to track fatigue evolution

in the lower extremities. The technique uses delay time embed-
ding to reconstruct phase space from a measurement of a single
joint state, knee flexion angle in this case. It then uses the method
of phase space warping to track the slow time changes in mus-
cle health state (fatigue). Flexion angle data is collected using a
drift-free joint angle measurement system.

Our results show that this technique can be readily deployed
to monitor players in a field or patients during in-home rehabil-
itation. Using this technique can provide a feedback system to
players, patients, workers, and health care professionals that can
be used to decrease injuries due to fatigue.
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