
Chapter 6

Digital Control Systems
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Introduction 
• In almost all applications, both the plant and the actuator are analog systems.

• In digital control systems, analog compensators (analog circuits) are replaced with a digital computer (or micro-Controller, 

microprocessor).

Figure:  Configuration of a digital control system. 
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A/D converter converts analog signals to digital signals. 

D/A converter converts digital signals to analog signals.

1. Accuracy: Digital signal represented by 12 bits or more represents high precision and small error compared to analog signal.

2. Reduced cost: A single digital computer can replace numerous analog controllers with a subsequent reduction in cost.

3. Flexibility in response to design changes: Modifications can be implemented with software changes rather than expensive 

hardware modifications.

4. Noise immunity: Digital systems exhibit more noise immunity than analog systems.

• Digital control offers distinct advantages over analog control

Difference equations (discrete-time model describing a system)

𝑦 𝑘 + 𝑛 = 𝑎𝑛−1𝑦 𝑘 + 𝑛 − 1 +⋯+ 𝑎1𝑦 𝑘 + 1 + 𝑎0𝑦 𝑘 = 𝑏𝑛𝑢 𝑘 + 𝑛 +⋯+ 𝑏0𝑢 𝑘

Difference equation of order 𝑛. If the forcing function 𝑢 𝑘 is equal to zero, the equation is said to be homogeneous.

If the equation is linear and the coefficients 𝑎𝑖, 𝑏𝑖 are constant, the difference equation is linear time invariant LTI.



Analog-to-Digital Conversion (ADC model)

• The analog signal is sampled and held at periodic intervals by a zero-order-holder (Z-O-H) 

(staircase approximation to the analog signal.). The sampling rate must be at least twice the 

bandwidth of the signal (Nyquist sampling rate).

• The ADC converts the sample to a digital number (quantization and coding). Quantization 

error is due to the quantization process that rounds off the analog voltage to the next 

higher or lower level.
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Fig.2. Analog-to-digital conversion

• Properly weighted voltages are summed together to yield the analog output.

• the switches are electronic and are set by the input binary code.

Fig.3. Digital-to-analog converter

Digital-to-Analog Conversion (DAC model)

Signal Conversion

Fig.1. Placement of  the digital computer within 
the loop;  with A/D and D/A converters



Z-Transform
• The z-transform is an important tool in the analysis and design of discrete-time systems. it plays a role similar to that served 

by Laplace transforms in continuous-time.

• Z-transform of a digital signal 𝑓 𝑘 is: 
To overcome the nonlinearity problem, S-domain 

is transformed to another domain where the 

operator is linear: Z- domain by setting 𝑧 = 𝑒𝑠𝑇.𝐹 𝑧 = ෍

𝑘=−∞

+∞

𝑓 𝑘 ∙ 𝑧−𝑘

Examples :

UNIT IMPULSE SAMPLED STEP EXPONENTIAL



3.1 Partial table of z- and s-transforms
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3.2 Some Properties 
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The Inverse Z-Transform (IZT)

• Three methods for finding the inverse z-transform (the sampled time function from its z-transform) will be described:

1. partial-fraction expansion.                 2.  Residue.                          3. the power series method.

• Since the z-transform came from the sampled waveform, the inverse z-transform will yield only the values of the time function 

at the sampling instants.
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IZT via Partial-Fraction Expansion

• Knowing that: 
𝑧

𝑧−𝑎
→ 𝑎𝑘𝑇 or    

𝑧

𝑧−𝑒−𝑏𝑇
→

1

𝑠+𝑏
→ 𝑒−𝑏 𝑘 𝑇

• The Laplace transform consists of a partial fraction that yields a sum of terms leading to exponentials, that is, A/(s + a).

𝐹 𝑧 =
𝑁 𝑧

𝐷 𝑧
⟹

𝐹 𝑧

𝑧
=

𝐴

𝑧 − 𝑎
+

𝐵

𝑧 − 𝑏
+⋯⟹ 𝐹 𝑧 =

𝐴 𝑧

𝑧 − 𝑎
+

𝐵 𝑧

𝑧 − 𝑏
+⋯

• The inverse is: 𝑓 𝑘𝑇 = 𝐴 𝑎𝑘 + 𝐵 𝑏𝑘 +⋯



Example
Given the function F(z) find the sampled time function. 𝐹 𝑧 =

0.5 𝑧

𝑧 − 0.5 𝑧 − 0.7

SOLUTION

• First we divide F(z) by z (z-functions have often the term z in their numerator) , then we perform a partial-fraction expansion

𝐹 𝑧

𝑧
=

0.5

𝑧 − 0.5 𝑧 − 0.7
=

𝐴

𝑧 − 0.5
+

𝐵

𝑧 − 0.7
=

−2.5

𝑧 − 0.5
+

2.5

𝑧 − 0.7

• Next, multiply through by z. 𝐹 𝑧 =
0.5 𝑧

𝑧 − 0.5 𝑧 − 0.7
=
−2.5 𝑧

𝑧 − 0.5
+

2.5 𝑧

𝑧 − 0.7

• Thus the inverse z-transform  𝑓 𝑘 = −2.5 0.5 𝑘 + 2.5 0.7 𝑘

• The ideal sampled time function is: 𝑓∗ 𝑡 = ෍

𝑘=0

∞

𝑓 𝑘𝑇 ∙ 𝛿 𝑡 − 𝐾𝑡 =෍

𝑘=0

∞

−2.5 0.5 𝑘 + 2.5 0.7 𝑘 ∙ 𝛿 𝑡 − 𝐾𝑡
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Time Response and Transfer Function of a discrete system
• The response of an LTI discrete-time system to an input sequence is given by the convolution of the input 

sequence and the impulse response sequence of the system (transfer function of the system h k ).
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𝑌 𝑧 = 𝐻 𝑧 𝑈(𝑧)

𝑢 𝑘 𝑦 𝑘

𝑌 𝑧 = ෍

𝑘=0

∞

𝑦(𝑘)𝑧−𝑘 = ෍

𝑘=0

∞

෍

𝑖=0

∞

)ℎ 𝑘 − 𝑖 𝑢(𝑖 𝑧−𝑘

• The z-transform of the convolution of two time sequences is equal to the product of their z-transforms.

𝑦 𝑘 = ℎ 𝑘 ∗ 𝑢 𝑘 =෍

𝑖=0

∞

)ℎ 𝑘 − 𝑖 𝑢(𝑖

System’s transfer function

𝑗 = 𝑘 − 𝑖

𝑌 𝑧 =෍

𝑖=0

∞

෍

𝑗=−𝑖

∞

)𝑢 𝑖 ℎ(𝑗 𝑧−(𝑖+𝑗) = ෍

𝑖=0

∞

𝑢(𝑖)𝑧−𝑖 ෍

𝑗=0

∞

)ℎ(𝑗 𝑧−𝑗

Causality property

𝐻 𝑧 is the transfer function of the system

Example: Given the discrete-time system 𝑦 𝑘 + 1 − 𝑦 𝑘 = 𝑢 𝑘 + 1 , find the system transfer function and the system
response  to a sampled unit step.

The transfer function: 𝑧𝑌 𝑧 − 𝑌(𝑧) = 𝑧𝑈 𝑧 𝐻 𝑧 =
𝑌(𝑧)

𝑈(𝑧)
=

𝑧

𝑧 − 1

unit step repose: 𝑌 𝑧 = 𝐻 𝑧 𝑈 𝑧 =
𝑧

𝑧−1

𝑧

𝑧−1
= 𝑧

𝑧

𝑧−1 2 = 𝑧𝑅(𝑧)

unit step’s z-transform z-transform of unit ramp

𝑦 𝑘 = ቊ
𝑘 + 1 𝑘 ≥ 0
0 𝑘 < 0

Inverse Z-transform Time advanced ramp



Modeling the Digital Computer

Modeling the Sampler

• The objective is to derive a mathematical model for the digital computer (transfer 

function) as represented by a sampler and zero-order hold. 

• When signals are sampled, the Laplace transform can be replaced by another related 

transform called the z-transform.

• The sampling model is a switch turning on and off at a uniform sampling rate 𝑇. It 

can also be considered to be a product of the time waveform to be sampled 𝑓(𝑡) and 

a sampling function 𝑠(𝑡) with pulse width 𝑇𝑤. FIG.1. uniform-rate sampling (switch opening and 

closing),  product of time waveform and sampling 

waveform• The time equation of the sampled waveform 𝑓𝑇𝑤
∗ 𝑡

𝑓𝑇𝑤
∗ 𝑡 = 𝑓 𝑡 ∙ 𝑠 𝑡 = 𝑓 𝑡 ∙ ෍

𝑘=−∞

+∞

𝑢 𝑡 − 𝑘𝑇 − 𝑢 𝑡 − 𝑘𝑇 − 𝑇𝑤 = 𝑇𝑤 ∙ 𝑓∗ 𝑡

10

ideal sampler Hold

Fig.2. Model of sampling with a uniform rectangular pulse train

Using the Laplace transform, 

Laplace inverse transform

Replace 𝑒−𝑇𝑤𝑠 with its series expansion



Modeling the zero-order hold

• The zero-order hold follows the sampler and holds the last sampled value of  f(t).

FIGURE (1) Ideal sampling and the zero-order hold

• Using an impulse input at zero time, the output is a step that starts at t = 0 and ends at t = T

The output is: 𝑦(𝑡)=ℎ(𝑡)=𝑢(𝑡)−𝑢(𝑡−𝑇)  Laplace transform is: 

• The digital computer is modeled by cascading two elements: (1) an ideal sampler and (2) a zero-order hold.

L{𝑢(𝑡)−𝑢(𝑡−𝑇)}= 
1

𝑠
−

1

𝑠
𝑒−𝑇𝑠=

1−𝑒−𝑇𝑠

𝑠

𝑍𝑂𝐻(𝑠) = 𝐺ℎ 𝑠 =
1 − 𝑒−𝑇𝑠

𝑠
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Modeling the Digital Computer

L{𝑢(𝑡)−𝑢(𝑡−𝑇)}= 0׬
∞
𝑢(𝑡)𝑒−𝑠𝑡𝑑𝑡 0׬−

∞
𝑢(𝑡−T)𝑒−𝑠𝑡𝑑𝑡 = 0׬

∞
𝑒−𝑠𝑡𝑑𝑡 𝑇׬−

∞
𝑒−𝑠𝑡𝑑𝑡 = ( ቚ−

1

𝑠
𝑒−𝑠𝑡)

0

∞
− ቚ(−

1

𝑠
𝑒−𝑠𝑡)

𝑇

∞

L{𝑢(𝑡)−𝑢(𝑡−𝑇)}=
1

𝑠
−
1

𝑠
𝑒−𝑇𝑠=

1 − 𝑒−𝑇𝑠

𝑠

𝑢(𝑡−T) = 1 for t ≥ 𝑇

Proof



Example: Converting G1(s) in Cascade with z.o.h. to G(z)

Given a z.o.h. in cascade with 𝐺1 𝑠 =
𝑠 + 2

𝑠 + 1
or 𝐺 𝑠 =

1 − 𝑒−𝑇𝑠

𝑠

𝑠 + 2

𝑠 + 1

find the sampled-data transfer function, G(z), if the sampling time, T, is 0.5 second.

SOLUTION

• Knowing that 𝑍−1 = 𝑒−𝑠 𝑇 𝐺 𝑠 = 1 − 𝑒−𝑇𝑠
𝐺1 𝑠

𝑠
𝐺 𝑧 = 1 − 𝑧−1 ℤ

𝐺1 𝑠

𝑠
=
𝑧 − 1

𝑧
ℤ
𝐺1 𝑠

𝑠

• the impulse response (inverse Laplace transform) of  
𝐺1 𝑠

𝑠

𝐺2 𝑠 =
𝐺1 𝑠

𝑠
=

𝑠 + 2

𝑠(𝑠 + 1)
=
𝐴

𝑠
+

𝐵

𝑠 + 1
=
2

𝑠
−

1

𝑠 + 1

• Taking the inverse Laplace transform 𝑔2 𝑡 = 2 − 𝑒−𝑡 𝑔2 𝑘𝑇 = 2 − 𝑒−𝑘𝑇
From

Table

𝐺2 𝑧 =
2 𝑧

𝑧 − 1
−

𝑧

𝑧 − 𝑒−𝑇

• Substituting 𝑇 = 0.5𝑠 𝐺2 𝑧 = ℤ
𝐺1 𝑠

𝑠
=

2 𝑧

𝑧 − 1
−

𝑧

𝑧 − 0.607
=

𝑧2 − 0.213 𝑧

𝑧 − 1 (𝑧 − 0.607)

𝐺 𝑧 =
𝑧 − 1

𝑧
𝑍

𝐺1 𝑠

𝑠
=
𝑧 − 0.213

𝑧 − 0.607
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Available Commands for Continuous/Discrete Conversion

The commands c2d, d2c, and d2d perform continuous to discrete, discrete to continuous, and discrete to discrete (resampling)

conversions, respectively.

sysd = c2d(sysc,Ts) % Discretization w/ sample period Ts

sysc = d2c(sysd) % Equivalent continuous-time model

sysd1= d2d(sysd,Ts) % Resampling at the period Ts

0 1 2 3 4 5 6 7 8

Step Response

Time (seconds)

A
m

p
lit

u
d
e
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Block Diagram Reduction

Figure Sampled-data systems and their z-transforms

𝑍 𝐺1 𝑠 𝐺2(𝑠) ≠ 𝐺1 𝑧 𝐺2(𝑧) )𝐺1 𝑠 𝐺2(𝑠
∗ ≠ 𝐺1 𝑠 ∗ )𝐺2(𝑠

∗ 𝐺1 𝑠 )𝐺2(𝑠
∗ ∗ = 𝐺1 𝑠 ∗ )𝐺2(𝑠

∗

𝐶 𝑧 = 𝑅 𝑧 𝐺(𝑧)

𝐶 𝑧 = 𝑅 𝑧 𝐺12(𝑧)

no sampler between 𝐺1 𝑠 𝑎𝑛𝑑 𝐺2(𝑠)

single transfer function 𝐺1 𝑠 𝐺2(𝑠)=𝐺12 (𝑠)

cascaded of two subsystems each like in  (a)

𝐶 𝑧 = 𝑅 𝑧 𝐺1 𝑧 𝐺2(𝑧)

𝐶 𝑧 = 𝑅𝐺1 𝑧 𝐺2(𝑧)

the continuous signal entering the 

sampler is 𝑅 𝑠 𝐺1(𝑠)

𝑅𝐺1 𝑧 =Z{𝑅 𝑠 𝐺1(𝑠)}

• Objective: find the closed-loop sampled-data transfer function of an arrangement of subsystems that have a computer in the 

loop. When manipulating block diagrams for sampled-data systems, the rule is:

Sampled data systems Their z-transforms 
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Example

Find the z-transform of the system shown in Figure

SOLUTION

FIGURE Steps in block diagram reduction of a sampled-data system

• The objective is to reduce the block diagram of Figure (a) and reducing it to the one shown in 

Figure (f).

1. place a phantom sampler at the output of any subsystem that has a sampled input (is not an 

input to other subsystem)

2. add phantom samplers S2 and S3 at the input to a summing junction whose output is 

sampled (synchronized samplers).

3. move sampler S1 and G(s) to the right past the pickoff point (to yield a sampler at the input of G(s)H(s))

𝐺 𝑠 𝐻 𝑠 with samplers S1 and S3 becomes 𝐺𝐻(𝑧)

𝐺 𝑠 with samplers S1 and S4 becomes 𝐺 𝑧

Converting 𝑅∗ 𝑠 to 𝑅 𝑧 and 𝐶∗ 𝑠 to 𝐶 𝑧

Now we have the system represented totally in the z-domain

4. using the feedback formula, we obtain the first block (Fig(e))

5. multiplication of the cascaded sampled-data systems yields the final result (Fig(f))
15



6 Stability

• The stability of digital system can be analyzed in Z-Domain or in S-Domain. 

• Changes in sampling rate not only change the nature of the response from over-damped to underdamped, but also can turn a 

stable system into an unstable one.
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Digital System stability via Z-Plane

• In the S-plane, the region of stability is the left half-plane.

• If the transfer function, G(s), is transformed into a sampled-data transfer function, G(z), the region of stability on the

z-plane can be evaluated from 𝑍 = 𝑒𝑇𝑠.

• Letting 𝑠 = 𝛼 + 𝑗𝜔 we obtain: 𝑍 = 𝑒𝑇𝑠 = 𝑒𝑇(𝛼+𝑗𝜔) = 𝑒𝛼𝑇𝑒𝑗𝜔𝑇 = 𝑒𝛼𝑇 cos𝜔𝑇 + 𝑗𝑠𝑖𝑛𝜔𝑇 = 𝑒𝛼𝑇∠𝜔𝑇

• From the above equation, we can deduce that the stable domain that corresponds to <0, lies inside the unity circle, the 

j𝜔 (=0) axis lies on the unity circle, and the unstable domain >0 lies outside the unity circle.

• Thus, a digital system is stable if and only if all poles of the closed-

loop transfer function T(z) are inside the unity circle.

• The digital system is marginally stable if poles of multiplicity one of

the closed-loop transfer function T(z) are on the unity circle and other

are inside the unity circle.



Example

Study the stability of the closed-loop system in the figure.

Where 𝐺1 𝑠 =
1

𝑠+2
and T=0.5s

SOLUTION

𝐺 𝑧 = 1 − 𝑧−1 ℤ
)𝐺(𝑠

𝑠
=

0.316

𝑧 − 0.368

𝑇 𝑧 =
)𝐺(𝑧

)1 + 𝐺(𝑧
=

0.316

𝑧 − 0.05
since the pole is inside the unity circle then the system is stable.

MATLAB Code:
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• We can check the stability with regards to the sampling period T:

𝐺 𝑧 = 0.5
1 − 𝑒−2𝑇

𝑧 − 𝑒−2𝑇
The pole is 1.5𝑒−2𝑇 − 0.5

The system is stable for all T >0.

• Let 

The pole is 11𝑒−𝑇 − 10

The system is stable for:

0 < T< 0.2.

• The pole is 11𝑒−𝑇 − 10 , monotonically decreases from +1 to -1 for 0 < T < 0.2. 

• For 0.2 < T <∞, 11𝑒−𝑇 − 10 monotonically decreases from - 1 to -10. 

• Thus, the pole of T(z) will be inside the unit circle, and the system will be stable if 0 < T < 0.2. 

• In terms of frequency, where f= 1/T, the system will be stable as long as the sampling frequency is 1/0.2 = 5 hertz or greater.

𝐺 𝑠 =
1 − 𝑒−𝑇𝑠

𝑠(𝑠 + 2)

𝑇 𝑧 =
𝐺 𝑧

1 + 𝐺 𝑧
=

0.5(1 − 𝑒−2𝑇)

𝑧 − (1.5𝑒−2𝑇 − 0.5)

𝑓𝑜𝑟 𝑇 = 0 → 11𝑒−0 − 10 = 1 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑇 = 0.2 → 11𝑒−0.2 − 10 = −1
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G 𝑠 =
10

𝑠+1
𝐺 𝑧 = 10

1 − 𝑒−𝑇

𝑧 − 𝑒−𝑇
𝑇 𝑧 =

10 1 − 𝑒−𝑇

𝑧 − 11𝑒−𝑇 − 10



Stability via S-plane (Routh-Hurwitz criterion)

• Find the transformation from z-Domain to s-domain 𝐺 𝑠 = ȁ𝐺(𝑍) 𝑧=𝑒𝑠𝑇 (nonlinear operator).

• The most used transformation is the Bilinear Transformation, where: 𝑍 =
𝑠+1

𝑠−1
(mapping from s-domain to z-domain)

Example: Let the characteristic equation of a system be: 𝐷 𝑧 = 𝑧3 − 𝑧2 − 0.2 𝑧 + 0.1 = 0

In s-domain for 𝑍 =
𝑠+1

𝑠−1
, this is equivalent to : 𝑠3 − 19 𝑠2 − 45 𝑠 − 17 = 0.

Thus system is unstable and has 1 pole outside the unity circle. 

No pole on the unity circle and two poles inside the unity circle.
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Computer Plant

Steady-State Errors

• Consider the digital system where the digital computer is represented by the sampler 

and zero-order hold. The transfer function of the plant is represented by G1(s).

• we have: 𝐸 𝑧 = 𝑅 𝑧 − 𝐶 𝑧 , 

Or from (d): 𝐸 𝑧 =
)𝑅(𝑧

)1 + 𝐺(𝑧

• Using the final value theorem (for discrete signals see slide 9):

𝑒𝑠𝑠
∗ = 𝑒∗ ∞ = lim

𝑧→1
1 − 𝑧−1 𝐸 𝑧 = lim

𝑧→1
1 − 𝑧−1

)𝑅(𝑧

)1 + 𝐺(𝑧

𝐸 𝑧 = 𝑅 𝑧 − 𝐺 𝑧 𝐸 𝑧
𝐸 𝑧 + 𝐺 𝑧 𝐸 𝑧 = 𝑅 𝑧
𝐸 𝑧 [1 + 𝐺 𝑧 ] = 𝑅(𝑧)
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Effect of sampling upon the steady-state error 

1. Unit Step Input: 𝑹 𝒛 =
𝒛

𝒛−𝟏

𝑒𝑠𝑠 = lim
𝑧→1

𝑧 − 1

𝑧

𝑧
𝑧 − 1

1 + 𝐺(𝑧)
=

1

1 + lim
𝑧→1

𝐺 𝑧
Where 𝐾𝑝 = lim

𝑧→1
)𝐺(𝑧𝑒𝑠𝑠 =

1

1 + 𝐾𝑝

2. Unit Ramp Input: 𝑹 𝒛 =
𝑻 𝒛

𝒛−𝟏 𝟐

𝑒𝑠𝑠 = 𝑒(∞) =
1

𝐾𝑣
Where 𝐾𝑣 =

1

𝑇
lim
𝑧→1

𝑧 − 1 𝐺(𝑧)

3. Unit Parabolic Input: 𝑹 𝒛 =
𝑻𝟐 𝒛(𝒛+𝟏)

𝟐 𝒛−𝟏 𝟑

𝑒𝑠𝑠 = 𝑒(∞) =
1

𝐾𝑎
Where 𝐾𝑎 =

1

𝑇2
lim
𝑧→1

𝑧 − 1 2𝐺(𝑧)

1

Using formula (1)

Using formula (1)

Using formula (1)



Example

For step, ramp, and parabolic inputs, find the steady-state error 

for the feedback control system shown in Figure if: 𝐺1 𝑠 =
10

𝑠 𝑠+1

SOLUTION

First find G(s), the product of the z.o.h. and the plant. 𝐺 𝑠 =
10 1 − 𝑒−𝑇𝑠

𝑠2 𝑠 + 1
= 10 1 − 𝑒−𝑇𝑠

1

𝑠2
−
1

𝑠
+

1

𝑠 + 1

𝐺 𝑧 = 10 1 − 𝑧−1
𝑇𝑧

𝑧 − 1 2 −
𝑧

𝑧 − 1
+

𝑧

𝑧 − 𝑒−𝑇
The z-transform is then:

Thus:

1. For a step input: 𝐾𝑝 = lim
𝑧→1

𝐺 𝑧 = ∞  𝑒𝑠𝑠 = 𝑒∗ ∞ =
1

1+𝐾𝑝
= 0

2. For a ramp input: 𝐾𝑣 =
1

𝑇
lim
𝑧→1

𝑧 − 1 𝐺 𝑧 = 10  𝑒𝑠𝑠 = 𝑒∗ ∞ =
1

𝐾𝑣
= 0.1

3. For a parabolic input: 𝐾𝑎 =
1

𝑇2
lim
𝑧→1

(𝑧 − 1)2𝐺1 𝑧 = 0  𝑒𝑠𝑠 = 𝑒∗ ∞ =
1

𝐾𝑎
= ∞
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• The equations developed above for e*(∞), Kp, Kv, and Ka are similar to the equations developed for analog systems.

• Multiple pole placement at the origin of the S-plane reduced steady-state errors to zero in the analog case. 

• Multiple pole placement at z = 1 reduces the steady-state error to zero for digital systems. s = 0 maps into z = 1 under 𝑧 = 𝑒𝑇𝑠

Steady-State Errors

𝐺 𝑧 = 10
𝑇

𝑧 − 1
− 1 +

𝑧 − 1

𝑧 − 𝑒−𝑇



Transient Response on the Z-Plane
• On the s-plane: vertical lines were lines of constant settling time, horizontal lines were 

lines of constant peak time, and radial lines were lines of constant percent overshoot.

• The transformation to z-domain: 𝑧 = 𝑒𝑠𝑇, for 𝑠 = 𝜎 + 𝑗𝜔 we obtain

𝑧 = 𝑒𝑠𝑇 = 𝑒(𝜎+𝑗𝜔)𝑇 = 𝑒𝜎𝑇𝑒𝑗𝜔𝑇 = 𝑟𝑒𝑗𝜔𝑇

• Constant settling time are concentric circles of radius 𝑟. 

for 𝑇𝑠 = 𝑐𝑜𝑛𝑠𝑡 =
4

𝜎
→ 𝜎 = 𝑐𝑜𝑛𝑠𝑡 → 𝑟 = 𝑐𝑜𝑛𝑠𝑡.

Fig (a) Constant damping ratio, normalized (to the sampling interval) 

settling time, and normalized peak time plots on the z-plane

𝑇𝑟 =
1.8

𝜔
, 𝑇𝑠 =

4

𝜎
, 𝑇𝑝 =

𝜋

𝜔
, %𝑂𝑆 = 𝑒

−
𝜉𝜋

1−𝜉2

• Constant peak time for 𝑠 = 𝜎 + 𝑗𝜔 we obtain
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• Constant percent overshoot we obtain curves on the z-plane. radial lines in 

the S-plane are represented by: 

𝜎

𝜔
= − tan 𝑠𝑖𝑛−1𝜉 = −

𝜉𝜔𝑛

𝜔𝑛 1 − 𝜉2
=

𝜉

1 − 𝜉2

𝑠 = 𝜎 + 𝑗𝜔 = −𝜔𝑛𝜉 + 𝑗𝜔𝑛 1 − 𝜉2
𝑧 = 𝑒𝑠𝑇 = 𝑒−𝜁𝜔𝑛 𝑇𝑒𝑗𝜔𝑛 1−𝜉2𝑇

Transforming 

to Z-plane

• For a desired damping ratio, 𝜉, curves can then be used as constant percent 
overshoot curves on the z-plane through a range of 𝜔𝑇 (see previous slide). 

Fig. The s-plane sketch of constant percent

overshoot line

Radius and phase depend on 𝜉

𝑇𝑝 = 𝑐𝑜𝑛𝑠𝑡 =
𝜋

𝜔
→ 𝜔 =

𝜋

𝑇𝑝
= 𝑐𝑜𝑛𝑠𝑡an → Radial lines at an angle 𝜔𝑇 = 𝜃1 = 𝜋

𝑇

𝑇𝑝



Design Gain (P-Controller) via Root Locus 
• Plot root locus (in z plane use the same rules as in s plane) and determine the gain required 

for stability (within the unit circle) as well as the gain required to meet a transient response 

requirement (find the intersection of the root locus with the appropriate curves as they 

appear on the z-plane).
Fig(a) Generic digital feedback
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Example (Stability Design via Root Locus)
Sketch the root locus for the system shown in Figure (a). Also, determine the 

range of gain, K, for stability from the root locus plot.

SOLUTION

Fig(b) Digital feedback control

Fig(c) Root locus for the system of fig(b)

• Sketch the root locus (use z as s), the results in Figure (b) using Matlab.

• Search along the unit circle for 180°, the intersection of the root locus with the 

unit circle  is 1∠60° with gain 𝐾 = 0.5. Hence, the range of gain for stability is 

0 < 𝐾 < 0.5.

• In general, if the open-loop transfer function is given by:  

𝐾 𝐺 𝑧 = 𝐾
𝑧 + 𝛾

𝑧 + 𝛼 𝑧 + 𝛽

The root locus is a circle with center 𝑧0 = −𝛾, 0

with the radius  𝑟 = 𝛾 − 𝛼 𝛾 − 𝛽

then



Example (Transient Response Design via Gain Adjustment)

For the system of the previous example, find the value of gain, K, to yield a damping ratio of 0.7.

SOLUTION

Fig(a): Root locus for the system with

constant 0.7 damping ratio curve

• Figure (a) shows the constant damping ratio curves superimposed over the 

root locus for the system as determined from the last example.

• We obtain the gain by searching along a 16.62° radial line for 180°

(intersection point of the 0.7 damping ratio curve with the 16.62° radial 

line). At this point K = 0.0627 at 0.719 +j 0.2153.

• We can now check our design by finding the unit sampled 

step response of the system Using our design, K = 0.0627.

Input:  R(z) = z/(z - 1), sampled unit step

the sampled output

Fig (b):  Sampled step

response of the system with K = 0.0627

𝐶 𝑧 =
𝑅 𝑧 𝐺(𝑧)

1 + 𝐺(𝑧)
=

0.0627 𝑧2 + 0.0627 𝑧

𝑧3 − 2.4373 𝑧2 + 2 𝑧 − 0.5627

• Since the overshoot is approximately 5%, the requirement of a 

0.7 damping ratio has been met Figure (b).
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0.719 +j 0.215

K = 0.0627 

radial line 



10 Cascade Compensation via the s-Plane
• Rather than designing directly in the z-domain, we can design on the s-plane, using S-plane analysis, and then convert the 

continuous compensator to a digital compensator using the bilinear transformation.

• A bilinear transformation that yields a digital transfer function whose output response at the sampling instants is approximately 

the same as the equivalent analog transfer function is called the Tustin transformation. 

• Tustin transformation is used to transform the continuous compensator, 𝐺𝑐(𝑠), to the digital compensator, 𝐺𝑐(𝑧), by:

Tustin transformation Inverse Tustin transformation 

• As the sampling interval, T, gets smaller (higher sampling rate), the designed digital compensator's output yields a closer match 

to the analog compensator.
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Example (Digital Cascade Compensator Design)

SOLUTION

For the digital control system of Figure(a), where the plant 𝐺p s is given, design a digital lead compensator, 𝐺𝑐(z), as shown in 

Figure (b), so that the system will operate with 20% overshoot and a settling time of 1.1 seconds. Create your design in the s-

domain and transform the compensator to the z-domain (Sampling period T=0.01 second).

FIGURE a. Digital control system showing the digital computer performing compensation; b. continuous system used for design; 

Using Figure(b), design a lead compensator using the techniques described previously. The design was created as part of an 

Example, where we found that the lead compensator was (see previous chapters)
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• The z-transform of the plant and zero-order hold, with T = 0.01 second, is

• The time response in Figure (T = 0.01 s) shows that the 

compensated closed-loop system meets the transient response 

requirements. The figure also shows the response for a 

compensator designed with sampling times at the extremes of 

Astrom and Wittenmark's guideline.

FIGURE: Closed-loop response for the compensated 

system of Example showing effect of three different 

sampling frequencies

• We have the analog compensator transfer function

• Using  Tustin transformation with T = 0.01 Yields to the digital compensator TF

• The transformed digital system
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