THE COMPLETE ENCYCLOPEDIA OF MINERALS
THE COMPLETE ENCYCLOPEDIA OF MINERALS

Description of over 600 Minerals from around the world

PETR KORBEL & MILAN NovAK
Explanation of the abbreviations used in the book

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>color</td>
</tr>
<tr>
<td>S</td>
<td>streak</td>
</tr>
<tr>
<td>L</td>
<td>luster</td>
</tr>
<tr>
<td>D</td>
<td>diaphaneity</td>
</tr>
<tr>
<td>DE</td>
<td>density</td>
</tr>
<tr>
<td>H</td>
<td>hardness</td>
</tr>
<tr>
<td>CL</td>
<td>cleavage</td>
</tr>
<tr>
<td>F</td>
<td>fracture</td>
</tr>
<tr>
<td>M</td>
<td>morphology</td>
</tr>
<tr>
<td>LU</td>
<td>luminescence</td>
</tr>
<tr>
<td>R</td>
<td>remark</td>
</tr>
<tr>
<td>X</td>
<td>crystal</td>
</tr>
<tr>
<td>XX</td>
<td>crystals</td>
</tr>
</tbody>
</table>

In the figure captions, the bigger dimension is always mentioned.

Scale of the frequency of the occurrence

- • • • • •: very rare
- • • •: rare
- • •: uncommon
- •: abundant
- : common
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>1. Elements</td>
<td>9</td>
</tr>
<tr>
<td>2. Sulphides</td>
<td>19</td>
</tr>
<tr>
<td>3. Halides</td>
<td>67</td>
</tr>
<tr>
<td>4. Oxides</td>
<td>75</td>
</tr>
<tr>
<td>5. Carbonates</td>
<td>113</td>
</tr>
<tr>
<td>6. Borales</td>
<td>131</td>
</tr>
<tr>
<td>7. Sulfates</td>
<td>137</td>
</tr>
<tr>
<td>8. Phosphates</td>
<td>155</td>
</tr>
<tr>
<td>9. Silicates</td>
<td>193</td>
</tr>
<tr>
<td>10. Organic compounds</td>
<td>281</td>
</tr>
<tr>
<td>11. Rocks, meteorites and tektites</td>
<td>285</td>
</tr>
<tr>
<td>Recommended literature</td>
<td>291</td>
</tr>
<tr>
<td>Index</td>
<td>293</td>
</tr>
</tbody>
</table>
Introduction

The ever increasing number of publications about minerals reflects a growing interest in nature. Most of those publications deal with only a few dozen of the most common minerals or gemstones. This book fills the gap by also featuring less common and rare minerals. The authors describe over 600 mineral species and varieties, illustrated with about 750 color photographs. In choosing which particular minerals to include, the relative importance and distribution of minerals and of nature will find this book. The mineral nomenclature includes rare minerals, known only from a single locality, because they form very attractive crystals or aggregates. There are minerals known to humankind since prehistoric times such as quartz and gold but also minerals first described quite recently like rossmanite. The photographs show well-formed and colorful crystals but many aggregates, which are more common in nature, are also included. The minerals in the book are listed according to the mineralogical system of Hugo Strunz, in his book Mineralogische Tabellen in 1978. The chemical formula of individual minerals follow the format of Glossary of Mineral Species 1995 by M. Fleischer and J.A. Mandarino. The information is complemented in both cases with the latest knowledge from scientific literature, such as new nomenclature of amphiboles, micas and zeolites.

The mineral descriptions cover the basic physical and chemical data, including chemical formula and crystal data. The data correspond mainly to the latest literature. The less common valence of the chemical elements is marked by the chemical formula (Fe²⁺ Mn⁴⁺ As³⁺ Mn³⁺ Pb⁴⁺). Where an element features both valences of a mineral, they are both marked (e.g., ilvaite).

The origin of individual minerals is described in detail. We chose a relatively simplified scheme because the normal complexity cannot be described here in detail. Minerals can be distinguished as either primary (resulting directly from a solidifying of magma, crystallizing of an aqueous solution or metamorphism - recrystallization in a solid stage) and secondary (resulting from alteration of the original mineral, e.g., during its oxidation or reduction under low temperature and pressure close to the surface of the Earth). Primary minerals are divided into the following groups: 1. magmatic, when a mineral crystallizes directly from a melt (it includes magmatic and effusive igneous rocks, including granite and alkaline syenite pegmatites and meteorites); 2. sedimentary, when a mineral crystallizes during a diagenetic, or from hydrous solutions under normal temperature (elastic, organic chemical, and sedimentary rocks); 3. metamorphic, when a mineral crystallizes during metamorphism in a solid state at a wide range of temperature and pressure (il includes regionally and contact metamorphosed rocks and skarns); 4. hydrothermal, when minerals crystallize from aqueous solutions and fluids under high to low temperatures (it includes ore and the Alpintype, cavities, volcanic rocks, minerals and rocks, hydrothermally altered under high temperature, e.g., greisens).

Secondary minerals are divided into following groups: 1. oxidation, when minerals result from the oxidation (weathering) of the primary minerals in the oxidation zone of ore deposits and other rocks (it includes the origin of malachite and azurite during the chalcopyrite oxidation, also the origin of secondary phosphates in granitic pegmatitcs during the oxidation of primary phosphates); 2. cementation, when minerals result from the reduction of the primary minerals (the origin of native copper and native silver under the reduction conditions in the cementation zone of ore deposits). This classification is very much simplified of course, because in many cases we cannot readily determine a specific origin of a particular mineral. This relates 10 minerals that crystallize under conditions which represent a transition between separate phases of the origin, such as the magmatic or hydrothermal pegmatitic cavities: the metamorphic hydrothermal pegmatite or the secondary origins of some phosphates in granitic pegmatites etc.

With the localities for individual minerals we have tried to list the most important worldwide localities regardless of their recent production character, but we have also included recent discoveries since these may produce important mineral specimens. Where a mineral has an important use this is listed at the end of mineral description. We would like to acknowledge all who contributed in any way to the production of this book, particularly those private collectors and institutions which loaned minerals for photography. We hope those fascinated in the world of minerals and of nature will find this book a fascinating source of information.

This book is dedicated to the memory of Dr. Jaroslav "venek, who was of extraordinary influence on several generations of Czech and Slovak mineralogists and mineral collectors and attitude to life.
1. Elements

Copper

Cu

CUBIC

Properties: C – light pink to copper-red, it darkens and covers green to black in air; S – red; I – metallic; D – opaque; DE = 8.9; H = 2.5 – 3; CL – none; F – lackluster; M – cubic crystals and its combinations, dendritic aggregates, sheets, slabs, massive.

Origin and occurrence: Primary hydrothermal copper is mainly related to basic igneous rocks; it is also common as a product of supergene cementation. It is associated with chalcocite, malachite, azurite, silver, chalcopyrite, bornite and other minerals. The largest accumulations of primary copper are in the Keweenaw Peninsula, Lake Superior, USA, the largest being 15 x 7 x 3m (approx. 50 x 23 x 10ft) and weighing 420 tons. Fine crystals up to 50 mm (approx. 2in) also occur there, as do calcite crystals with copper inclusions. Superb supergene copper crystals come from many localities like Tsumeb, Namibia and Chassy, France. Crystals up to 140mm (5½ in) long occurred in the Ray mine and in Bisbee, Arizona, USA. Very fine spire-like twins up to 5 cm in size and dendritic aggregates come from Mednorudnyansk, Ural mountains, Russia; crystals up to 30 mm (1¼ in) were found in Dzhezkazgan, Kazakhstan. Fine specimens of copper, associated with cuprite, azurite and malachite occurred in Rudabanya, Hungary. Application: electronics, electrical engineering, ingredient in gold alloys.
Silver
Ag

CUBIC

Properties: C – silver-white, tarnishes gray to black; S – silver-white; L – metallic; D – opaque; D6 – 10.5; H – 2.5 – 3; CL – none; F – hackly; M – cubic crystals, dendritic aggregates, wires, leaves, massive.

Origin and occurrence: Hydrothermal in ore veins and also of secondary cementation origin in association with acanthite, stephanite, proustite, pyrargyrite, copper and many other minerals. The best specimens of crystallized and wire silver come from Kongsberg, Norway, where wires up to 400mm (16 in) long and crystals up to 40 mm (1¼ in) in size have been found.

Beautiful specimens of wire silver with wires over 100 mm (4 in) long are known from Freiberg, Schneeberg and St. Andreasberg, Germany. Wires several cm long were also found in Pribram and Jáchymov, Czech Republic. Dendritic aggregates from Batopilas, Chihuahua, Mexico, reached up to 150 mm (6 in).

Crystals and aggregates of silver, grown together with copper are genetically unique in the basalt cavities in the Keweenaw Peninsula near Lake Superior, Michigan, USA. Wires, up to 100 mm (4 in) long, come also from the San Gerardo Mine in Huancavelica and Uchucchaqua, Peru. New finds of silver wires, up to 150 mm (6 in) long, have been made in Dzhezkazgan, Kazakhstan.

Application: photographic industry, jewelry, electronics.
Gold
Au

CUBIC

Properties: C - gold-yellow; S - yellow; L - metallic; D - opaque; DE - 19.3; H - 2.5-3; CL - none; F - lustrous; M - octahedral and cubic crystals, skeletal and dendritic aggregates, leaves, nuggets.

Origin and occurrence: Primary hydrothermal in ore veins, also in contact metamorphic deposits and pegmatites. Placer deposits are secondary. It occurs with pyrite, arsenopyrite, quartz, sylvanite, calaverite, krennerite and other minerals. Beautiful leaves and crystals of gold found in many localities in California, USA (Colorado Quartz mine, Niggar Hill and others). Fine leaf gold comes from Rosia Montana, Romania. The best crystals, skeletal octahedra, up to 50 mm (2 in) have been found in alluvial sediments near Gran Sabana, Roraima Shield, Venezuela. Gold wires up to 110 mm (4 3/8 in) long were very rare in Ground Hog mine, Gilman, Colorado, USA. The largest known sheets of crystallized gold occurred in the Jamestown mine, California, USA, where a cavity, which yielded 49 kg (108 lb) of golden leaves, was discovered on 26.12.1992. The largest measures about 300 mm (11 3/4 in) and has about 25.79 kg (56 lb 13 oz) of gold on it. Typical aggregates of fine gold wires come from Farncombe Hill near Breckenridge, Colorado, USA. Fine crystals were also found in Berovsk, Ural mountains and in the Lena River basin, Siberia, Russia. Fine scales and larger nuggets from placer deposits were found in Klondike, Alaska; Tuolumne County, California, USA and in Ballarat, Victoria, Australia. Fine dendritic aggregates occurred in the Hope's Nose, Devon, UK. A unique find of leaves up to 100 mm (4 in) was made in Krevice near Vodnany, Czech Republic.

Application: practically the only source of gold as a metal; used in jewelry, electronics and medicine.

Mercury
Hg

TRIGONAL

Properties: C - tin white; L - metallic to adamantine; D - opaque; DE - 13.6; M - liquid at temperatures above -39°C (-38.2°F); R - very poisonous fumes.

Origin and occurrence: Hydrothermal in low-temperature ore deposits, also connected with hot springs. It is associated with cinnaen, calomel and other Hg minerals. It occurred in Almaden, Spain;
Idria and Avila, Serbia; New Almaden and New Idria, California, Terlingua, Texas, USA; Dedova hora, Czech Republic and Rudnany, Slovakia as droplets and liquid cavity fillings.

Application: chemical industry, measuring instruments, metallurgy.

Moschellandsbergite

[Cubic]

Properties: C - silver-white; S - silver-white; L - metallic; D - opaque; DE - 13.5; H - 3.5; CL - good; F - conchoidal; M - dodecahedral crystals and their combinations, granular, massive.

Origin and occurrence: Hydrothermal in low-temperature deposits, associated with cinnabar, tetraddrite, pyrite and other minerals. Crystals, several mm long, were found in Moschellandsberg, Germany. They are also known from Sala, Sweden; Les Chalansas, France and Brezina, Czech Republic.

Lead

[Cubic]

Properties: C - gray-white, tarnishes to lead-gray and gets dull; S - lead-gray; L - metallic; D - opaque; DE - 11.3; H - 1.5; CL - none; M - octahedral and cubic crystals, massive.

Origin and occurrence: Hydrothermal, also sedimentary (authigenic), associated with willemite and other minerals. The best specimens with crystals up to 40 mm (1\(\frac{1}{8}\) in) in size, come from LDoghan, crystallized also from Pajasberg, Sweden. Octahedra, up to 10 mm (\(\frac{1}{8}\) in), are described from El Donudo, Gran Sabana, Venezuela. It also occurs in Franklin, New Jersey, USA and Japla, Zacatecas, Mexico.

Iron

[Cubic]

Properties: C - steel-gray to black; S - gray; L - metallic; D - opaque; DE - 7.9; H - 4; CL - perfect; F - hackly; M - crystals, granular, massive.

Origin and occurrence: Terrestrial iron occurs mainly in basic rocks, but it is also known from carbonate sediments and the petrified wood. The most famous locality is Blaafjeld near Ulfbay on Disko Island, Greenland, where masses up to 20 tons were found.
Chunks, weighing over 10 kg (22 lb) come from Bühl near Kassel, Germany. Impregnations of iron in dolerite occur in the Khuntukum massif and masses up to 80 kg (176 lb) are known from Ozernaya Mt., Siberia, Russia.

Platinum

Pt

CUBIC

Properties: C - steel-gray to dark gray; S - steel-gray to silver-white; L - metallic; D - opaque; DE - 21.5; H - 4.5; CL - none; F - harkly; M - cubic crystals, nuggets, grains and scales.

Origin and occurrence: Platinum occurs in magmatic segregations, together with chromite, olivine and magnesite in ultrabasic rocks; secondary in placers. The best crystals up to 15 mm (9/16 in) come from Kondor in Khabarowsk Region, small crystals, but mainly nuggets, weighing up to 11.5 kg (25 lb 5 oz) found in the Tura River basin near Turinsk, Ural Mountains. Primary platinum is known from deposits in the vicinity of Nizhnii Tagil, Ural Mountains, Russia; from the Onverwacht mine, Bushveld, South Africa and Sudbury, Ontario, Canada. Fine smaller nuggets, weighing up to 75 g (165 lb) were found in the Trinity River sediments in California, USA and the Choco River sediments in Columbia.

Application: chemical industry, catalytic converters, rocket industry.

Platinum, 8 mm, Kondor, Russia
Arsenic

As

TRIGONAL

Properties: C - tin-white, tarnishes quickly to black; Sb tin-white; L - metallic; D - opaque; DE - 5.8; H - 3.5; CL - perfect; F - uneven; M - rhombohedral crystals, botryoidal aggregates, granular, massive.

Origin and occurrence: Mainly hydrothermal, together with other As minerals. It forms massive veins, up to 200 mm (7/8 in) thick, with botryoidal surface in Jáchymov, Czech Republic and in Freiberg, Germany. In Akanati, Japan, spherical aggregates consisting of small crystals were found. It is also known from Sucarini, Romania. Botryoidal aggregates of arsenic with leaf gold were found in the Royal Oak mine, Coronandel, New Zealand. Crystals of metamorphic origin come from Sterling Hill, New Jersey, USA.

Stibarsen

SbAs

TRIGONAL

Properties: C - tin-white to gray, tarnishes black; S - gray; L - metallic, sometimes dull; D - opaque; DE - 6.3; H - 3-4; CL - perfect; M - indistinct crystals, botryoidal aggregates.

Origin and occurrence: In pegmatites with antimony, stibiotantalite and microcline; hydrothermal in ore veins with pyrrhotite, pyrrhotite, pyroxenite and dyserasite. Beautiful botryoidal aggregates of stibarsen (previously labeled as allemonite), up to 100 mm (approx. 4 in) in size, come from Pribram and Trebisík, Czech Republic. Botryoidal aggregates up to 80 mm (3 1/2 in) and imperfect crystals were found in quartz veins in Atnin, British Columbia, Canada. Fine specimens occurred in a Li-bearing pegmatite near Varutrask, Sweden.

Antimony

Sb

TRIGONAL

Properties: C - tin-white; S - gray; L - metallic; D - opaque; DE - 6.7; H - 3-3.5; CL - perfect; F - uneven; M - rhombohedral crystals, botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in ore veins with silver, stibnite, stibarsen, sphalerite and other minerals; also in pegmatites. As veinlets in a pegmatite in Varutrask, Sweden. Cleavable plates, up to 30 mm (2 in) known from Tornala, Finland.
Massive aggregates up to 200 mm (7 3/4 in) come from Pribram, Czech Republic. Rhombohedral crystals up to 10 mm (3/8 in) across and accumulations up to 300 mm (11 3/4 in) in size described from Lake George, New Brunswick, Canada.

Bismuth

Bi

TRIGONAL

Properties: C – silver-white, tarnishes pink; S – silver-white; L – metallic; D – opaque; DE – 9.8; H – 2-2.5; CL – perfect; M – rhombohedral crystals, granular, massive.

Origin and occurrence: It is found in pegmatites, greisens and hydrothermal in ore veins together with chalcopyrite, arsenopyrite, löllingite, nickelite, breithauptite and many other minerals. Common in pegmatites in Anjanaabonoina, Madagascar. Very fine crystals, up to 20 mm (3/4 in) known from Schilmen and Hartenstein, Germany. Skeletal aggregates, overgrown with other arsenides, occurred in Jáchymov, Czech Republic. Masses weighing several kg found in Belvica (Tasna, Velka) and Australia (Kingsgate, New South Wales). Cleavage masses up to 12 cm (4 3/4 in) described from Cobalt and Gowganda, Ontario, Canada.

Application: Bi ore.

Arsenolamprite

As

ORTHORHOMBIC

Properties: C – gray-white, it covers with a black coating; S – black, L – metallic to adamantine; D – opaque; DE – 3.6; H – 2; CL – perfect; M – acicular crystals, tabular and fan-shaped aggregates, massive.

Origin and occurrence: Hydrothermal in ore veins associated with arsenic, bismuth, silver and other minerals. Its crystals and veinlets were found with Cu

Arsenolamprite, 70 mm, Jáchymov, Czech Republic

Graphite

C

HEXAGONAL

Properties: C – black to steel-gray; S – black to steel-gray; L – metallic, dull, earthy; D – opaque; DE – 2.3; H – 1-2; CL – perfect; M – hexagonal tabular crystals, massive.

Origin and occurrence: Metamorphic, from metamorphism of a sedimentary material with C contents: also primary magmatic. Associated with many materials, stable under conditions of the graphite origin. Crystals several cm in size known from Nordre Stromfjord, Greenland. Crystals were also found in Sterling Hill, New Jersey and Crestmore, California, USA. Foliated aggregates are found in Sri Lanka (Radevra, Galle region). Accumulations in Buckingham and Grenville, Quebec, Canada are industrially important. Also common in Shunga deposit in Karelia, Russia; in Český Krumlov, Nelovice and Blizná, Czech Republic.

Application: metallurgy, nuclear industry, production of lubricants.

Graphite, 130 mm, Krichim, Bulgaria
Diamond

CUBIC

Varieties: bort (opaque technical diamonds), bolas (dark colored, spherical radial aggregates), carbonado (brown-black to black massive aggregates, up to egg sized)

Properties: C – colorless, yellow, brown, white, pink, black, red, blue, green; S – white; L – adamantine; D – transparent to translucent; DE – 3.5; H – 10; CL – perfect; F – conchoidal; M – octahedral and cubic crystals; LU – sometimes fluorescent, sometimes phosphorescent.

Origin and occurrence: Primary magmatic occurrences are limited to kimberlite pipes, secondary occurrences to placers. Large primary deposits are known from South Africa (Premier mine, Kimberley) and Yakutia, Russia (pipes in the vicinity of Mirny). Primary and secondary occurrences of diamonds are located in lamproites and placers near Argyle, Western Australia, Australia. Most historical diamonds from India (Golconda), Brazil (Diamantina, Minas Gerais), Congo, Angola and Namibia were found in placer deposits. Diamonds of industrial grade always prevail over the gem quality stones. The largest gem-grade diamond ever found, the Cullinan, weighing 3106 carats, comes from the Premier mine in Kimberley, South Africa. It yielded gem rough for 104 faceted stones, the heaviest of which weighs 531 carats. The largest faceted diamond known, called Golden Jubilee, was found in the same place in 1986. It weighed 755 carats before cutting and as a finished stone it weighs 545.65 carats. The dark blue Hope (44 carats) and the green Dresden (76 carats) probably came from India. Absolutely unique: red diamond, weighing 5 carats, which is at the Smithsonian Institution, Washington, DC, USA, is of unknown origin.

Application: the most popular gemstone, bort and carbonado varieties are used as abrasives.

Sulfur

ORTHORHOMBIC

Properties: C – sulfur-yellow, yellow-brown, greenish, reddish to yellowish-gray; S – white; L – resinous to greasy; D – transparent to translucent; DE – 2.1; H – 1.5-2.5; CL – imperfect; F – conchoidal to uneven; M – dipyrannual, diaphanous and thick tubular crystals, botryoidal and stalactitic aggregates.

Origin and occurrence: Hydrothermal product of fumaroles, product of activity of microorganisms, disintegration of sulfides and acidic chemical reactions; associated with gypsum, anhydrite, aragonite, calcite,
Selenium

Se

TRIGONAL • •

Properties: C — gray to red-gray; S — red; L — metallic; D — opaque to translucent; DE — 4.8; H — 2; CL — good; M — acicular crystals, droplets of vitreous surface, felt-like aggregates.

Origin and occurrence: Secondary, resulting from alteration, fumaroles and from burning coal dumps, with sulfur, sal ammoniac and other sulfates. Also from oxidation of organic compounds in U- and V-bearing deposits of the Colorado Plateau type, associated with pyrite, zippite and other minerals. Red needles up to 20 mm (0.8 in) long come from the United Verde mine, Jerome, Arizona, USA. Black selenium needles found in burning coal dumps in Kladno and Radvance, Czech Republic. Occurs with ores of U and V along sandstone fissures in the Peanut Mine, Bull Canyon, Colorado, USA. Occurred through volcanic activity in Vulcano, Lipari Islands, Italy.

Tellurium

Te

TRIGONAL • •

Properties: C — tin-white; S — gray; L — metallic; D — opaque; DE — 6.2; H — 2-2.5; CL — perfect; M — prismatic and acicular crystals, granular, massive.

Origin and occurrence: Primary hydrothermal in low-temperature ore deposits; it originates also as secondary through the oxidation/reduction reactions of pyrite in Rio Tinto, Spain and in Kostajnik, Serbia. It is associated with gold, sylvanite, allinite, pyrite and other minerals. Crystals up to 30 mm (1/4 in) long are known from Bulya, Turkey. Crystals up to 20 mm (0.8 in) long occurred in the Au deposits Cripple Creek and Colorado City, USA. Crystals up to 10 mm (0.4 in) across come from Kawazu and Suzuki, Japan. Rich cleavage masses and crystals up to 70 mm (2 3/4 in) long were found in Uzbekistan. Crystallized tellurium is also known from Futa Bai and Bai de Aries, Romania.

Tellurium, 1 mm xx, Zlatna, Romania

Celestite and halite. The world’s best crystals come from many localities near Gergenti, Sicily, Italy (Caltanissetta, Cuneo) where they reached up to 12 cm (4 3/8 in) in size. Fine crystals are also known from Tarnobrzeg, Poland and Vysokoye near Lvov, Ukraine. As a product of solfataras it occurs in many volcanically active places, like Solfatara near Pozzuoli, Italy or in sulfur lava near Shirakima, Japan. Sulfur layers, up to 30 m (100 ft) thick, associated with salt diapirs, are located near Charles Lake, Louisiana, USA. It originates during intensive oxidation/reduction reactions of pyrite in Rio Tinto, Spain and in Kostajnik, Serbia.

Application: chemical, paper-making, rubber and leather-making industries, agriculture.

Selenium, 110 mm, Kladno, Czech Republic
2. Sulfides

Algodonit

Cu₂As

Hexagonal

Properties: C – steel-gray to silver-white, it quickly covers with a brown coating on air; S – gray; L – metallic; D – opaque; DE – 8,7; H – 4; CL – none; F – conchoidal; M – crystals, granular, massive.

Origin and occurrence: Hydrothermal, mainly intimately inter-grown with other Cu arsenides. Its largest accumulations are known from Cu deposits in melaphyses in the Keweenaw Peninsula, Lake Superior, Michigan, USA. It is also known from Chile (Algodones mine near Coquimbo, Atacama). Other localities are Talmessi, Iran and Långban, Sweden.

Domeykite

Cu₂As

Cubic

Properties: C – tin-white to steel-gray, it tarnishes yellow and covers with a brown coating; S – gray; L – metallic; D – opaque; DE – 7,9; H – 3-3.5; CL – none; F – uneven; M – botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal with copper, cuprite, algodonite and silver. Common in masses, weighing several kg, together with algodonite in the Keweenaw Peninsula, Michigan, USA. The largest accumulations are known from Talmessi and Anarak, Iran. It occurs near Coptiap and Chahareld, Chile. Massive aggregates in cuprite up to 50 mm (2 in) come from Biloves, Czech Republic.

Allargentum

A₁₋ₓSbₓ

Hexagonal

Properties: C – silver-white; S – gray; L – metallic; D – opaque; DE – 10,1; H – not determined; CL – none; M – small crystals, granular.

Origin and occurrence: Hydrothermal in the silver-bearing ore veins, associated with silver, breithauptite and dysferasite. Crystals up to 1 mm (1/16 in) known from Harterstein, Germany. Its intergrowths with silver ores were found in Cobalt, Ontario, Canada. It is also known from Broken Hill, New South Wales, Australia and microscopic in Rejská vein in Kutná Hora, Czech Republic.

Sphalerite, 56 mm, Picos de Europa, Spain

Algodonite, 60 mm, Keweenaw Peninsula, U.S.A.

Allargentum, 50 mm, Schlema, Germany
Dyscrasite
Ag₃Sb

Orthorhombic

Properties: C – silver-white, it tarnishes yellow to black; S – silver-white; L – metallic; D – opaque; DE – 9.7; H – 3.5-4; CL – good; F – uneven; M – pyramidal and prismatic crystals, granular, massive.

Origin and occurrence: Hydrothermal in the ore veins, associated with silver, stibarsen, pyrargyrite, calcite and other minerals. The best specimens come from the silver-bearing veins, cross-cutting the U deposit Hůje near Podbram, Czech Republic, where prismatic crystals up to 50 mm (approx. 2 in) long and striated tabular twins were found. They are mostly embedded in stibarsen; all the specimens, appearing in the mineral shows, are etched out of matrix. Deformed crystals of completely different habit are known from St. Andreasberg, Germany. Crystals occurred also in the Consols mine in Broken Hill, New South Wales, Australia.

Chalcocite
Cu₂S

Monoclinic

Properties: C – lead-gray to black; S – lead-gray to black; L – metallic; D – opaque; DE – 5.8; H – 2.5-3; CL – imperfect; F – conchooidal; M – prismatic to tabular crystals, granular, massive.

Origin and occurrence: Hydrothermal, also sedimentary and metamorphic, mostly secondary, in the oxidation and cementation zones of ore deposits. It occurs together with pyrite, chalcopyrite, covellite, bornite and other minerals. Crystals up to 25 cm (9 in) found in the M’Sesa mine, Zaire. Beautiful crystals several cm across come from Redruth and St Just, Cornwall, UK. Crystals over 20 mm (0.8 in) across occurred in Brissol, Connecticut and in Butte, Montana. Crystals up to 50 mm (2 in) in size known from the Flambeau mine near Ladysmith, Wisconsin, USA. Shiny cyclic twins of crystals up to 20 mm (0.8 in) found in Dzhezkazgan, Kazakhstan. Massive aggregates are important Cu ore in Rio Tinto, Spain; Bor, Serbia; Bisbee, Arizona, USA and Tsumeb, Namibia.

Application: important Cu ore.

Djurleite
Cu₃Sb₁₆

Monoclinic

Properties: C – lead-gray to black; S – lead-gray; L – metallic; D – opaque; DE – 5.8; H – 2.5-3; CL – none; F – conchooidal; M – short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Secondary as a product of the cementation zone in ore deposits. Crystals up to 10 mm (0.4 in) across known from the Botallack mine.
near St. Just, Cornwall, UK. Aggregates of thick acicular crystals up to 30 mm (1 3/4 in) long found in Dzhekzagan, Kazakhstan.

It occurs in massive form in many porphyry copper deposits (Butte, Montana; Bisbee, Arizona, USA), also in Tsumeb, Namibia, together with chalcopyrite, pyrite and other minerals.

Berzelianite

Cuprous Selenide

CUBIC

Properties: C — silver-white, tarnishes black; S — silver shiny; L — metallic; D — opaque; DE = 7.3; H = 2.5; CL = none; F = uneven; M = granular, massive.

Origin and occurrence: Hydrothermal, together with other selenides in U, Fe and Au deposits. It is the main mineral in the selenide mineralization in Tillerode, Germany. Grains, up to several tens of cm across, greenish tarnished, occurred together with other selenides in Bucev, Habei, Petrovice and Předbořice, Czech Republic. Similar occurrence is known from near Pinky Fault near Athabasca Lake, Saskatchewan, Canada.

Berzelianite, 60 mm, Bucev, Czech Republic
Bornite

Cu₉FeS₄

Orthorhombic

Properties: C - copper-red, tarnishes iridescent; S - gray-black; L - metallic; D - opaque; DE - 5.1; H - 3-3.5; CL - imperfect; F - uneven to conchoidal; M - pseudo-cubic octahedral crystals, massive.

Origin and occurrence: Magmatic, hydrothermal, sedimentary, in skarns and pegmatites together with chalcoite, chalcocyprite, pyrite, quartz and other minerals. Fine crystals up to 10 mm (⅜ in) across are known from Carn Brea, Cornwall, England, UK. Crystals up to 30 mm (⅜ in) come from Likasi, Shaba, Zaire. Beautiful crystals up to 40 mm (⅜ in) across were found recently together with chalcocite in Dzehekkazgan, Kazakhstan. Massive aggregates are common and used as Cu ore in Kipushi, Shaba, Zaire. Fine-grained, sedimentary bornite occurs in Cu-bearing shales in Mansfeld, Germany, where it forms the main ore layer. Crystals, up to 20 mm (⅜ in) in size, occurred in the Coke shaft and masses, weighing several thousands of tons, were mined in the Campbell shaft, Bisbee, Arizona, USA. *Application:* Cu ore.

Umangite

Cu₃Sb₂

Tetragonal

Properties: C - blue-black with reddish tint, tarnishes purple; S - black; L - metallic; D - opaque; DE - 6.6; H - 3; CL - imperfect; F - uneven to conchoidal; M - granular, massive.

Origin and occurrence: Hydrothermal in ore veins together with other selenides (clouzitite, berzelianite). It is common, associated with berzelianite in Tilskaadoop, Germany; Sierra de Umayo, Argentina and Slavkovice, Czech Republic. Larger accumulations occur in the Martin Lake mine near Athabasca Lake, Canada.
Acanthite
Ag₅S

MONOCLINIC

Properties: C – black; S – black; L – metallic; D – opaque; DE – 7.2; H – 2-2.5; CL – none; F – uneven; M – pseudo-cubic crystals, massive. It mainly occurs as paramorphs after argentite (high-temperature phase of the same composition).

Origin and occurrence: Hydrothermal in ore veins. Beautiful crystals over 50 mm (2 in) long occurred in the Himmelsfirst mine in Freiberg, in Annaberg and Schneeberg, Germany. Acicular crystals are known from Jáchymov, Czech Republic. It is common in association with silver, proustite, pyargyrite, polybasite, stephanite, galena and other minerals in Mexico. Probably the best paramorphs after argentite up to 70 mm (2¾ in) across come from the Rayas mine, Guanajuato. Fine crystals occur in the Las Chispas mine, Arizpe, Sonora and many localities in Zacatecas, Chihuahua.

Application: important Ag ore.

Argentite
Ag₅S

CUBIC

Properties: C – black-gray, tarnishes black; S – black; L – metallic; D – opaque; DE – 7.1; H – 2-2.5; CL – imperfect; F – uneven to conchoidal; M – octahedral and cubic crystals, dendritic aggregates, massive. Stable at temperatures over 179°C (354°F). Below this temperature there are paramorphs of acanthite after argentite.

Unargite, 40 mm, Beaverlodge Lake, Canada

Origin and occurrence: Hydrothermal in low-temperature ore deposits, associated with silver, galena and Ag sulfosalts. Occurs between the oxidation and cementation zone with stromeyerite, silver, jaspelite, iodargyrite and other minerals. Fine crystals up to 40 mm (1½ in) across, are known from Freiberg and Schneeberg, Germany. Similar crystals found in Jáchymov and Mibin, Czech Republic. Crystals up to 30 mm (1¼ in) occur in Sarrabus, Sardinia, Italy. Maybe the best argentite crystals occurred in Mexico (Arizpe, Sonora; Zacatecas; Guanajuato), where crystals reached up to 40 mm (1½ in). Fine crystals up to 20 mm (¾ in) across reported from Chihuahua in Chile.

Application: important Ag ore.

Argentite, 29 mm, Zacatecas, Mexico
Hessite
Ag₂Te

MONOCLINIC

Properties: C – lead-gray, tarnishes black; S – light gray; L – metallic; D – opaque; DE – 8.4; H – 2-3; CL – imperfect; F – even; M – pseudo-cubic crystal combinations, granular, massive.

Origin and occurrence: Hydrothermal in medium- and low-temperature ore veins together with calcite and quartz. The best crystallized specimens with crystals up to 30 mm (1.18 in) across come from the San Carlos mine, Guanajuato and Chontalpan, Taxco, Guerrero, Mexico. It is also known in inter-

Aguilarite

Orthorhombic

Properties: C – lead-gray, tarnishes black; S – gray-black; L – metallic; D – opaque; DE – 7.7; H – 2.5; CL – none; F – hackly; M – skeletal crystals, massive.

Origin and occurrence: Hydrothermal in ore veins, together with silver, stephanite, proustite, pearceite, calcite and quartz. The best crystallized specimens with crystals up to 30 mm (1.18 in) across come from the Bote mine, Romania. Small crystals occur in the Jamestown mine, California, USA. Massive aggregates were found in Gold Hill, Colorado, USA and Mocotzeuma, Mexico. Aggregates, up to 10 cm (3.9 in) across, known in the Zavodinskii mine, Altai, Kazakhstan.
growths with acanthite and naumannite from the Comstock Lode, Virginia City, Nevada, USA.

Argyrodite
Ag_4GeS_6

ORTHORHOMBIC

Properties: C – steel-gray, tarnishes black; S – gray-black; L – metallic; D – opaque; DE – 6.3; H – 2.5-3; CL – none; F – uneven to conchoidal; M – combinations of cubic crystals, botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in low-temperature base metal deposits, associated with Ag sulfarsenates. It occurred in crystals in the Himmelsbirn mine, Freiberg, Germany. Crystals were also found in several localities in Bolivia (Atoche, Colquechaca, Potosí). Crystal measuring 66 mm (24 in) across is reported from Porco, Bolivia.

Stromeyerite
Ag_5CuS

ORTHORHOMBIC

Properties: C – dark steel gray, tarnishes blue; S – steel-gray; L – metallic; D – opaque; DE – 6.3; H – 2.5-3; CL – none; F – conchoidal; M – pseudo-hexagonal tabular crystals, massive.

Origin and occurrence: Mostly secondary in the cementation zone of ore veins, associated with freibergite, bornite, chalcocite, galena and other minerals. Fine tabular crystals up to 10 mm (⅜ in) across found in Dzhazkazgan, Kazakhstan, where pseudo-morphs of stromeyerite after silver wires also occur. Skeletal prismatic pseudo-morphs after chalcocite crystals come from Vraníček, Czech Republic. Massive aggregates are common in many deposits in Colorado, USA (Aspen, Red Mountain), Chile (Copiapó), Bolivia (Potosí) and Canada (Cobalt, Ontario).

Stromeyerite, 6 mm xx, Dzhazkazgan, Kazakhstan

Jalpaíte
$\text{Ag}_3\text{Cu}_2\text{S}_2$

TETRAGONAL

Properties: C – light gray, tarnishes dark gray to iridescent; S – black; L – metallic; D – opaque; DE – 6.8; H – 2-2.5; CL – good; F – conchoidal; M – crystals, granular.

Origin and occurrence: Hydrothermal in low-temperature ore veins. Crystals up to 25 mm (1 in) across known from Jalpaíte, Querétaro, Mexico. Crystals up to 30 mm (⅜ in) across from the Caribou mine, Colorado, USA. Massive aggregates, associated with galena, sphalerite, pyrite, stromeyerite, polybasite and other minerals, occurred in Příbram, Czech Republic.

Jalpaíte, 30 mm veinlet, Příbram, Czech Republic
Pentlandite

(P$_{Fe,Ni}$)$_{3+}$S$_8$

CUBIC

Properties: C – light bronze to red-brown; S – light bronze; L – metallic; D – opaque; DE – 5.0; H – 3.5-4; CL – none; F – conchooidal; M – crystals, massive.

Origin and occurrence: Typical magmatic liquid mineral, associated with pyrrhotite and chalcopyrite. It is common in Sudbury, Ontario, Canada, as mostly microscopic inclusions in chalcopyrite, but also as imperfect crystals. Large accumulations are known from Taimyr near Norilsk, Siberia, Russia, where it occurs together with Cu, Pt and Pd sulfides. It is also important ore in the deposit near Rustenburg, South Africa.

Application: the most important Ni ore.

Sphalerite

ZnS

CUBIC

Varieties: cleiophane (green, yellow, orange), marmatite (black).

Properties: C – colorless, yellow, orange, green, brown, black; S – brownish, light yellow, white; L – resinous to adamantine; D – transparent, translucent, opaque; DE – 4.1; H – 3.5-4; CL – perfect; F – conchooidal; M – tetrahedral and dodecahedral crystals, botryoidal, fibrous and stalactitic aggregates, massive; LU – sometimes orange.

Origin and occurrence: Magmatic (liquid, in pegmatites); hydrothermal in low- to high-temperature deposits, skarns, hydrothermal sedimentary deposits;
rare sedimentary and metamorphic. It occurs together with galena, pyrite, chalcopyrite, marcasite, fluorite, barite, quartz and other minerals. Beautiful crystals up to 100 mm (4 in) across come from Trepca, Serbia. Green and red crystals up to 100 mm (4 in) known from Cuanaica, Sonora, Mexico. Fine yellow crystals up to 30 mm (1/4 in) were common in Banská Štiavnica, Slovakia; similar crystals occur in Madan, Bulgaria. The most beautiful yellow, orange and red crystals up to 150 mm (6 in) across found in Picos de Europa, Santander, Spain. They are sometimes faceted. Brown crystals up to 50 mm (2 in) come from Joplin, Missouri; stalactitic aggregates up to 150 mm (6 in) long come from Galena, Illinois, USA. Perfect black, shiny crystals and twins up to 50 mm (2 in) are famous from Dalnegorsk, Russia; yellow crystals, up to 30 mm (1/8 in), occurred in Dnirekazgan, Kazakhstan. Transparent crystals up to 30 mm (1/8 in) also found in Franklin, New Jersey, USA. Green crystals up to 100 mm (approx. 4 in) across occurred in the Big Four mine, Colorado, USA. Crystals up to 50 mm (2 in) known from the Oppu mine, Aomori, Japan.
Application: principal Zn ore.

Coloradoite
HgTe

CUBIC

Properties: C – black-gray; S – black-gray; L – metallic; D – opaque; DE – 8.1; H – 2.5; CL – none; F – uneven to conchoidal; M – granular; massive.

Origin and occurrence: Hydrothermal, associated with alunite, calaverite, krennerite, gold, pyrite and other minerals in Au-bearing veins. It was common in Cripple Creek and in the Smuggler mine, Colorado; in the Norwegian mine, California, USA. Grains, reaching up to several mm, come from Jilově, Czech Republic.

Chalcopyrite
CuFeS₂

TETRAGONAL

Properties: C – brass-yellow, tarnishes iridescent; S – green-black; L – metallic; D – opaque; DE – 4.3; H – 3.5-4; CL – imperfect; F – uneven; M – tetrahedral crystals, botryoidal aggregates, massive.

Origin and occurrence: Magmatic, hydrothermal and sedimentary, in association with sphalerite, galena, tetrabedrite, pyrite and many other sulfides. Fine crystals up to 30 mm (1/8 in) across are known from Banská Štiavnica, Slovakia and from Căvinic, Romania. Crystals up to 120 mm (4 ⅜ in) across, associated with other sulfides, come from the Nikolai mine in Dalnegorsk, Russia. Beautiful crystals up to 120 mm (4 ⅜ in) found in Japan (Arakawa, Osarizawa). Fine crystals reaching up to several cm occur in Peru (Huancala, Huaron). Massive aggregates are important Cu ore in Sudbury, Ontario, Canada; Bingham, Utah; Bisbee, Arizona, USA and Rio Tinto, Spain.

Application: important Cu ore.
Luzonite
Cu$_3$As$_4$

TETRAGONAL

Properties: C - dark pink-brown; S - black; L - metallic; D - opaque; DE - 4.5; H - 3.5; CL - good; F - uneven to conchoidal; M - crystals, granular, massive.

Origin and occurrence: Hydrothermal in low- to medium-temperature veins, associated with enargite, tetrahedrite, sphalerite, bismuthinite, Ag sulfosalts and other minerals. Crystals up to 70 mm (2 3/4 in) across come from Quiruvilca; it is common in Cero de Pasco, Peru. It is also common in the Teine mine, Holdrado, Japan; crystals also occur in Kinkwaseki, Taiwan. It is known from Bor, Serbia and Rések, Hungary.

Stannite
Cu$_2$FeSnS$_4$

TETRAGONAL

Properties: C - steel-gray to black, tarnishes blue;

Stannite, 10 mm xx, Potosí, Bolivia

Germanite
Cu$_{26}$Fe$_6$Ge$_6$S$_{52}$

CUBIC

Properties: C - black; L - metallic; D - opaque; DE - 4.5; H - 4; CL - imperfect; F - uneven; M - pseudo-octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in high-temperature Sn deposits. The best specimens come from Bolivia; crystals up to 50 mm (2 in) across known from Llalagua; crystals up to 30 mm (1 1/8 in) from Chuquicamata and cross-like inter-growths from the San José and Itos mines near Oruro. It occurs as massive vein fillings in Carn Brea, Cornwall, UK and Cinovec, Czech Republic. It was also found in ambylagonite pegmatites in Caceres, Spain and in quartz-ambylagonite veins near Vernébov, Czech Republic.

Application: Sn ore.

Tennantite
Cu$_2$As$_4$S$_3$

CUBIC

Properties: C - steel-gray; S - black, brown to dark

Tennantite, 10 mm xx, Potosí, Bolivia
red; L – metallic; D – opaque; DE – 4.6; H – 3-4.5; CL – none; F – conchoidal to uneven; M – tetrahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins and greisens with pyrite, calcite, dolomite, quartz and other sulfides and Cu-Pb-Zn-Ag sulfosalts. Fine crystals are known from Cornwall, UK (Wheal Jewell, Gwennap, Carn Brea). Crystals up to 150 mm (6 in) across, come from Tsumeb, Namibia. Crystals of binnite in Lengenbach, Binntal, Switzerland, up to 30 mm (1¼ in). Crystals up to 20 mm (¾ in) across were found recently in Dzhezkazgan, Kazakhstan. Large masses occurred in Kipushi, Zaire. Crystals up to 25 mm (1 in) known from El Cobre, Zacatecas, Mexico. **Application:** Cu ore.

Tetrahedrite

Cu₅Sb₄S₁₃

Cubic

Properties: C – steel-gray to black; S – black, brown; L – metallic; D – opaque; DE – 5.0; H – 3-4.5; CL – none; F – conchoidal; M – tetrahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in low- to medium temperature veins; in contact metamorphic deposits together with chalcopyrite, galena, sphalerite, pyrite, bornite, calcite, quartz and other minerals. The largest known crystals up to 25 cm (9¾ in) across come from Anzen and Irazein in Pyrenees, France. Common crystals several cm in size occur in Câmpie, Romania. Fine specimens with crystals up to 70 mm (2¾ in) across found in the Mercedes mine in Huallanca, Peru. Other Peruvian localities like Casapalca and Morococha yielded fine crystallized specimens. Fine crystals up to 20 mm (¾ in) in size known from Poibram, Czech Republic. **Application:** ruda Cu.
Freibergite, 15 mm xx, Obecnice, Czech Republic

Freibergite
(Ag,Cu,Fe)_{12}(Sb,As)$_4$S$_{13}$

CUBIC

Properties: C - gray to black; S - black, brown to dark red; L - metallic; D - opaque; DE - 5.4; H - 3-4.5; CL - none; F - uneven to conchoidal; M - tetrahedral crystals, massive.

Origin and occurrence: Hydrothermal in ore veins with sphalerite, marmatite, pyrite and other minerals. Also of low-temperature origin along the cracks of clay concretions. The best wurtzite crystals come from Bolivia; crystals up to 40 mm (1 1/2 in) across from Animas and crystals up to 20 mm (3/4 in) across from Llallagua and Potosi. Fine crystals up to 30 mm (1 1/4 in) across found in Talnakh near Norilsk, Siberia, Russia. Interesting radial aggregates, up to several cm in diameter, occurred in Freiberg, Czech Republic.

Application: Ag ore.

Wurtzite
ZnS

HEXAGONAL

Properties: C - dark red-brown, dark brown to brown-black; S - brown; L - resinous to submetallic; D - translucent to opaque; DE - 4.1; H - 3.5-4; CL - good; M - pyramidal, prismatic to thick tabular, striated crystals, concentric banded and radial aggregates.

Origin and occurrence: Hydrothermal in ore veins with sphalerite, marmatite, pyrite and other minerals. Also of low-temperature origin along the cracks of clay concretions. The best wurtzite crystals come from Bolivia; crystals up to 40 mm (1 1/2 in) across from Animas and crystals up to 20 mm (3/4 in) across from Llallagua and Potosi. Fine crystals up to 30 mm (1 1/4 in) across found in Talnakh near Norilsk, Siberia, Russia. Interesting radial aggregates, up to several cm in diameter, occurred in Freiberg, Czech Republic.

Enargite
Cu$_3$As$_4$

ORTHORHOMBIC

Properties: C - gray-black to black; S - gray-black;

Greenockite, 20 mm, Ocna de Fier, Romania
L – metallic; D – opaque; DE – 4.4; H – 3; CL – perfect; F – uneven; M – tabular and prismatic, striated crystals, massive.

Origin and occurrence: Hydrothermal in medium-temperature, sometimes in low-temperature deposits, associated with quartz, pyrite, sphalerite, galena, bornite and other minerals. Beautiful crystals, up to 100 mm (4 in) across, come from the Laz Angelica mine in Quiruvilca, crystals up to 150 mm (6 in) across from Morococha and Cerro de Pasco, Peru. Fine crystals were found in Butte, Montana, USA and in Mancayano, Luzon, Philippines. It occurs as a principal Cu ore in several deposits (Bor, Serbia; Huaraz, Peru).

Application: Cu ore.

Cubanite
Cu₂FeS₃

ORTHORHOMBIC

Properties: C – brass-yellow to bronze; S – black; L – metallic; D – opaque; DE – 4.1; H – 3.5; CL – none; F – conchoideal; M – tabular crystals, massive.

Origin and occurrence: Magmatic in liquid deposits as inclusions in chalcopyrite, as hydrothermal in high-temperature deposits, associated with chalcopyrite, pyrite, pyrrhotite and sphalerite. The best crystals, twins, up to 40 mm (1½ in) across, come from the Henderson No.2 mine, Chibougamau, Quebec, Canada. It was also described in crystals from Sudbury, Ontario, Canada and Morro Velho, Brazil. Its large accumulations are important Cu ore.

Application: important Cu ore.
Sternbergite

Sternbergite
\(\text{Ag}_2\text{FeS}_3\)

Orthorhombic

Properties: C – golden-brown; S – black; L – metallic to adamantine; D – opaque; DE – 4.2; H – 1-1.5; Cl – perfect; M – thin tabular pseudo-hexagonal crystals, often in rosettes and fan-shaped aggregates.
Origin and occurrence: Hydrothermal in Ag-bearing veins, associated with stephanite, acanthite, proustite, and argentopyrite and other minerals. Tabular crystals up to several mm across known from Jachymov and Midič, Czech Republic; from St. Andreasberg, Johanngeorgenstadt, Schneeberg and Freiberg, Germany.

Pyrrhotite

Pyrrhotite
\(\text{Fe}_{1-x}\text{S} (x = 0.0-0.17)\)

Monoclinic

Properties: C – bronze-yellow to brown, tarnishes quickly; S – dark gray-black; L – metallic; D – opaque; DE – 4.7; H – 3.5-4.5; Cl – none; M – uneven to conchoidal; M – tabular, pyramidal and prismatic crystals, massive.
Origin and occurrence: Magmatic liquid in basic rocks, together with pyrite and pentlandite; in pegmatites; hydrothermal in high-temperature and metamorphic deposits; sedimentary and metamorphic. Tabular crystals up to 300 mm (11.8 in) across from Trepça, Serbia and Dalnegorsk, Russia; prismatic crystals up to 150 mm (6 in) long found in Santa Eulalia, Chihuahua, Mexico and Chiaurba, Romania. Tabular crystals up to 110 mm (4.3 in) occurred in Câmpie, Romania. Large imperfect crystals, coated with wavelite, are known from Llallagua, Bolivia. Huge masses of industrial importance occur in Sudbury, Ontario, Canada; Taltal near Portillo, Siboria, Russia and elsewhere. **Application:** sometimes as Fe ore.
Nickeline

NiAs

HEXAGONAL

Properties: C – light copper-red, tarnishes gray to black; S – light brown-black; L – metallic; D – opaque; DE – 7.5; H – 5.5; CL – none; F – conchoidal; M – striated crystals, botryoidal and dendritic aggregates, granular, massive.

Origin and occurrence: Magmatic, hydrothermal and metamorphic, associated with silver, nickeline, coadtite, and other sulfides. It occurs inter-grown with pyrite and pentlandite in magmatic liquid deposit Vialfontein, South Africa. It is common in hydrothermal veins in Cobalt, Ontario, Canada. Also known from Sarrabus, Sardinia, Italy and St. Andreasberg, Germany.

Breithauptite

NiSb

HEXAGONAL

Properties: C – light copper-red, purplish; S – red-brown; L – metallic; D – opaque; DE – 8.5; H – 5.5; CL – none; F – conchoidal to uneven; M – thin tabular crystals, dendritic aggregates, massive.

Origin and occurrence: Magmatic, hydrothermal and metamorphic, associated with silver, nickeline, coadtite, and other sulfides. It occurs inter-grown with pyrite and pentlandite in magmatic liquid deposit Vialfontein, South Africa. It is common in hydrothermal veins in Cobalt, Ontario, Canada. Also known from Sarrabus, Sardinia, Italy and St. Andreasberg, Germany.
Millerite
NIS

TRIGONAL

Properties: C - light brass-yellow to bronze, tarnishes iridescent; S - greenish-black; L - metallic; D - opaque; DE - 5.4; H - 3-3.5; CL - perfect; F - uneven; M - acicular crystals, cleavable masses, aggregates of parallel inter-grown crystals with velvety surface.

Origin and occurrence: Hydrothermal in low-temperature ore deposits, also as a product of decomposition of Ni sulfides. It is associated with pyrrhotite, ankerite, whewellite, barite and other minerals.

Alabandite, 46 mm, Săcălimb, Romania

Cubic

Properties: C - black; S - green; L - submetallic; D - opaque; DE - 4.1; H - 3.5-4; CL - perfect; F - uneven; M - cubic and octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with rhodochrosite, calcite, galena, sphalerite, pyrite and other minerals. Crystals up to 20 mm (0.79 in) across together with granular aggregates are relatively common in Romania (Săcălimb, Baita de Arieş, Roşia Montana). Crystals are also known from the Queen of the West mine, Colorado and from the Lucky Cuss mine, Tombstone, Arizona, USA.
Galena

PbS

CUBIC

Varieties: steinmannite

Properties: C – lead-gray; S – lead-gray; L – metallic; D – opaque; DE – 7.8; H – 2.5; CL – perfect; F – conchooidal; M – cubic crystals and their complex combinations, tabular crystals, skeletal aggregates, massive.

Origin and occurrence: Magnatic, hydrothermal, metamorphic, very rare sedimentary, associated with sphalerite, chalcopyrite, pyrite, quartz and other minerals. Large crystals up to several tens of cm in size come from many localities in the USA. (Joplin, Missouri; Galena, Kansas; Picher, Oklahoma; Sweetwater mine, Missouri). Beautiful, often skeletal crystals or spinel-law twins up to 200 mm (7/8 in) across known from the Nikolai mine in Dalnegorsk, Russia. Fine crystals occur also in Nacis, Chihuahua, Mexico. Famous complicated combinations of crystals were found in Neudorf, Germany. Octahedral crystals up to 10 mm (¼ in) (steinmannite variety) were common in Příbram, Czech Republic. Beautiful specimens with cubes up to several cm across come from Madan, Bulgaria; spinel-law twins occurred in Herţa, Romania.

Application: the most important Pb ore.

Clausthalite

PbSe

CUBIC

Properties: C – lead-gray, bluish; S – gray-black; L – metallic; D – opaque; DE – 8.3; H – 2.5 – 3; CL – good; F – granular; M – granular, massive.

Origin and occurrence: Hydrothermal in ore veins with a low S content, together with berzelianite, uraninite, uraninite and other minerals. It occurs as massive aggregates in calcite veins with other selenides in Clausthal and Tilkerode, Germany. It is similar in Stríkav, Sweden; common in the U deposits in Predbořice, Bukov and Zlatkov, Czech Republic.
Altaite

Origin and occurrence: Hydrothermal in vein Au deposits, associated with other tellurides, galena and other minerals. Crystals up to 20 mm (0.79 in) across are known from the Revenge mine, Colorado, USA. It is massive with agualite in Kalgoorlie, Western Australia, Australia. It is relatively common with other tellurides in Sălcățini, Romania; in the Zavodinskii mine, Altaia, Russia and in Zod near Sevan Lake, Armenia.

Miargyrite

\[\text{AgSbS}_2 \]

MONOCLINIC

Properties: C – black to steel-gray; S – cherry-red; L – metallic, adamantine; D – opaque; DE – 5.3; H – 2.5; CL – imperfect; F – conchoidal; M – thick tabular, striated crystals, massive.

Origin and occurrence: Hydrothermal in low-temperature ore veins, together with proustite, pyrargyrite, polybasite, silver, quartz and other minerals. Fine crystals, up to 10 mm (0.4 in) across, occurred in Pilbram and Kusná Hora, Czech Republic; in Bellersdorf and Freiberg, Germany. It is also known from many localities in Bolivia (Tatacoa, Oruro – 10 mm (0.4 in) crystals, Potosi) and Mexico (Sombrerete, Zacatecas). It was also found in Hienckel, Guadalajara, Spain.

Application: Ag ore.

Francolite

\[\text{(Pb,Sn)_xFe_{3-x}Sb_2S_3}_{14} \]

TRICLINIC

Properties: C – gray-black; S – gray-black; L – metallic; D – opaque; DE – 5.8; H – 2.5-3; CL –

Francolite, 30 mm, Oruro, Bolivia
Cylindrite

\[\text{Pb}_5\text{Sn}_4\text{Fe}_5\text{Sb}_7\text{S}_{14} \]

TRICLINIC

Properties: C – lead-gray to black; S – black; L – metallic; D – opaque; DE – 5.4; H – 2.5; CL – perfect; M – cylindrical, conical and spherical crystal aggregates, massive.

Origin and occurrence: Hydrothermal in Sn-bearing veins with francolite, stannite, cassiterite, galena and other minerals. World famous specimens with crystals up to 50 mm (2 in) long come from the Trinariera and Santa Cruz mines near Poopó, Bolivia. It was also reported from the Smirnovs'k deposit, Transbaikalia, Russia.

Cinnabar

\[\text{Hg}_2\]

TRIGONAL

Properties: C – red to brownish-red; S – crimson; L – adamantine to metallic, also dull; D – opaque; DE – 8.2; H – 2-2.5; CL – perfect; F – conchoidal to uneven; M – rhombohedral, thick tabular and prismatic crystals, massive.

Origin and occurrence: Low-temperature hydrothermal mineral, associated with realgar, mercury, pyrite, marcasite and other minerals. The world’s best specimens with crystals up to 70 mm (2¾ in) across are known from many localities in China (Hunan and Guizhou provinces). Fine shiny crystals up to 10 mm (¼ in) across come from Nikitovka, Ukraine and in Khaidarkan, Kyrgyzstan. Crystals up to 30 mm (1¼ in) also found in Monte Amiata and Rippa near Seravezza, Italy. Its massive aggregates are an important Hg ore in Allicar, Macedonia; Almadén, Spain and elsewhere.

Application: the most important Hg ore.

Cinnabar: 30 mm x, Hunan, China
Covellite, 65 mm, Butte, U.S.A.

Covellite

Covellite is a hexagonal mineral with the formula CuS. Properties include: C - indigo-blue, tarnishing iridescent; S - lead-gray; L - submetallic to resinous; D - opaque; DE - 4.6; H - 1.5-2; CL - perfect; F - uneven; M - hexagonal tabular crystals, massive.

Origin and occurrence: Rare hydrothermal, mainly secondary in the oxidation zone of ore deposits, associated with chalcocite, chalcopyrite, bornite and other minerals. Tabular crystals up to 30 mm (1\(\frac{1}{4}\) in) across are known from Butte, Montana and Summitville, Colorado, USA; also from Saranbas, Sardinia, Italy. Massive aggregates are common in Bôr, Serbia; Bisbee, Arizona, USA and elsewhere.

Application: Cu ore.

Linneite

Linneite has the formula Co\(^{2+}\)Co\(^{3+}\)\(_\times\)_4. Properties: C - light gray to steel-gray; S - blackish-gray; L - metallic; D - opaque; DE - 4.9; H - 4.5-5.3; CL - imperfect; F - uneven to conchoidal; M - octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins and metamorphic deposits, together with chalcocite, pyrrhotite, millerite, bismuthinite and sphalerite. The best crystals up to 30 mm (1\(\frac{1}{4}\) in) across come from the Kilembe mine, Uganda. Crystals are also known from Musonoi, Shaba, Zaire; Mišen, Germany; siderite concretions in Kládno, Czech Republic and from the Bastnäs mine near Riddarhyttan, Sweden.

Carrolite

Carrolite has the formula Cu(Co,Ni)\(\times\)_2S\(_\times\)_4. Properties: C - light to steel-gray, tarnishing red-purple; S - gray; L - metallic; D - opaque; DE - 4.6; H - 4.5-5.5; CL - imperfect; F - conchoidal to uneven; M - octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with linneite, chalcocite and other minerals. It is a principal Co ore in deposits in Zaire. Beautiful crystals up to 20 mm (\(\frac{1}{4}\) in) across are known from the M'Sesa mine near Kambove, Kolwezi and from Kamboto, Shaba.

Application: Co ore.
Stibnite
Sb$_2$S$_3$

ORTHORHOMBIC

Properties: C - steel-gray, tarnishing iridescent or black; S - lead-gray; L - metallic; D - opaque; DE = 4.6; H - 2; CL - perfect; F - conchoidal to uneven; M - thick to thin prismatic crystals, thin needles, massive.

Origin and occurrence: Hydrothermal in medium- and low-temperature ore veins with quartz and gold, the other associated minerals are rare (arsenopyrite, berthierite, gadmannite, antimonite). The largest known stibnite crystals occurred in the Ichinokawa mine, Shikoku, Japan, where they were up to 60 cm (24 in) long. Similar sized crystals were found recently in several localities in China (the Xikuangshan mine, Hunan). Crystals up to 200 mm (7.8 in) across come from Manhattan, Nevada, USA. Beautiful crystals are known from Romania; long prismatic ones with barite crystals are prevalent in Bâa Strie, clusters of thin needles come from Herja and thick prismatic crystals from Băia. Perfect druses of crystals up to 150 mm (6 in) long, associated with purple fluorite crystals, barite and calcite, occurred in Kadamluzai, Kyrgyzstan. Beautiful druses of stibnite crystals with quartz come also from Kromnica, Slovakia. Also kostanić, Serbia and La Lucette, France yielded fine crystals in the past.

Application: Sb ore.

Stibnite, 120 mm, Bâa Strie, Romania
Bismuthinite

\[
\text{Bi}_2\text{S}_3
\]

Orthorhombic

Properties: C – lead-gray to tin-white, tarnishing yellow and iridescent; S – lead-gray; L – metallic; D

Kermesite, 20 mm xx, Freiberg, Germany

- opaque; DE – 6,8; H – 2-2,5; CL – perfect; F – uneven; M – thick prismatic to acicular, striated crystals, fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in ore deposits; also in recent volcanic exhalation deposits, associated with bismuth, arsenopyrite, stannite, galena and other minerals. The world’s best crystals over 50 mm (2 in) long, come from Bolivia (Tasna; Huanuni; Llallagua). Fine crystals were also found in Redruth, Cornwall, UK. Rich finds were made in Biggenden, Queensland, Australia. Interesting crystals are known from Spindler, Norway.

Application: Bi ore.

Kermesite

\[
\text{Sb}_2\text{S}_3\text{O}
\]

Triclinic

Properties: C – cherry-red; S – brown-red; L – adamantine to submetallic; D – translucent to opaque; DE – 4,7; H – 1-1,5; CL – perfect; M – acicular crystals, radial aggregates.

Origin and occurrence: Secondary, as a result of a stibnite oxidation in Sb deposits, associated with stibnite, antimony, senarmontite, valentinite and stibiconite. Famous specimens with needles up to 100 mm (4 in) long, in radial aggregates, come from Pestrnok and Pernek, Slovakia. Crystals up to 50 mm (2 in) long found in the Globe and Phoenix mines, Zimbabwe. It is also known from Bolivia (San Francisco mine, Poopó; Oruro) and Bräunsdorf, Germany.
Tetradymite
\(\text{Bi}_3\text{Te}_2\text{S} \)

Trigonal

Properties: C - light steel-gray, tarnishing to yellow; S - light steel-gray; L - metallic; D - opaque; DE = 7.3; H = 1.5-2; CL - perfect; F - uneven; M - short prismatic to thick tabular crystals, skeletal aggregates, granular.

Origin and occurrence: Hydrothermal in medium- and high-temperature Au deposits; also in contact metamorphosed deposits, together with gold, hespere, calaverite, pyrite and other minerals. Crystals up to 10 mm (\(\frac{1}{2} \) in) across are known from Zemplin, Slovakia. It is common in Colorado (Red Cloud) and in California (Carson Hill), USA. It occurs with gold in skarns in Baja Bihorului, Romania.

Nagyagite
\(\text{Pb}_5\text{Ag(Te, Sb)}_4\text{S}_9 \)

Tetragonal

Properties: C - black-gray; S - black-gray; L - metallic; D - opaque; DE = 7.5; H = 1.5; CL - perfect; F - uneven; M - thin tabular to foliated crystals, granular, massive.

Origin and occurrence: Hydrothermal in low-temperature veins, associated with altaite, arsenic, gold, rodeckrite and other minerals. Foliated crystals up to 40 mm (\(\frac{1}{16} \) in) across from SlăDIRIM and Baia de Arîes, Romania. Fine specimens were also found in Tavan, Viti Levu, Fiji and in the Sylvia mine, Tararu Creek, New Zealand. It also occurred in Gold Hill and Cripple Creek, Colorado, USA and in Kalgoorlie, Western Australia, Australia.

Sylvanite
\(\text{(Au, Ag)}_2\text{Te}_4 \)

Monoclinic

Properties: C - steel-gray to silver-white, tarnishing to yellow; S - steel-gray to silver-white; L - metallic; D - opaque; DE = 8.2; H = 1.5-2; CL - perfect; F - uneven; M - short prismatic to thick tabular crystals, skeletal aggregates, granular.

Origin and occurrence: Hydrothermal in low-temperature ore veins, also in medium- and high-temperature deposits as one of the latest minerals, associated with gold, calaverite, hespere, leucoxene and other minerals. The best specimens come from SlăDIRIM and Baia de Arîes, Romania, where it occurs as skeletal crystals and aggregates. Crystals were also found in Cripple Creek, Colorado, USA; crystals up to 10 mm (\(\frac{1}{2} \) in) across come from the Emperor mine, Viti Levu, Fiji.
Krennerite

Properties: C – light brass-yellow; tarnishing iridescent and darkens; S – green-black to brown-black; L – metallic; D – opaque; DE – 5.0; H – 6-6.5; CL – imperfect; F – conchooidal to uneven; M – combinations of cubic crystals, striated, stalactite and spherical aggregates, massive.

Origin and occurrence: Magmatic segregations in basic rocks with pyrrhotite and pentlandite, in pegmatites and skarns; hydrothermal in porphyry and vein deposits together with other sulfides; hydrothermal sedimentary, sedimentary and metamorphic; Magmatic segregations are known from Sudbury, Ontario, Canada and Merensky Reef, Transvaal, South Africa. Large crystals up to 200 mm (7¾ in) across are known from Rio Marina, Elba, Italy. Fine octahedra come from Llallagua, Bolivia. Crystals, up to 120 mm (4¾ in) across, were found in Bingham and Park City, Utah, USA. Crystals up to 150 mm (6 in) are known from Huancala and Quiruvilca, Peru. The largest pyrite deposit is Rio Tinto, Spain, where fine-grained pyrite formed accumulations about 1 billion tons. Beautiful cubes up to 80 mm (3¼ in) come from Navajin, Spain. Large deformed crystals

Calaverite

Properties: C – brass-yellow to silver-white; S – greenish; L – metallic; D – opaque; DE – 9.3; H – 2-3-5; CL – none; F – uneven to conchooidal; M – bladed and short prismatic, striated crystals, granular, massive.

Origin and occurrence: Hydrothermal in low-temperature Au-bearing veins, sometimes in medium- and high-temperature deposits, associated with coloradoite, altaite, krennerite and other tellurides. It is common in the Mother Lode in California (Carson Hill). It is important, together with hessite in Cripple Creek, crystals up to 10 mm (¾ in) across come from the Cresson mine, Colorado, USA. It is also known from several mines near Kirkland Lake, Ontario, Canada.

Application: Au ore.
up to 200 mm (7.76 in) across occurred in the Sámo mine near Hnúšťa, Slovakia. Interesting, complex combinations of crystals found in Nanisivik, on an edge from Climax, Colorado, USA.

Application: production of sulfuric acid.

Hauerite

MnS₂

Cubic

Properties: C – red-brown to brown-black; S – brown-red; L – metallic to adamantine; D – opaque; Dₚ – 3.44; H – 4; CL – perfect; F – uneven to conchoidal; M – octahedral crystals and their combinations, spherical aggregates.

Origin and occurrence: Low-temperature sedimentary mineral, limited to clays with high S contents. The best crystals up to 50 mm (2 in) across come from the Desiricella mine near Radușa, Sicily, Italy. Crystals up to 25 mm (1 in) and their aggregates are known from Víglaská Huta (former Kalinka) near Zvolen, Slovakia. Crystals up to 15 mm (0.59 in) across occur in Turnobrzeg, Poland. Also found with sulfur, gypsum, realgar and calcite in the salt domes near High Island, Texas, USA.
Sperrylite

CUBIC

Properties: C – tin-white; S – black; L – metallic; D – opaque; DE – 10.8; H – 6-7; CL – imperfect; F – conchoidal; M – complex combinations of cubic crystals, massive.

Origin and occurrence: It is mainly of magmatic liquid origin, associated with pyrrhotite, pentlandite, cubanite and other minerals. The best crystals come from Taimakh near Norilsk, Siberia, Russia, where inter-grown crystals reached up to 50 mm (2 in). Crystals up to 40 mm (1½ in) across known from Tweelfontein, Puigietrust, Bushveld, South Africa. It also occurred as disseminated aggregates in Sudbury, Ontario, Canada.

Aurostibite

CUBIC

Properties: C – gray, tarnishing iridescent; S – gray; L – metallic; D – opaque; DE – 9.9; H – 3; CL–Boone; M – granular.

Origin and occurrence: Hydrothermal in quartz veins, associated with gold and other Sb minerals. Grains up to 5 mm (¼ in) across come from Krásná Hora, Czech Republic. It also occurs in the Giant Yellowknife mine, Northwest Territories and Hemlo, Thunder Bay, Ontario, Canada and is also reported from Bestyube, Kazakhstan.

Krut’aitse

CUBIC

Properties: C – gray; S – gray; L – metallic; D – opaque; DE – 6.5; H – 4; M – microscopic crystals, massive.

Origin and occurrence: Hydrothermal, associated with claustralite, uraninite and other minerals. The richest accumulations of massive aggregates were found in the El Dragón mine, Potosí, Bolivia, where crystals up to 1 mm (¼ in) occurred as well. It was originally described as microscopic from Petrovice, Czech Republic.

Cobaltite

ORTHORHOMBIC

Properties: C – silver-white; S – gray-black; L – metallic, adamantine to dull; D – opaque; DE – 6.3; H – 5.5; CL – perfect; F – uneven; M – pseudo-cubic crystals, granular, massive.

Origin and occurrence: Hydrothermal in high-temperature ore deposits and metamorphic, together

Aurostibite, 4 mm grain, Krásná Hora, Czech Republic
with magnetite, sphalerite, chalcopyrite, other sulfides and arsenides of Co and Ni. The best dodecahedra, several cm across, come from metamorphic sulfide deposits in Tunaberg, Sweden. Other Swedish localities, like Hällefors and Ransberg, yielded crystals up to 60 mm (24 in) across. Fine crystals about 10 mm (⅓ in) occurred in the magnesite deposit Mútik near Hnúšťa, Slovakia. Cubic crystals up to 30 mm (⅓ in) across found in Espanola, Ontario, Canada. Beautiful crystals are known from the skarn in Bimbowie, South Australia, Australia.

Application: Co ore.

Gersdorffite

NAS

CUBIC

Properties: C – silver-white to steel-gray, tarnishing gray-black; S – gray-black; L – metallic; D – opaque; DE – 6.0; H – 5.5; CL – perfect; F – uneven; M – octahedral striated crystals and their combinations, massive. **Origin and occurrence:** Hydrothermal in medium-temperature ore deposits in association with nickel-ine, nickel-sulfurite, ulmanite, siderite and other minerals. Crystals up to 100 mm (4 in) across come from the Snowbird mine, Montana, USA. It is importan...
Ulmanite, 60 mm, Bou Cricha, Morocco

Ulmanite
NiSbS
CUBIC

Properties: C – steel-gray to silver-white; S – gray-black; L – metallic; D – opaque; DE – 6.8; H – 5-5.5; CL – perfect; F – uneven; M – combinations of cubic crystals, massive.

Origin and occurrence: Hydrothermal in ore veins together with other Ni minerals. Fine crystals, up to 20 mm (7/8 in) across, come from Monte Narba near Sarrabus, Sardinia, Italy. Twins are known from Löhling, Austria. Crystals up to 10 mm (⅜ in) were found in Klic near Stalibro, Czech Republic. It is common in Broken Hill, New South Wales, Australia and in Cochabamba, Bolivia.

Application: Ni ore.

Marcasite
FeS2
ORTHORHOMBIC

Properties: C – tin-white, bronze-yellow, tarnishing iridescent; S – grayish to brownish-black; L – metallic; D – opaque; DE – 4.9; H – 6-6.5; CL – good; F – uneven; M – tabular, pyramidal and prismatic crystals, often twinned into the form of cockadecomb-like aggregates, stalactitic, botryoidal and massive.

Origin and occurrence: It originates at low temperatures in very acidic environment, either in sedimentary, or in hydrothermal deposits, associated with pyrite, pyrrhotite, galena, sphalerite, fluorite, dolomite and calcite. Hydrothermal crystals and pseudo-morphs after pyrrhotite are known from Freiberg, Germany; Llallagua, Bolivia and Chiu Chiu, Romania. Marcasite from Wiesloch, Germany and Rocio, Santander, Spain are of similar origin. Large crystals occurred in Joplin, Missouri and in Galena, Illinois, USA. The best crystals of sedimentary marcasite come from coal basins. Fine crystals from black coal are known from Essen, Germany. Cockadecomb-like aggregates up to 150 mm (6 in) across, come from the brown coal basin in Vintovod, Czech Republic. Spherical, radial concretions with pyrite are known from Sparta, Illinois, USA and from Champagne, France.

Application: production of sulfuric acid.

Marcasite, 70 mm, Sparta, U.S.A.
Löllingite
FeAs₂

ORTHORHOMBIC

Properties: C – steel-gray to silver-white; S – gray-black; L – metallic; D – opaque; DE – 7.5; H – 4.5-5.5; CL – sometimes good; F – uneven; M – prismatic crystals, massive.

Origin and occurrence: Mafic to ultramafic in Precambrian gneisses; hydrothermal in greisen and Sn-W veins, rare in the other types of ore veins, together with skutterudite.

Bismuth, nickel, bismuth, and other minerals. Fine crystals are known from syenite in Langenflugefjord, Norway. Crystals up to 50 cm (20 in) across come from a pegmatite in Kastala, Finland. Masses occur in the Kobokobo pegmatite, Kivu, Zaire. Massive aggregates with schorl were found in Dolni Bory, aggregates with cassiterite in Poëbuz, Czech Republic.

Safflorite
(Co,Fe)₃As₂

ORTHORHOMBIC

Properties: C – tin-white, tarnishing to dark gray; S – gray-black; L – metallic; D – opaque; DE – 7.5; H – 4-5.5; CL – good; F – uneven to conchoidal; M – prismatic crystals, radial aggregates, massive.

Origin and occurrence: Hydrothermal in medium-temperature with skutterudite, rammelsbergite, nickel, silver, copper and löllingite. It is common in Schneeberg, Germany; Cobalt, Ontario, Canada; Batopilas, Chihuahua, Mexico and in Bou Azzer, Morocco.

Rammelsbergite
Ni₃As₂

ORTHORHOMBIC

Properties: C – tin-white, pinkish; S – gray-black; L – metallic; D – opaque; DE – 7.1; H – 5-5.6; CL – good; F – uneven; M – prismatic crystals, radial and fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in medium-temperature veins associated with other Ni and Co minerals. Botryoidal aggregates come from Schneeberg, Germany. It is common in Sarrabus, Sardinia, Italy; in the Eldorado mine near Great Bear Lake; in Cobalt, Ontario, Canada and Bou Azzer, Morocco.

Rammelsbergite, 60 mm, Schneeberg, Germany
Arsenopyrite

FeAsS

MONOCLINIC

Properties:
- C - silver-white to steel-gray; S - black; L - metallic; D - opaque; DE - 6.2; H - 5.5 - 6; CL - good; F - uneven; M - thick tabular to prismatic striated crystals, granular, massive.

Origin and occurrence: It occurs in pegmatites; hydrothermal in high-temperature vein deposits and greisens; metamorphic in contact metamorphic skarns, gneisses and mica schists. Long prismatic crystals up to 30 cm (12 in) long are known from the Obira mine, Japan. It is very common in greisen Sn and W deposits, fine crystals are known from Horni Slavkov, Czech Republic and Ehrenfriedersdorf, Germany. Beautiful crystals up to 50 mm (2 in) across come from Panasqueira, Portugal, where they occurred associated with fluorapatite, wolframite and siderite. Historically important were large crystals from Tavistock, Devon, UK. Crystals up to 40 mm (1 ½ in) in found in Llallagua, Bolivia. Crystals up to 50 mm (2 in) across were found recently in the Nikoli mine in Dalnegorsk, Russia.

Gudmundite, 10 mm xx. Polar Urals, Russia

Gudmundite

FeS6S5

MONOCLINIC

Properties:
- C - silver-white to steel-gray; S - black; L - metallic; D - opaque; DE - 7.0; H - 5-6; CL - none; F - uneven; M - prismatic twinned crystals, massive.

Origin and occurrence: Late hydrothermal mineral of ore deposits, also in metamorphic deposits and skarns. It is common in metamorphic sulfide deposits in Sweden (Boliden, Gudmundstorp). Massive aggregates are known from Kutila Hora and Vlastiávovice, Czech Republic. It was common in Broken Hill, New South Wales, Australia.

Shiny crystals up to 30 mm (1 ½ in) across, come from Hunan province, China. Application: As ore.

Molybdenite

MoS2

HEXAGONAL

Properties:
- C - lead-gray; S - blue-gray; L - metallic; D - opaque; DE - 4.0; H - 1-1.5; CL - perfect; M - tubular and prismatic crystals, scaly aggregates.

Origin and occurrence: Magmatic in pegmatites, granites and aplites, hydrothermal in high-temperature veins, also in porphyry ore deposits and in contact metamorphic deposits; associated with chalcopyrite, quartz and other minerals. Large crystals come from pegmatites in Blue Hill Bay, Maine, USA and in Mutre-Fides-Stavoren, Transvaal, South Africa, where they reach several tens of cm in size. Crystals up to 150 x 70 mm (6 x 2 ½ in) across come from the transitional type between pegmatites and quartz veins near Arendal and Moss, Norway; large crystals also occur in the Temiskaming district, Quebec, Canada; tabular crystals up to 120 mm (4 ½ in) across found in quartz-molybdenite breccia pipes in veins in Australia (Queensland, New South Wales). Fine crystals are also known from Klabrica near Vito,a, Bulgaria; Horni Slavkov, Czech Republic and Ehrenfiedersdorf, Germany. As a fine grained disseminated ore was mined in Bingham, Utah and Climax, Colorado, USA.

Application: Mo ore.

Skutterudite

CaMo2S3

CUBIC

Properties:
- C - tin-white to silver-gray, tarnishing to
gray and iridescent; S – black; L – metallic; D – opaque;
DE – 6.8; H – 5.5 – 6; CL – good; F – conchoidal to
uneven; M – combinations of cubic crystals, skeletal
aggregates, granular, massive.

Origin and occurrence: Hydrothermal in medium-
to high-temperature ore veins, associated with other Ni
and Co minerals. Crystals up to 50 mm (2 in) across
come from Bou Azzar, Morocco. Crystals up to several
cm in size were found in Schneeberg and Annaberg,
Germany. Large massive accumulations occur in Cobalt
and Gowganda, Ontario, Canada. Application: Co ore.

Nickel-skutterudite
NiAs₂

CUBIC

Properties: C – tin-white to silver, tarnishing to gray
and iridescent; S – black; L – metallic; D – opaque;
DE – 6.5; H – 5.5 – 6; CL – good; F – conchoidal to
uneven; M – combinations of cubic crystals, skeletal
aggregates, granular.

Origin and occurrence: Hydrothermal in medium-
temperature veins with arsenopyrite, arsenic, bismuth,
calcite and siderite. Known in crystals from Chatham,
Connecticut and Chester, Massachusetts, USA; also
Val d’Anniviers, Wallis, Switzerland. Massive aggrega-
tes come from Dobni, Slovakia; Les Chalanches,
France; Mohawk mine, Michigan, USA; Schneeberg,
Germany. Application: ruda Co a Ni.

Nickel-skutterudite, 36 mm, Saxony, Germany
Proustite
Ag_3AsS_3

TRIGONAL

Properties: C – crimson, darkens upon exposure to light; S – crimson; L – adamantine; D – translucent to opaque; DE – 5.6; H – 2-2.5; CL – good; P – conchooidal to uneven; M – prismatic, rhombohedral and scalenohedral crystals, massive.

Origin and occurrence: Low-temperature hydrothermal mineral, also in the oxidation and cementation zone together with stephanite, silver, xanthoconite, acanthite and other minerals. The best specimens with crystals up to 100 mm (4 in) long come from the Dolores mine, Chukareillo, Chile. Crystals up to 80 mm (3½ in) long found in the Himmelsfürst mine in Freiberg, Niederschletten and Schneeberg, Germany. Large druses with crystals up to 40 x 20 mm (15/8 x 15/8 in) across occurred in Jáchymov; crystals up to 20 mm (¾ in) across known from Příbram and Stani Vôžice, Czech Republic. Fine crystals come from Batopilas, Chihuahua and Sombrerete, Zacatecas, Mexico. Crystalline masses of proustite, weighing over 250 kg (550 lb), were found in 1865 in the Poorman mine, Silver City, Idaho, USA. **Application:** Ag ore.
Pyrrhotite
\(\text{Ag}_3\text{SbS}_3 \)

Trigonal

Properties: C – dark red, darkens upon exposure to light; S – crimson; L – adamantine; D – translucent to opaque; DE – 5.6; H – 2.5; CL – good; F – conchoidal to uneven; M – prismatic, rhombohedral and scalenohedral crystals, granular, massive.

Origin and occurrence: Low-temperature hydrothermal mineral, also secondary in the oxidation and cementation zone, together with silver, acanthite, other Ag sulfosalts, calcite and quartz. Crystals in Colquechaca, Bolivia and Chañarcillo, Chile reached several cm in size. Crystals up to 70 mm (2¾ in) long occurred in the Santo Nino vein in Fresnillo, Zacatecas, Mexico. San Genaro mine in Huancavelica, Peru yielded crystals up to 50 mm (2 in) across. Crystals up to 40 mm (1¼ in) across found in Freiberg; smaller crystals only are known from St. Andreasberg, Germany. Crystals up to 20 mm (¾ in) across come from Příbram and Stará Věžice, Czech Republic. Crystals up to 50 mm (2 in) across found in the San Carlos mine, Hidreltaeina, Spain.

Application: Ag ore.

Xanthoconite
\(\text{Ag}_3\text{AsS}_3 \)

Monoclinic

Properties: C – dark crimson, orange-yellow to yellow-brown; S – orange-yellow; L – adamantine; D – translucent; DE – 5.5; H – 2–3; CL – good; F – conchoidal; M – tabular and lath-like crystals, botryoidal and radial aggregates.

Xanthoconite, 2 mm x, Marienborn, Germany.

Origin and occurrence: Hydrothermal in ore veins together with proustite, pyrrhotite, acanthite, arsenic and calcite. Botryoidal masses with yellow crystals up to 7 mm (¼ in) long come from Freiberg; other important localities are St. Andreasberg, Germany; Ste-Marie-aux Mines, France; Cobalt, Ontario, Canada; Příbram, Třebško and Jáchymov, Czech Republic.

Pyrostilpnite
\(\text{Ag}_3\text{SbS}_3 \)

Monoclinic

Properties: C – hyacinth- to orange-red; S – orange-yellow; L – adamantine; D – translucent; DE – 6.0; H – 2; CLB perfect; F – conchoidal; M – tabular to lath-like crystals, radial aggregates.

Origin and occurrence: Hydrothermal in low-temperature veins, associated with pyrrhotite, stephanite, acanthite and other Ag minerals. The best crystals come from St. Andreasberg, Germany. Crystals up to 10 mm (¼ in) long were found in Příbram, Třebško and Jáchymov, Czech Republic. It is also described from Colquechaca, Bolivia and Chañarcillo, Chile.
Samsonite
Ag₄MnSn₂S₆

MONOCLINIC

Properties: C - steel-gray; S - dark red; L - metallic; D - opaque; DE - 5.5; H - 2.5; CL - none; F - conchooidal; M - prismatic striated crystals.

Origin and occurrence: The only locality, where it occurred in relatively larger amount, was the Samson mine in St. Andreasberg, Germany, where crystals up to 10 mm (⅜ in) across were found.

Chalcostibite
Cu₅Sb₂

ORTHORHOMBIC

Properties: C - lead-gray, tarnishing to blue and green; S - lead-gray; L - metallic; D - opaque; DE - 5.0; H - 3-4; CL - perfect; F - conchooidal; M - long prismatic, striated crystals, granular, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with jamesonite, chalcopyrite, tetrahedrite, stibnite, andorite and other minerals. Partly altered crystals up to 100 mm (4 in) long are known from Ras-el-Auz near Casablanca, Morocco. It is often in deposits in Bolivia (Haunchaca, Oruro, Colquechaca), where its crystals reach 10 mm (⅜ in).

Chalcostibite, 29 mm, Saint Pons, France
Emplectite

CuB\textsubscript{2}S\textsubscript{2}

Orthorhombic

Properties:
- C — gray to tin-white; S — gray; L — metallic; D — opaque; DE — 6.4; H — 2; CL — perfect; F — conchoidal to uneven; M — thin prismatic to acicular striated crystals.

Origin and occurrence:
Hydrothermal in high-temperature veins associated with chalcopyrite.

Berthierite, 98 mm, Herja, Romania

Wittichenite

Cu\textsubscript{3}BiS\textsubscript{3}

Orthorhombic

Properties:
- C — steel-gray to tin-white, tarnishing yellow to steel-gray; S — black; L — metallic; D — opaque; DE — 6.2; H — 2-3; CL — none; F — conchoidal; M — prismatic crystals, massive.

Origin and occurrence:
Hydrothermal in ore veins, associated with other Bi minerals, Cu-Fe sulfides, selenides and secondary U minerals. It occurs in Wittichen, Germany; Băiţa Biborului, Romania; Turmeb, Namibia and Cerro de Pasco, Peru.

Molybdenite, quartz, tetrahedrite and other minerals. Fine acicular crystals up to 30 mm (1\%/2 in) long were discovered recently near St Pons, France.

Berthierite

FeS\textsubscript{2}S\textsubscript{4}

Orthorhombic

Properties:
- C — dark steel-gray, tarnishing iridescent to brown; S — dark brown-gray; L — metallic; D — opaque; DE — 4.7; H — 2-3; CL — imperfect; M — long prismatic, striated crystals, fibrous, felt-like and radial aggregates.

Origin and occurrence:
Hydrothermal in low-temperature Sb deposits. Acicular crystals up to 10 mm (\%/4 in) long are known from the St. Antoni de Puda gallery in Klatna Hora, Czech Republic; thick prismatic crystals come from Poproć, Slovakia. Iridescent columnar aggregates up to 200 mm (7\%/2 in) long occur in Herja, Romania. Fine specimens are known also from Oruro, Bolivia.
Stephanite

Ag_2Sb_4

Orthorhombic

Properties: C – black; S – black; L – metallic; D – opaque; DE – 6.3; H – 2-2.5; CL – imperfect; F – conchoidal; M – short prismatic to tabular striated crystals, massive.

Origin and occurrence: Late hydrothermal mineral in Ag deposits, associated with proustite, acanthite, silver, tetrahedrite, galena, sphalerite and pyrite. Crystals up to 40 mm (1.57 in) long come from Příbram and Jáchymov, Czech Republic and from St. Andreasberg, Germany. Crystals up to 50 mm (2 in) across found in the Las Chispas mine, Arizona, Sonora, Mexico and Hindelkenzina, Spain. Smaller crystals occurred in Freiberg, Schneeberg and Annaberg, Germany. Application: Ag ore.

Polybasite

$(\text{Ag}_2\text{Cu})_6\text{Sb}_2\text{S}_11$

Monoclinic

Properties: C – black; S – black; L – metallic; D Bopaque; DE – 6.4; H – 2-3; CL – imperfect; F – uneven; M – pseudo-hexagonal tabular crystals, massive.

Origin and occurrence: Hydrothermal in low- to medium-temperature ore veins, associated with pearceite.

Pearceite

$\text{Ag}_11\text{As}_2\text{S}_11$

Monoclinic

Properties: C – black; S – black; L – metallic; D – opaque; DE – 6.1; H – 3; CL – none; F – conchoidal to irregular; M – short prismatic to tabular crystals and rosette-like aggregates, massive.

Origin and occurrence: Hydrothermal in low- to medium-temperature deposits with acanthite, silver, proustite, quartz, barite and calcite. Crystals several mm across are known from Jáchymov, Moldova and Midinec, Czech Republic; from Arqueños, Chile and from the Veta Rica mine, Coahuila, Mexico. Crystals up to 12 mm (0.47 in) across were found in the Caribou mine, Colorado, USA; also in Dzhezkazgan, Kazakhstan. Huge accumulations of almost pure pearceite occurred in the Moilie Gibson mine near Aspen, Colorado, USA. Application: Ag ore.
pyrargyrite, tetrahedrite, stephanite, acanthite, quartz and other minerals. Crystals, several cm across, are known from Wölfach, St. Andreasberg, Freiberg and Schneeberg, Germany; also from Guanajuato, Mexico. The best specimens with tabular crystals up to 90 mm (3½ in) across come from the Las Chispas mine, Arizpe, Sonora, Mexico.

Application: Ag ore.

Lorandite

\[\text{TiAs}_2 \]

MONOCLINIC

Properties: C – crimson, lead-gray, it covers with a yellow coating; S – cherry-red; L – metallic to adamantine; D – translucent to transparent; DE – 5.5; H – 2-2.5; CL – perfect; M – short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Hydrothermal, associated with stibnite, realgar, orpiment, pyrite and other minerals. Crystals up to 50 mm (2 in) across were found in Alcider, Macedonia. It is also known from Džijkent, Tajikistan and from the cavities in dolomite from Lengenbach, Biental, Switzerland.

Livingstonite

\[\text{HgSb}_2\text{S}_8 \]

MONOCLINIC

Properties: C – black-gray; S – red; L – metallic to adamantine; D – opaque; DE – 5.0; H – 2; CL – perfect; M – acicular crystals, columnar and fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in low-temperature veins, associated with cinabar, stibnite, getchellite and other minerals. The best specimens with prismatic crystals up to 50 mm (2 in) long are known from Khaidarkan, smaller crystals only found from Kadambzhai, Kyrgyzstan. It is also described from the La Cruz mine, Huizhuo, Guerero, Mexico and from the Matsuo mine, Japan.

Livingstonite, 40 mm, Khaidarkan, Kyrgyzstan
Bournonite

\[\text{PbCuSbS}_3 \]

ORTHORHOMBIC

Properties: C – steel-gray to black; S – steel-gray to black; L – adamantine to dull; D – opaque; DE – 5.8; H – 2.5-3; CL – imperfect; F – conchoidal to uneven; M – short prismatic to tabular crystals, often striated, granular, massive.

Origin and occurrence: Hydrothermal in medium-temperature ore deposits, together with galena, tetrahedrite, pyrite, siderite and other minerals. The finest crystals, complex twins called cogwheel ore, over 50 mm (2 in) across come from the Herodsfoot mine near Liskeard, Cornwall, UK. Tabular crystals up to 40 mm (1 3/8 in) across found in siderite cavities in Pilbram, Czech Republic; large prismatic and tabular crystals known from Neudorf, Germany. Smaller crystals common in Cavnic and Bâa Spiro, Romania. Crystals, up to 100 mm (4 in) across, occurred in Machacamarca, Bolivia. Crystals up to 40 mm (1 3/8 in) come from Huancaevica, Peru. Crystals up to 100 mm (4 in) across reported from the Les Malines mine, France. Crystals up to 20 mm (25/32 in) across found at Chenzhou, Hunan province, China. Application: Pb, Cu and Sb ore.

Aikinite

\[\text{PbCuBiS}_3 \]

ORTHORHOMBIC

Properties: C – black-gray, tarnishing brown; S – gray-black; L – metallic; D – opaque; DE – 7.3; H –

Aikinite, 2 mm xx, Rudajany, Slovakia
Andorite

PbAgSbS_6

Orthorhombic

Properties: C – dark steel-gray, tarnishing to yellow and iridescent; S – black; L – metallic; D – opaque; DE – 5.4; H – 3-3.5; CL – none; F – conchoidal; M – prismatic and tabular striated crystals, massive.

Origin and occurrence: Hydrothermal in ore deposits, together with cassiterite, jenestonite, stannite and other minerals. The world’s best specimens come from the Itos and San José mines in Oruro and the Tatali mine in Potosí, Bolivia, where it forms crystals up to 30 mm (1½ in) across. Thin tabular crystals are known from Baia Sprie, Romania, and from the Keyser mine, Nevada, USA. Needles up to 10 mm (¼ in) long occurred in Třebško, Czech Republic.

Application: rudn Ag.

Andorite, 45 mm, Oruro, Bolivia

Betekhinite

Cu_10(Fe,Pb)SbS_6

Orthorhombic

Properties: C – black; S – black; L – metallic; D – opaque; DE – 6.1; H – 3-3.5; CL – good; M – acicular crystals, granular.

Origin and occurrence: Hydrothermal in ore deposits. The best specimens come from Dzhezkazgan as clusters of acicular crystals up to 70 mm (2¾ in) long, associated with bornite, chalcocite, djurleite and other minerals. Rich specimens found in Kipushi, Shaba, Zaire. Granular aggregates fairly common in calcite veinlets, cross-cutting Cu-bearing shales near Eisleben, Mansfeld, Germany.

Betekhinite, 10 mm xx, Dzhezkazgan, Kazakhstan

2-2.5; CL – imperfect; F – uneven; M – prismatic to acicular, striated crystals, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with gold, pyrite, galena, tenanthite and other minerals. It is common in quartz veins with gold in Berezhinov, Ural Mountains, Russia, where crystals up to 30 mm (1½ in) long were found; fine crystals come also from La Gardette, Bourg d’Oisans, France. Grains up to 50 mm (2 in) across occurred in the Outlaw mine, Nevada, USA. It is also known in metamorphic veins in Val d’Anniviers, Switzerland.
Freieslebenite
Ag$_2$PbSb$_3$S$_7$

MONOCLINIC

Properties: C – light steel-gray, lead-gray to silver-white; S – light steel-gray, lead-gray to silver-white; L – metallic; D – opaque; DE – 6.2; H – 2-2.5; CL – imperfect; F – conchoideal to uneven; M – prismatic, striated crystals.

Origin and occurrence: Hydrothermal in ore deposits, associated with acanthite, pyrrhotite, silver, galena, siderite, and anorthite. Crystals up to 20 mm (7/8 in) across come from the Santa Cecilia, Guadalajara, Spain; Freiberg, Germany; Ouro, Bolivia and from the Treasury Lode, Colorado, USA.

Diaphorite
Pb$_2$Ag$_3$Sb$_3$S$_7$

MONOCLINIC

Properties: C – steel-gray; S – steel-gray; L – metallic; D – opaque; DE – 6.0; H – 2.5-3; CL – none; F – conchoideal to uneven; M – prismatic striated crystals.

Origin and occurrence: Hydrothermal in medium-temperature ore veins, associated with galena, Saurisite, 5 mm xx, Bienna, Switzerland.
sphalerite, pyrrhotite, pyrite and other minerals. Beautiful striated crystals up to 10 mm (½ in) come from the cavities of quartz veins in Peibram; rare small crystals, several mm across found in the cavities of quartz veins in the St. Antoni de Pada gallery in Ktna Hora, Czech Republic. Complicated combinations of crystals were described from Branskendorf, Germany. Crystals up to 80 mm (3½ in) long occurred in Hiedelbach, Guadalajara, Spain. It is also reported from Catorce, San Luis Potosí, Mexico.

Sartorite

\[\text{PbAs}_2 \text{S}_4 \]

MONOCLINIC

Properties: C – dark lead-gray; S – chocolate-brown; L – metallic; D – opaque; DE – 5.1; H – 3; CL – good; F – conchoidal; M – prismatic striated crystals.

Origin and occurrence: Hydrothermal in dolomite, associated with tenamnite, dufrénoyite, pyrite and realgar. The best crystals up to 100 mm (4 in) long come from Lengenbach, Binntal, Switzerland. It was also found in the Zuni mine, Colorado, USA.

Baumhauerite

\[\text{Pb}_{2} \text{As}_{3}\text{S}_9 \]

TRICLINIC

Properties: C – lead- to steel-gray, tarnishing iridescent; S – chocolate-brown; L – metallic; D – opaque; DE – 5.4; H – 3; CL – perfect; F – conchoidal; M – tabular to short prismatic striated crystals, granular.

Origin and occurrence: Hydrothermal, associated with realgar and other sulfosalts. The best crystals up to 25 mm (1 in) across come from Lengenbach, Binntal, Switzerland. Massive aggregates were found in Hierrolo, Thunder Bay, Ontario, Canada and Sterling Hill, New Jersey, USA.

Rathite

\[\text{Pb}_2 \text{Ti}_2 \text{As}_5 \text{S}_{10} \]

MONOCLINIC

Properties: C – lead-gray, tarnishing iridescent; S – chocolate-brown; L – metallic; D – opaque; DE – 5.3; H – 3; CL – perfect; F – conchoidal; M – prismatic striated crystals.

Origin and occurrence: Hydrothermal, associated with other Pb-Ti-As-S minerals. Crystals up to 10 mm (0½ in) across come from dolomite in Lengenbach, Binntal, Switzerland.

Dufrenoyite

\[\text{Pb}_{2} \text{As}_{2}\text{S}_5 \]

MONOCLINIC

Properties: C – lead- to steel-gray; S – red-brown to chocolate-brown; L – metallic; D – opaque; DE – 5.0; H – 3; CL – perfect; F – conchoidal; M – elongated striated tabular crystals.

Origin and occurrence: Hydrothermal low-temperature mineral, associated with rathite, sartorite, baumhauerite and realgar. Crystals up to 25 mm (1 in) across come from dolomite in Lengenbach, Binntal, Switzerland. Also found in Batopilas, Chihuahua, Mexico.

Dufrenoyite, 10 mm x, Binntal, Switzerland
Jordanite
\[\text{Pb}_{14} (\text{As, Sb})_2 \text{S}_{23} \]

MONOCLINIC

Properties: C – lead-gray, tarnishing iridescent; S – black; L – metallic; D – opaque; DE = 6.4, H = 3, CL – perfect; F – conchoidal; M – tabular crystals, botryoidal aggregates.

Geocronite, 70 mm, Příbram, Czech Republic

Origin and occurrence: Hydrothermal in low-temperature ore veins, also in metamorphic dolomites, together with tennantite, sphalerite, galena, dolomite and other minerals. The most famous crystals up to 50 mm (2 in) across come from cavities in dolomite in Lengenbach, Binnal, Switzerland. Tabular crystals occurred also in Sărățeni, Romania. Botryoidal aggregates, growing on barite crystals, were described from the Yunosawa mine, Japan.

Geocronite, 70 mm, Příbram, Czech Republic

Geocronite
\[\text{Pb}_{14} (\text{Sb, As})_2 \text{S}_{23} \]

MONOCLINIC

Properties: C – light lead-gray; S – light lead-gray to gray-blue; L – metallic; D – opaque; DE = 6.4, H = 2.5; CL – good; F – uneven; M – tabular crystals, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with galena, pyrite, tetrahedrite, barite, fluorite and quartz. Crystals, up to 80 mm (3 1/4 in) across, come from Pietrasanta, Italy. Crystals up to 90 mm (3 1/2 in) found in Virgen da Lapa, Brazil. Tabular crystals up to 40 mm (1 1/2 in) across occurred in the Kilbricken mine, Ireland. Massive aggregates are known from Příbram, Czech Republic.
Zinkenite

\[\text{Pb}_2\text{Sb}_2\text{S}_4 \]

HEXAGONAL

Properties: C – steel-gray, tarnishing iridescent; S – steel-gray; L – metallic; D – opaque; DE – 5.3; H – 3-3.5; CL – imperfect; F – uneven; M – thin prismatic striated crystals, radial to felt-like aggregates, massive.

Origin and occurrence: Hydrothermal in ore veins, associated with stibnite, jamesonite, boulangereite, bournonite, stannite and other minerals. Crystals up to 50 mm (2 in) across are known from the Itos and San José mines in Oruro, Bolivia. It was also found in Wolfsberg, Germany; St. Ponts, France; Săcărimb and Baia Sprie, Romania.

Jamesonite

\[\text{Pb}_4\text{FeSb}_6\text{S}_14 \]

MONOCLINIC

Properties: C – gray-black, tarnishing iridescent; S – gray-black; L – metallic; D – opaque, DE – 5.8; H – 2.5; CL – good; F – uneven; M – acicular crystals, fibrous and felt-like aggregates, massive.

Origin and occurrence: Hydrothermal in medium- and low-temperature base metal ore veins, associated with other Pb-Si-O-Sb minerals, pyrite, sphalerite, galena, tetrahedrite, quartz and other minerals. Needles up to 80 mm (3½ in) long occur in many localities in Bolivia (Itos; Bolivia mine, Poopó, San José and Itos mines, Oruro). It also comes from Wolfsberg and Freiberg, Germany; Nleh Slana, Slovakia and Sombrerete, Zacatecas, Mexico.

Application: Pb and Sb ore.
Semseyite

\[\text{Pb}_2\text{Sb}_2\text{S}_5 \]

MONOCLINIC

Properties: C – gray to black; S – black; L – metallic; D – opaque; DE – 6.1; H – 2.5; CL – perfect; M – tabular and prismatic crystals and their rosette-like aggregates.

Origin and occurrence: Hydrothermal in low- and medium-temperature ore veins, associated with jamesonite, bournonite, zinkenite, sphalerite and other minerals. Fine rosette-like aggregates of crystals over 10 mm (4 in) across come from Baia Sprie, Herja and Redna, Romania. It was also found in the San José mine, Oruro, Bolivia; Wolsfberg, Germany and Huancavelica, Peru.

Cosalite

\[\text{Pb}_2\text{Bi}_2\text{S}_5 \]

ORTHORHOMBIC

Properties: C – lead-gray; S – brownish; L – metallic to silty; D – opaque; DE – 6.2; H – 2.5-3; CL – good; M – acicular striated crystals, fibrous and felt-like aggregates.

Origin and occurrence: Hydrothermal in low- and medium-temperature ore veins, together with other Pb sulfosalts, galena, sphalerite and other minerals. Fine needles over 100 mm (4 in) long come from cavities in quartz in Pilbram, Czech Republic. It is common in the Coeur d’Alene district, Idaho, USA. Acicular crystals up to 30 cm (12 in) long were found in Trepca, Serbia and Leadville, Colorado, USA. It is also known from Wolsberg, Germany and Bolivia (Colquechaca, Huannuni, Isca-Isca).
pyrite, pyrite, cobaltite and other minerals. Elongated crystals are known from Crodo, Italy. Fine needles up to 40 mm (1½ in) long, included in quartz crystals, were found in Kara-Oba, Kazakhstan. It occurs also in Au deposits (Homestake mine, South Dakota, USA) or in skarns (Baița Bihorului, Romania).

Kobellite

Pb₁₂Cu₁₂(Bl,Sn)₃S₃S₈

Orthorhombic

Properties: C – black-gray to steel-gray; S – black; L – metallic; D – opaque; DE – 6.5; H – 2.5-3; CL – good; M – fibrous aggregates, granular, massive.

Origin and occurrence: Hydrothermal in high-temperature veins and pegmatites, together with cobaltite, arsenopyrite, chalcopyrite and other minerals. It is known from a sulfide rich pegmatite in the Superior Stone quarry, North Carolina, USA. Massive aggregates are common in Jeddovec, Slovakia. It was originally described from the Hvena mine near Äkersund, Sweden.
Realgar
As

MONOCLINIC

Properties: C – red to orange-yellow; S – orange-red to red; L – resinous to greasy; D – transparent to translucent; DE – 3.6; H – 1.5-2; CL – good; F – conchoidal; M – prismatic striated crystals, granular, massive.

Orpiment
As₂S₃

MONOCLINIC

Properties: C – lemon-yellow to bronze-yellow; S – light lemon-yellow; L – resinous to pearly; D – transparent to translucent; DE – 3.5; H – 1.5-2; CL – perfect; M – prismatic crystals, foliated and fibrous aggregates.

Origin and occurrence: Hydrothermal in low-temperature veins, together with realgar, stibnite, calcite etc., also from hot springs and flamaroles. It is also a common product of realgar oxidation. The best crystals up
to 100 mm (4 in) long come from Shimen, Hunan, China. Fine cleavable lamellae occur in Lukhumi, Georgia and Men-Kyule, Yakutia, Russia. Crystals up to 80 mm (3 1/4 in) across found in the La Libertad mine, Quiruvilca and Huayllapan, Ancash, Peru. Crystals up to 80 mm (3 1/4 in) long described from the Getchell mine, Nevada, USA. Fine specimens are also known from Allechar, Macedonia and Khaidarkan, Kyrgyzstan.

Getchellite

AsSbS$_3$

MONOCLINIC

Properties: C – dark red, tarnishing green and iridescent; S – orange-red; L – pearly to glassy, resinous; D – transparent; DE – 4.0; H – 1.5-2; CL – perfect; F – splintery; M – imperfect curved crystals, massive.

Origin and occurrence: Hydrothermal in low-temperature ore deposits, associated with orpiment, realgar, stibnite, cinnabar and other minerals. It was described from the Getchell mine, Nevada, USA. Beautiful specimens with grains up to several cm across come from Khaidarkan, Kyrgyzstan. It is also known from Zarehshan, Kurdistan, Iran.

Orpiment, 35 mm, Huayllapan, Peru
3. Halides

Fluellite
\[\text{Al}_2 \left(\text{PO}_4 \right) \text{F}_2 (\text{OH}) \cdot 7 \text{H}_2 \text{O} \]

Orthorhombic

Properties: C – colorless, white, yellow; S – white; L – vitreous; D – transparent; DE – 2.2; H – 3; CL – imperfect; M – dipyrismal crystals.

Origin and occurrence: Hydrothermal in greisens, also secondary as a result of triphite alteration. Crystal druses over 10 mm (⅜ in) in size come from Horní Slavkov, Czech Republic. Very similar specimens were found in Stenna Gwyn near St. Austell, Cornwall, UK. Also found in pegmatites in Kynzviart, Czech Republic and in Hagendorf, Germany as a product of triphite alteration.

Cryolite
\[\text{Na}_3 \text{AlF}_6 \]

Monoclinic

Properties: C – colorless, white, purple, brownish; S – white; L – greasy to pearly; D – transparent to translucent; DE – 3; H – 2.5; CL – none; F – uneven; M – pseudo-cubic crystals, massive.

Fluellite, 10 mm x, Horní Slavkov, Czech Republic.

Cryolite, 35 mm, Ivigtut, Greenland.

Fluorite, 67 mm, Berbes, Spain

Cryolite, 33 mm, Ivigtut, Greenland.

Origin and occurrence: Characteristic mineral of the cryolite pegmatites. Crystals up to 30 mm (1½ in) in size were found in Ivigtut, Greenland, where it was mined as the Al ore for more than 100 years. It was associated with other alumino-fluorides, sphalerite, cassiterite, ferrocolumbite and other minerals. It is also known from the Francequ quarry in Montreal, Quebec, Canada in crystals up to 10 mm (⅜ in) across. Massive cryolite occurs in Miass, Ural Mountains, Russia and in St. Peter’s Dorn, Pikes Peak batholith, Colorado, USA.

Application: it was an important Al ore.
Creedite

*C₃A₂(SO₄)(F,OH)₁₀·6 H₂O

ORTHORHOMBIC

Properties: C – colorless, white, purple; S – white; L – vitreous; D – transparent; DE – 2.7; H – 4; CL – perfect; F – conchoidal; M – short prismatic to acicular crystals, granular, massive.

Origin and occurrence: Hydrothermal, associated with fluorite and barite. Purple crystals, several cm long, come from Wagon Wheel Gap near Creede, Colorado, USA. Nice druses were found in Santa Eulalia, Chihuahua, Mexico. The best creedite specimens with purple crystals up to 30 mm (1.18 in) long were recently found in Aisha-tau, Kazakhstan.

Atacamite

*Cu₂Cl(OH)₃

ORTHORHOMBIC

Properties: C – emerald-green, black-green; S – green; L – vitreous; D – translucent; DE – 3.8; H – 3-3.5; CL – perfect; F – conchoidal; M – prismatic crystals, columnar, radial and lamellar aggregates, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits in the arid climate, associated with other Cu minerals. Crystals up to 10 mm (0.39 in) long were described from Burra district, Southern Australia, Australia. Crystals up to 10 mm (0.39 in) long were described from Tsumeb, Namibia; also from Bisbee, Arizona, USA. Rich aggregates of acicular crystals occur in many localities in Atacama province, Chile (Copiapó, Remolinos).

Carnallite

*KMgCl₃·6 H₂O

ORTHORHOMBIC

Properties: C – colorless, white, yellowish, red, blue; S – white; L – vitreous to greasy; DE – 1.6; H – 1-2; CL – none; F – conchoidal; M – pseudo-hexagonal pyramidal and tabular crystals, granular; LUSTRIOUS; R – decomposes under wet conditions.

Application: the most important potassium salt, used as fertilizer and for production of metal Mg.
Boleite

$\text{Pb}_2\text{As}_3\text{Cu}_{24}\text{Cl}_{62}(\text{OH})_{48}$

CUBIC

Properties: C – blue; S – blue; L – pearly; D – translucent; DE – 5.1; H – 3-3.5; CL – perfect; M – cubic crystals; R – soluble in water.

Origin and occurrence: Secondary, originated in the oxidation zone of Cu deposits in the arid climate. By far the best specimens were found in Boléo, Baja California, Mexico, where cubes up to 23 mm (1 in) in size were found. It is also known from Phillipsburg, Montana, USA and Chialacollo, Chile.

Boleite, 65 mm, Santa Rosalia, Mexico
Bolep. Iodargyrte

Iodargyrte

\[\beta - AgI \]

HEXAGONAL

Properties:
- C – colorless, tarnishes to yellow; S – yellow;
- L – adamantine; D – transparent to translucent; DE – 5.7; H – 1-1.5; CL – perfect; F – conchoideal; M – prismatic to tabular crystals, granular, massive.

Origin and occurrence: Secondary product by oxidation of Ag ores, with other Ag minerals. Common greenish crystals over 10 mm (\(\frac{3}{8}\) in) in size occur in Broken Hill, New South Wales, Australia. Also found in Vranice, Czech Republic; Tonopah, Nevada, USA; Chañarcillo and Copiapó, Chile.

Villiaumite

\[NaF \]

CUBIC

Properties:
- C – dark red; S – white; L – vitreous;
- D – transparent to translucent; DE – 2.8; H – 2-2.5; CL – perfect; M – small crystals, granular, massive; R – soluble in water.

Origin and occurrence: Late mineral in cavities in alkaline igneous rocks (nepheline syenites). Crystals, several cm long, are known from the Rasvumchorr Mountain, Khibiny massif, Kola Peninsula, Russia; only slightly smaller crystals come from Ment St.-Hilaire, Quebec, Canada and Illimatsuq, Greenland.
Halite

NaCl

CUBIC

Properties: C – colorless, gray, white, red, blue; S – white; L – vitreous; D {2}; H – 2; CL – perfect; F – conchoidal; M – cubic crystals, granular, massive; R – soluble in water.

Origin and occurrence: Product of high-temperature fumaroles (Etna, Mt. Vesuvius, Italy); mainly sedimentary, as a result of evaporation of sea water, associated with sylvite, carnallite and other minerals. Very fine cubes over 10 mm (⅜ in) are known from Wieliczka and Bochnia, Poland. Blue cleavable aggregates are found in Bernburg, Germany. Salt deposits in Austria (Hallstatt, Hallein) are also important. Huge halite deposits, associated with potassium salts are mined in the vicinity of Stassfurt, Germany. Fine skeletal crystals are known from many localities in California, USA.

Application: Food and chemical industries.
Sylvite

KCl

CUBIC

Properties: C – white, gray, blue, red; S – white; L – vitreous; D – transparent; DE – 2; H – 2; CL – perfect; F – uneven; M – cubic crystals and their combinations; granular, massive; R – soluble in water.

Origin and occurrence: Sedimentary as a result of evaporation of sea water, together with halite, carnallite and other minerals. Nice cubes up to 30 mm (2 in) come from Stassfurt; it forms stalactites in Walthingen, Germany. Crystals are also known from Kalush, Ukraine and from Salton Sea, California, USA, where it occurs as octahedra on halite crystals.

Application: chemical industry.

Sal ammoniac

NH₄Cl

CUBIC

Properties: C – colorless, white, gray, yellow, brown; S – white; L – vitreous; D – transparent; DE – 1.5; H – 1-2; CL – imperfect; F – conchooidal; M – combinations of cubic crystals, dendritic and skeletal aggregates; earthy.

Origin and occurrence: Typical mineral for fumaroles and burning coal dumps, associated with sulfur and other minerals. Complicated crystals are known from Mt. Vesuvius, Etna and Vulcano, Italy. Crystals over 10 mm (¾ in) in size occurred on burning coal dumps near Kladno, Czech Republic; similar from localities in Eastern Pennsylvania, USA and near Ste-Etienne, France.

Calomel

HgCl

TETRAGONAL

Properties: C – colorless, white, gray, brown, it darkens on air; S – white; L – adamantine; D – transparent to translucent; DE – 7.2; H – 1.5; CL – good; F – conchooidal; M – tabular to pyramidal crystals, coatings, earthy; LU – dark red.

Origin and occurrence: Secondary as a result of alteration of Hg minerals, associated with cinnabar, mercury and other minerals. Crystals were found in Moschellandsberg, Germany; Avala, Serbia.
Fluorite
CaF₂

CUBIC

Properties: C – colorless, white, yellow, red, green, blue, purple, brown, black; S – colorless; L – vitreous; D – transparent to translucent, opaque; DE – 3.2; H – 4; CL – perfect; F – conchooidal to splintery; M – combinations of cubic crystals, granular, massive; LU – blue, blue-green, also phosphorescent.

Origin and occurrence: Rare magmatic, mainly hydrothermal and metasomatic. Associations are very diverse, depending on a type of the deposit, in which it occurs. Beautiful crystals are known from many localities all over the world. Pink octahedra, several cm in size, are known from pegmatites in Nagar, Pakistan. Nice crystals were also found in greisens in Cornwall, UK (Wheat Mary mine) and from Horni Slivkov, Czech Republic. Beautiful green cubes up to 20 cm across and colorless cubes up to 10 mm (¾ in) across from Dalnegorsk, Russia are of hydrothermal origin. Famous green and purple crystals come from Alston Moor and Weardale, England, UK. Nice pink octahedra up to 30 mm (1¼ in) occurred in Huancaya, Peru. Beautiful yellow crystals up to 50 mm (2 in) associated with barite, are known from Halberg and Annaberg, Germany. Purple complex combinations of crystals come from La Collada, Spain. Mainly purple cubes up to 10 mm (¾ in) occurred in Rosiclare, Illinois; in association with honey-yellow calcite crystals are known from the Elmwood mine, Tennessee; similar occurrences are also in several localities in Kentucky, USA. The most valuable fluorite specimens are pink octahedra up to 150 mm (6 in) from Göschenen, Switzerland; Mont Blanc massif, France and other Alpine localities.

Application: metallurgy, chemical industry, special optics.
4. Oxides

Cuprite
CupO

Cubic

Varieties: chalcocitrine (acicular to hair-like crystals)
Properties: C – red; S – red; L – adamantine to submetallic; D – transparent to translucent; DE – 5.8-6.2;
H – 3.5-4; CL – imperfect; F – conchoidal to uneven;
M – combinations of cubic crystals, hair-like aggregates, granular, massive.

Origin and occurrence: Secondary, as a result of the oxidation of Cu sulfides. Crystals up to 150 mm (6 in)
in size, covered with malachite, occur in Onganja, Namibia. Shiny octahedra, up to 40 mm (1 1/2 in) in size,
come from the Mashamba West mine, Zaire. Acicular and fibrous crystals of the chalcocitrine variety were
found in Bisbee, Arizona, USA. Combinations of cubic crystals, covered with malachite, are known
from Chessy near Lyon, France. Crystals up to 30 mm (1 1/2 in) across are reported from Tsumeb, Namibia.

Application: important Cu ore.

Zincite
ZnO

Hexagonal

Properties: C – yellow, orange, red; S – orange-yellow; L – adamantine; D – transparent to trans-
lucent; DE – 5.7; H – 4.5-5; CL – perfect; F – conchoidal; M – pyramidal crystals, granular, massive.

Origin and occurrence: Metamorphic, associated with willemite and franklinite. It forms very rare
crystals up to 40 mm (1 1/4 in) in size in the metamorphosed Zn deposits in Franklin and Sterling Hill,
New Jersey, USA. It is mostly granular and massive. Zincite crystals and aggregates of vitreous luster
from Poland, which are offered at the mineral shows, are not of a natural origin, there are smelter products.

Amethyst, 122 mm, Guerrero, Mexico
Cuprite, 18 mm x, Mashamba West, Zaire

Zincite, 11 mm x, Franklin, U.S.A.

Chalceocitrine, 50 mm, Bisbee, U.S.A.
Tenorite
CuO

MONOCLINIC

Properties: C – steel-gray to black; S – gray; L – metallic; D – opaque; DE – 6.5; H – 3.5; CL – imperfect; F – uneven to conchoidal; M – thin tabular to scaly crystals, earthy, massive.

Origin and occurrence: Secondary, in the oxidation zone of Cu deposits, together with other Cu supergene minerals. It was common in Cu deposits in the Keweenaw Peninsula, Michigan, USA. It was mined as Cu ore in Bisbee, Globe and Morenci, Arizona, USA. Thin tabular crystals are known from Tsumeb, Namibia.

Spinel
MgAl₂O₄

CUBIC

Varieties: pleonast (black)

Properties: C – pink, red, green, blue, brown, black; S – white; L – vitreous to dull; D – transparent to opaque; DE – 3.6; H – 7.5-8; CL – imperfect; F – conchoidal to uneven; M – octahedral crystals, granular, massive.

Origin and occurrence: Magmatic, metamorphic, also in placer, associated with corundum, stilpnomelane and other minerals. Large pleonast crystals reaching up to 150 mm (6 in) were found in the Aldan massif, Yakutia.

Gahnite
ZnAl₂O₄

CUBIC

Properties: C – black-green, black; S – gray; L – vitreous to greasy; D – translucent to opaque; DE –
4.4-4.6; H - 7.5-8; CL - imperfect; F - conchoidal to uneven; M - octahedral crystals, granular.

Origin and occurrence: Magmatic and metamorphic, associated with wolframite, chalcopyrite and other minerals. Crystals up to 120 mm (4⅔ in) in size come from Franklin and Sterling Hill, New Jersey, USA. Crystals from Broken Hill, New South Wales, Australia reached up to 30 mm (1⅓ in). Blue-green crystals were found in Rowe, Massachusetts, USA. Cuttable blue crystals occur near Gidan Wayo, Nigeria.

Magnetite

\[\text{Fe}^{2+}\text{Fe}^{3+}_2\text{O}_4 \]

CUBIC

Properties: C - black; S - black; L - metallic; D - opaque; DE - 5.2; H - 5.5-6.5; CL - none; F - uneven to conchoidal; M - octahedral crystals, granular, massive.

Origin and occurrence: Magmatic, hydrothermal and metamorphic, rare sedimentary. Parageneses differ according to the origin. Fine crystals up to 170 mm (6⅔ in) in size, come from Traversella, Italy. A crystal 25 cm (9⅓ in) in size was found in Vastforsa, Sweden. Fine crystals up to 40 mm (1½ in) occur in Dashkesan, Azerbaijan, where it is associated with andradite, epidote and apatite. Beautiful shiny octahedra up to 40 mm (1½ in) are known from Alpa Larcheitlini, Binnatal, Switzerland. Rare cubes up to 20 mm (¾ in) on edge come from the ZCA No.4 mine, Balmat, New York, USA. Magnetite crystals reaching up to 10 cm were found in pegmatites in Jaguaçu, Minas Gerais, Brazil. Crystals up to 20 cm (7⅔ in) in size reported from the Gudjard complex, Greenland. Crystals up to 50 mm (2 in) were lately found in Kovodr, Kola Peninsula, Russia.

Application: Fe ore.
Franklinite. 30 mm, Sterling Hill, U.S.A.

Franklinite

\[(Zn,Mn^{2+},Fe^{2+},(Fe^{3+},Mn^{2+})_2)O_4\]

CUBIC

Properties: C – black; S – dark brown; L – metallic; D – opaque; DE – 5.0-6.5; H – 5-6; CL – none; F – uneven; M – octahedral crystals, granular, massive.

Origin and occurrence: Metamorphic, associated with willemite, zincte and other minerals. The only localities, where it is common and occurs in very large accumulations, are Franklin and Sterling Hill, New Jersey, USA. Crystals up to 170 mm (6.69 in)

Chromite, 87 mm, Finland

Chromite

\[FeCr_2O_4\]

CUBIC

Properties: C – black; S – brown; L – metallic; D – opaque; DE – 4.5-4.8; H – 5; CL – none; F – uneven; M – octahedral crystals, granular, massive.

Origin and occurrence: Magmatic, together with magnetite, uvarovite and other minerals. Rare crystals reaching up to 10 mm (3/8 in) are known from Uzun Damar, Turkey. It occurs mostly massive, like in deposits in Bushveld, South Africa; in Sarany, Urals Mountains, Russia and in Guleman, Turkey.

Application: Zn ore.

Hausmannite

\[Mn^{2+}Mn^{3+}_2O_4\]

TETRAGONAL

Properties: C – black; S – brown; L – submetallic; D – opaque; DE – 4.8; H – 5-5.5; CL – perfect; F – uneven; M – pseudo-octahedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in high-temperature Mn deposits, also as a product of the contact metamorphism. The best specimens with crystals up to 30 mm (1.18 in) in size come from the N’Chwaning mine, Kuruman, South Africa. Smaller crystals were found in Ilfeld and Ilmenau, Germany. It also occurred as fine crystals in Langban and Jakobsberg, Sweden.

Mironen, 50 mm, Broken Hill, Australia
Minium
\(\text{Pb}_2\text{Pb}^{4+}\text{O}_4 \)

TETRAGONAL

Properties: C - red; S - orange-yellow; L - dull to greasy; D - opaque; DE - 8.9; H - 2.5; CL - perfect;

M - earthy and pulverulent aggregates, massive.

Origin and occurrence: Secondary mineral, as a result of the galena oxidation. It occurs in Langban, Sweden; in Anarak, Iran; in Leadhills, Scotland, and in Broken Hill, New South Wales, Australia.

Hausmannite, 42 mm, Kurnum, South Africa
Chryzoberyl
BeAl₂O₄

ORTHORHOMBIC

Varieties: alexandrite

Properties: C – yellow-green, yellow, blue-green, alexandrite is green in daylight, purple in artificial light; S – white; L – vitreous; D – transparent to translucent; DE – 3.8; H – 8.5; CL – good; F – conchoidal to uneven; M – thin to thick tabular crystals common cyclic twins.

Origin and occurrence: Mafic in pegmatites, prevailing as metamorphic, in association with schorl, phenakite and other minerals. Twins up to 22 cm (8½ in) occurred near Pancea, Espirito Santo, Brazil. Complicated twins up to 100 mm (4 in) in
size come from Ambatondrazaka and other localities in Madagascar. Tabular crystals several cm in size, embedded in the sillimanite rock, were found in Narłów, Poland. Fine alexandrite crystals up to 80 mm (3½ in) are known from Malyshevo, Ural mountains, Russia, together with emerald and phenakite. Alexandrite crystals reach up to 30 mm (1½ in) in Nyanda, Zimbabwe. German chrysoberyls, commonly with a cat's eye effect, come from the vicinity of Ratnapura, Sri Lanka.

Application: gemstone.

Valentinite

\(\text{Sb}_2\text{O}_3 \)

Orthorhombic

 Properties: C – colorless, white, brownish; S – white; L – adamantine; D – transparent to translucent; DE – 5.7-5.8; H – 2.5-3; CL – perfect; M – prismatic to tabular crystals, radial aggregates, massive.

Origin and occurrence: Secondary mineral, originated in the oxidation of stibnite. The best specimens with crystals up to 30 mm (1½ in) were found in Příbram, Czech Republic. Fine crystals come also from Bärensdorf, Germany. Crystals up to 20 mm (¾ in) long occur in Oruro, Bolivia. Beautiful radial aggregates up to 40 mm (1½ in) in diameter, associated with kermesite, are known from Pezinok and Perník, Slovakia. Pseudo-morphs after stibnite crystals up to 35 cm (13½ in) long, are reported from the Xinglanshan Mine, Lengshuijiang, China.

Senarmontite

\(\text{Sb}_2\text{O}_3 \)

Cubic

Properties: C – white, light gray; S – white; L – vitreous; D – transparent to translucent; DE – 3.9; H – 1.5; CL – good; F – conchoidal; M – octahedral crystals, crusts, coatings; R – soluble in water.

Senarmontite, 3 mm, Perník, Slovakia

Origin and occurrence: Secondary, produced by stibnite oxidation, with valentinite and corusite. The finest crystals up to 30 mm (1½ in) in size come from Djebel Hammamite, Algeria. Also occurred in Cetine, Italy and in Dúbrava, Slovakia.

Arsenolite

\(\text{As}_2\text{O}_3 \)

Cubic

Properties: C – white; S – white; L – vitreous; D – transparent to translucent; DE – 5.2-5.8; H – 2-2.5; CL – imperfect; F – uneven; M – octahedral crystals, granular, massive.

<image>

Arsenolite, 3 mm, Róczok, Hungary

Origin and occurrence: Secondary mineral, resulting from the oxidation of As ores. Poorly developed crystals several mm long, occur in Jáchymov, Czech Republic; in Johannegeorgenstadt and St. Andreasberg, Germany. Crystals up to 20 mm (¾ in) long originated during a mine fire in the White Caps mine, Nevada, USA.

Valentinite, 40 mm, Nicolet, Canada
Bixbyite
\((\text{Mn}^{3+}, \text{Fe}^{3+})_2\text{O}_3\)

Cubic

Properties: C – black; S – black; L – metallic to submetallic; D – opaque; DE – 5; H – 6-6.5; CLB imperfect; F – conchoidal to uneven; M – cubic crystals, also twins.

Origin and occurrence: Hydrothermal in rhyolite cavities and metamorphic. Cubes up to 12 mm (\(\frac{1}{2}\) in) are found together with topaz in Thomas Range, Utah, USA. Crystals up to 25 mm (1 in) occurred in the Postmasburg mine, South Africa. Crystals up to 80 mm (3\(\frac{1}{2}\) in) come from Ultevis, Sweden.

Corundum
\(\text{Al}_2\text{O}_3\)

Trigonal

Varieties: ruby, sapphire, leucosapphire, emery

Properties: C – colorless (leucosapphire), yellow, pink, red (ruby), blue (sapphire), purple, green

Ruby, 15 mm xx, Kola, Russia
gray; S – white; L – vitreous to adamantine; D – transparent to opaque; DE – 4.0-4.1; H – 9; CL – none; F – conchoidal to uneven; M – long prismatic to barrel-like crystals, pebbles; LU – rare dark red.

Origin and occurrence: Magmatic in andesites, pegmatites and basalts, metamorphic and in placers, in association with andalusite, topaz, spinel and other minerals. Crystals of common corundum weighed up to 30 kg (66 lb) near Bancroft, Ontario, Canada. A crystal, weighing 151 kg (333 lb 3 oz) was also found in the Letaba district, South Africa. Sapphire crystals weighing up to 20 kg (44 lb), come from the vicinity of Ratnapura and Rakwana, Sri Lanka. Fine sapphire crystals are also known from Kashmir, India. Rough gem sapphire is mined from the Yogo Gulch sediments in Montana, USA and from Anikia, Queensland, Australia. Fine blue crystals up to 50 mm (2 in) long, occur near Miassa, Ural mountains, Russia. Ruby is even much rarer variety of corundum. Its beautiful crystals up to 50 mm (2 in) long come from Jegdalek, Afghanistan, Mogok, Burma and from Lue Yen, Vietnam. Prismatic crystals of opaque ruby, up to 40 mm (1 3/16 in) in size were found in the Khit Island near Kola Peninsula, Russia. Ruby crystals up to 30 cm (12 in) in size embedded in green zoisite from the vicinity of Arusha, Tanzania are very decorative.

Application: emery as abrasive material, sapphire and ruby as gemstones.
Hematite

Fe₂O₃

TRIGONAL

Properties: C – red, gray, black; S – red; L – metallic, dull; D – opaque; Dₜ – 5.3; H – 6-6.5, earthy to 1; CL – none; F – uneven to conchoidal; M – thick to thin tabular crystals, massive, earthy.

Origin and occurrence: Magmatic, hydrothermal, Loparite-(Ce), 10 mm xx, Khibiny Massif, Kola, Russia

sedimentary, also metamorphic, parageneses vary according to the origin. Beautiful crystals up to 100 mm (4 in) in size come from Brumadinho, Bahia, Brazil. Crystals up to 30 cm (12 in), were found in the Wessels mine, Kuruman, South Africa. So-called iron roses reached up to 100 mm (4 in) near St. Gotthard, Switzerland. Fine crystals several cm in size, occurred in Rio Marina, Elba, Italy. Very fine tabular crystals reached up to 70 mm (2¾ in) in Nadir, Morocco. New finds of fine crystals up to 40 mm (1¾ in) in size were made in the Korshtunovskoye deposit, Russia. Fine botryoidal aggregates come from Hradiště and Horní Blatná, Czech Republic and from Botallack, Cornwall, UK. Sedimentary banded iron ores form huge deposits near Krivoy Rog, Ukraine or in the vicinity of Lake Superior (Mesabi Range, Minnesota; Marquette, Michigan, USA).

Application: important Fe ore.

Ilmenite

FeTiO₃

TRIGONAL

Properties: C – black; S – black; L – metallic to dull; D – opaque; Dₜ – 4.5-5; H – 5-6; CL – none; F – conchoidal to uneven; M – thick tabular crystals, granular, massive.

Origin and occurrence: Magmatic, metamorphic and in placer, associated with pyrrhotite, rutile, magnetite and other minerals. Crystals weighing up
to 30 kg (66 lb) were described from the Faraday mine near Bancroft, Ontario, Canada. Crystals up to 150 mm (6 in) in size occurred near Girardville, Quebec, Canada. Crystals also reached up to 100 mm (4 in) near Mias, Ural mountains, Russia. Crystals up to 120 mm (4 3/8 in), were found in Arendal and Kragerø, Norway. Crystal rosettes up to 10 mm (3/8 in) in size come from Madiranertal, Switzerland. It is also common in placer (Kamituga, Kivu, Zaire; Sri Lanka; Travancore, India; Madagascar etc.).

Perovskite

CaTiO₃

ORTHORHOMBIC

Properties: C – dark brown to black; S – colorless to gray; L – metallic to adamantine; D – opaque; DE – 4.0-4.3; H – 5-5.5-6; CL – imperfect; F – conchoidal to uneven; M – pseudo-cubic crystals, granular.

Origin and occurrence: Magmatic in basic and ultrabasic rocks, metamorphic, together with magnetite, zircon and other minerals. Fine pseudo-cubic crystals up to 40 mm (1 3/8 in) in size come from Zlatoust and Akhnatovsk, Ural mountains, Russia. It occurs as crystals up to 80 mm (3 1/4 in), associated with magnetite crystals in the Gardiner complex, Greenland. Crystals up to 40 mm (1 3/4 in) were found in Jacobina, Sao Paulo, Brazil. Crystals from Val Malenco, Italy, reached up to 20 mm (3/4 in). Crystals up to 20 mm (3/4 in) were lately found in Afrikanda, Kola Peninsula, Russia.

Loparite-(Ce)

(Ce₂₃Na₂Ca₂)TiO₃

ORTHORHOMBIC

Properties: C – black, S – dark red-brown, L – metallic; D – opaque; DE – 4.6-4.9; H – 5.5-6; M – pseudo-cubic crystals, granular; R – metamict.

Origin and occurrence: Magmatic in alkaline rocks, with lorenzenite, eudialyte and aegirine. Fine interpenetration twins up to 20 mm (0 3/4 in) in size come from Mount Nyokpokkoh, Kola Peninsula, Russia.

Perovskite

60 mm, Zlatoust, Russia

85
Sibiconite
$\text{Sb}^{5+}\text{Sb}^{3+}\text{O}_6(\text{OH})$

CUBIC

Properties:
- C – white, creamy, light yellow, brown;
- S – white; L – vitreous, greasy to dull; D – opaque;
- DE – 4.1-5.8; H – 3-6; M – pseudo-morphs after sibiconite crystals, earthy, massive.

Origin and occurrence: Secondary, as a result of the sibiconite oxidation, associated with valentinite and other minerals. Fine pseudo-morphs after sibiconite crystals up to 30 cm (12 in) long come from Catorce, San Luis Potosí, Mexico. Similar pseudo-morphs were also found in Kostainik, Serbia; in the Ichinokawa mine, Japan and in Pereta, Italy. Pseudo-morphs after sibiconite up to 20 cm (7.9 in) long occur also in Çakuroğlu, Turkey.

Bindheimite
$\text{Pb}_2\text{Sb}_2\text{O}_6(\text{OH})$

CUBIC

Properties:
- C – yellow, brown, gray; S – yellow, L – resinous, dull to earthy; D – translucent to opaque;
- DE – 4.6-5.6; H – 4-4.5; F – conchoideal to earthy;
- M – botryoidal, nodular and earthy crusts.

Origin and occurrence: Secondary in the oxidation zone of Pb-Sb deposits. Needles up to 10 mm (⅝ in) long come from Rudnik, Czech Republic. It is common in Broken Hill, New South Wales, Australia; in Bisbee, Arizona, USA and in Sidi-Amar Ben Salem, Tunisia. Lamellar pseudo-morphs up to several cm in size are known from Tsumeb, Namibia.

Pyrochlore
$(\text{Na},\text{Ca})_2\text{Nb}_2\text{O}_6(\text{OH},\text{F})$

CUBIC

Properties:
- C – yellow-brown, brown, black; S – brown; L – vitreous to greasy to dull; D – translucent to opaque, DE – 4.5; H – 5-5.5; CL – locally good; F – conchoideal to uneven; M – octahedral crystals, granular;
- R – radioactive (admixtures of U, Th).

Origin and occurrence: Magmatic in alkaline rocks, together with zircon, astrophyllite and other minerals. Fine brown shiny crystals up to 20 mm (⅝ in) in size come from the vicinity of Vishnevogorsk, Ural mountains, Russia. Crystals reaching 10 mm (⅝ in) occur in the Panda Hill deposit, Tanzania. Crystals are also known from Oka, Quebec, Canada. Single octahedra measuring 5 mm (⅝ in) were found in Luesha, Kivu, Zaire. Application: Nb, U and Th ore.

Miroline: 7 mm x, Gillette Quarry, U.S.A.
Betafite
(Ca,Na,U)₃(Ti, Nb, Ta)₂O₆(OH)

Cubic: 3

Properties: C – black, brown, yellow-brown; SB red-brown; L – resinous to greasy; D – translucent to opaque; DE – 4.2; H – 3.5-5.5; CL – none; F – conchoidal to uneven; M – octahedral crystals; R – radioactive, metamict.

Origin and occurrence: Magmatic in granitic pegmatites, rich in U, Th and rare earth elements, associated with beryl, euxenite-(Y) and other minerals.

Betafite, 20 mm, Silver Crater, Canada

The world's best specimens come from many localities in Madagascar (Betafeta, Ambatofotsikely etc.), where crystals up to 6 kg (13 lb 3 oz) were found. Beautiful specimens with crystals up to 100 mm (4 in) in size occur in the Silver Crater mine near Bancroft, Ontario, Canada. It is also known from Evje, Norway.

Mikrolite
(Na,Ca)₂Ta₂O₆(O,OH,F)

Cubic: 3

Properties: C – brown, yellow, green, reddish; S – white; L – vitreous to greasy, locally adamantine; D – translucent to opaque; DE – 5.4-6.4; H – 6-6.5; CL – locally good; F – conchoidal to uneven; M – octahedral crystals, granular, massive.

Origin and occurrence: Magmatic, typical for granitic pegmatites, together with manganese, vandallite, manganotantalite and other minerals. Octahedrons up to 65 mm (2 ½ in) in size occur in Ankola, Uganda. Crystals up to 30 mm (1 ½ in) in size come from Virgem da Lapa, Minas Gerais, Brazil. Crystals up to 75 mm (3 in) are reported from the Harding pegmatite, New Mexico, USA. It occurs in important accumulations near Wodgina, Western Australia.
Quartz
SiO₂

TRIGONAL

Varieties: rock crystal, citrine, smoky citrine, morion, amethyst, rose quartz, chrysoprase, jasper, chalcedony, agate, onyx, sardonyx, aventurine, heliotrope, tiger's eye, falcon's eye.

Properties: C — colorless (rock crystal), white, yellow (citrine), brown (smoky citrine), black (morion), purple (amethyst), pink (rose quartz), green (chrysoprase); D — these varieties are mostly transparent, often translucent; C — other varieties are mainly multi-colored, separate colors have different hues and the color is commonly caused by microscopic admixtures of other minerals; varieties: red, green, brown, yellow (jasper), banded with different colors (agate); white
and black bands (onyx), white and red-brown bands (sardonyx), green to red-brown with mica or hematite inclusions (auretovine), dark green with red spots (heliotrope), yellow-brown to black-brown, fibrous

Smoky quartz, 70 mm, Middle Mount Mt., U.S.A.

with silky luster (tiger’s eye), blue-gray to yellow-brown, fibrous with silky luster (falcon’s eye); S – white; L – vitreous, silky, dull; D – transparent to translucent, opaque; DE – 2.65, H – 7; CL – none; F –

Smoky quartz, 81 mm, Switzerland
conchoidal; M – long to short prismatic, acicular, dipyramidal to tabular crystals, fibrous, botryoidal and stalactitic aggregates and coatings, concretions, geodes, granular, massive.

Origin and occurrence: Magmatic in different types of rocks, mainly in granites, granitic pegmatites and volcanic rocks; metamorphic in different types of rocks, mainly in quartzites and mica schists; hydrothermal in different types of ore and Alpine-
type veins; secondary in the oxidation zone of ore deposits; also in different types of sedimentary rocks and in organic remains, also in placer deposits. Probably the most common mineral in the Earth's crust and the most important rock-forming mineral, as well.

Large crystals of rock quartz up to 7 m (23 ft) long come from pegmatites in the Betafo region in Madagascar and from the Alpine-type veins, like Uri, Grimsel and Furka, Switzerland; perfect crystals are known from the cracks in marbles near Carrara, Italy; it also occurs in the quartz veins in Herkimer, New York and Hot Springs, Arkansas, USA. Citrine occurs mainly in granitic pegmatites and large crystals come from Goias, Brazil; from Sluhy and Netia, Czech Republic; from Murzinka, Ural mountains, Russia. Smoky quartz originates mostly in granitic pegmatites, it also occurs in the
Alpine-type quartz veins and in cavities of volcanic rocks. Perfect crystals up to several meters long, come from many places, the largest crystal, weighing 77 tons, was found in Kazakhstan; perfect crystals occur in pegmatites in many places in Brazil; also in Korostenskiy massif, Ukraine; in the Pikes Peak batholith, Colorado, USA; in the Alpine-type veins in Maderanertal and in Grimsel, Switzerland. Morion crystals, commonly associated with smoky citrine, were found in quartz veins and in pegmatites.

Its crystals are known from St. Gotthard, Switzerland. Amethyst comes from quartz and ore veins, cavities in volcanic rocks, rare in the Alpine-type veins. Famous localities in volcanic rocks are in the states of Rio Grande do Sul and Minas Gerais, Brazil, doubly terminated crystal, weighing 5.5 tons, come from Diamantina. In Serra do Mar, Rio Grande do Sul, a cavity covered with amethyst.
crystals measuring 10 x 2 x 1 m (33 x 6 x 3 ft 3 in) was found; rich druses occur also in the ore veins in Porcara, Romania and Jolimex, Mexico. Rose quartz, forming masses up to several meters in granitic pegmatites in the Rose Quartz pit, Quad ville, Ontario, Canada; in Ambositra, Madagascar; crystals up to 10 mm (½ in) long growing on quartz crystals, come from Sapucaia, Minas Gerais, Brazil. Dark green chrysoprase veins up to 50 mm (2 in) thick are known from serpentinites in Sklary.
Poland. Jasper is known from volcanic rocks and their contacts with sediments, locally as a result of petrification of organic matter, mainly plants, it is also known from quartz veins. Rich aggregates occur in Idar-Oberstein, Germany; in Podkorenší region and in Králické hory mountains, Czech Republic; in the Petrified Forest National Park, Holbrook, Arizona, USA; in Ural mountains, Russia; in Kabumby, Madagascar. Chalcedony is mostly found in quartz veins and geodes in volcanic rocks, also in sediments.

Rich aggregates come from Idar-Oberstein, Germany; Jullimes, Mexico; many localities in Uruguay and Brazil; in Hüttensberg, Austria. Agates are known from cavities in volcanic rocks, rare in hydrothermal veins and in sediments. The most important localities are located in the southern part of Brazil in the state of Rio Grande do Sul; in Uruguay; also in Yemen; India; Mongolia; in several
localities in the USA; in Idar-Oberstein, Germany; in Podkladonosi, Czech Republic. The most famous localities of onyx and sardonyx are in Brazil and Uruguay.

Rich aggregates of aventurine come from Miass, Urals mountains, Russia; Mariazell, Austria; Belamy, India. Heliotrope occurs in Idar-Oberstein, Germany; Kozákov, Czech Republic and in Brazil.

Application: important raw material in glass industry, many colored varieties, like amethyst, smoky citrine, citrine, onyx, sardonyx, and heliotrope are cut as gemstones.

Aventurine, 50 mm, India

Tiger's eye, 50 mm, Griqualand, South Africa
Tridymite

Orthorhombic

Properties: C - colorless to white; S - white; L - vitreous; D - transparent; DE - 2.3; H - 6.5-7; CL - none; F - conchoidal; M - pseudo-hexagonal tabular crystals.

Origin and occurrence: Magmatic in cavities of young felsic volcanic rocks in association with cristobalite, chalcedony and other minerals. Pseudo-hexagonal tabular crystals up to 10 mm (½ in) in size, come from Veehe, Slovakia. Similar crystals found in Ichigayama, Japan. Crystals up to 10 mm (½ in) occur with topaz and other minerals in the Thorsas Range, Utah, USA.

Cristobalite

Tetragonal

Varieties: lasuulite (fibrous)

Properties: C - colorless to white; S - white; L - vitreous; D - translucent; DE - 2.3; H - 6.5; CL - none; M - pseudo-octahedral crystals, spherical and botryoidal aggregates.

Origin and occurrence: Magmatic in cavities of young felsic volcanic rocks, associated with tridymite. Crystals up to 4 mm (⅜ in) are known from Cerro San Cristobal, Hidalgo, Mexico. Crystals up to 2 mm (⅛ in) long occur in Veehe, Slovakia. Gray spherical aggregates come from Coso Hot Springs, California, USA.
Opal
$\text{SiO}_2 \cdot n \text{H}_2\text{O}$

AMORPHOUS

Varieties: hyalite, milky opal, fire opal, precious opal, wooden opal, geysirite.

Properties: C – colorless (hyalite), white (milky opal), red (fire opal), iridescence (precious opal),

brown, red-brown, yellow, green, gray, blue; S – white; L – vitreous, dull, earthy, waxy; D – transparent to translucent, opaque; DB – 2.1; H – 5.5–6.5; CL – none; F – conchoidal; M – botryoidal and stalactite aggregates, coatings, concretions, geodes, massive; LU – white, yellow-green, green.

Origin and occurrence: Hydrothermal in volcanic rocks and tuffs, also in various types of sedimentary rocks, in organic remnants and hot springs, rare in
Opal, 47 mm, Opal Butte, U.S.A.

Winged opal, 40 mm, Lubietová, Slovakia

hydrothermal veins; secondary in the weathering zone of different types of rocks. It is often associated with chalcedony. Coatings and stalactitic aggregates of hyalite up to 50 mm (2 in) thick known from Cerritos, Mexico; Valee, Czech Republic; Klamath Falls, Oregon, USA. Milky opal occurs in Dubník, Slovakia; Smrček, Czech Republic and many other localities. The most famous locality of fine opal is Zinapan, Hidalgo, Mexico. Precious opal comes from many localities in Australia, e.g. Baracoo River, Queensland; Coober Pedy, Southern Australia and White Cliffs, New South Wales, where it forms rich aggregates and veinlets in sandstones; classic locality is Dubník, Slovakia, where it occurs in
andesites and was probably mined already by ancient Romans. Beautiful precious opals come also from the Virgin Valley, Nevada, USA. Petrified trees, known as wooden opal, reach lengths of several meters in the Petrified Forest National Park, Holbrook, Arizona, USA; in Luhietová and Povražník, Slovakia. White geysirite is known mainly from the hot springs in Iceland; Yellowstone National Park, Wyoming, USA; New Zealand.

Application: colored opal varieties, primarily precious opal and fire opal are cut as gemstones, diatomite in chemical industry.

Precious opal, 55 mm, Opal Butte, U.S.A.
Melanophlogite, 80 mm, Fortunino, Italy

Melanophlogite

\[\text{SiO}_2 \]

CUBIC

- Properties: C – colorless, white; S – colorless; L – vitreous; D – transparent; DE – 2; H – 6.5; CL – none; M – pseudo-cubic crystals, spherical aggregates.
- Origin and occurrence: Hydrothermal, associated with sulfur and other minerals. It was originally described from the sulfur deposit in Racalmuto, Sicily, Italy as crystals up to 4 mm (\(\frac{1}{6}\) in) in size. It is also known from Chvaletice, Czech Republic, where it forms crystals up to 2 mm (\(\frac{1}{10}\) in) in size, in Alpine-type veins.

Rutile

\[\text{TiO}_2 \]

TETRAGONAL

- Properties: C – red-brown, red, brown, yellowish, black; S – light brown; L – metallic to adamantine; D – transparent to translucent; DE – 4.2; H – 6-6.5; CL – good; F – conchoidal to uneven; M – short prismatic, striated crystals, common twins, acicular crystals, granular, massive.
- Origin and occurrence: Magmatic and metamorphic, also in placers, together with monazite-(Ce), topaz, beryl, quartz and other minerals. The largest crystals up to 150 mm (6 in) in size come from the Mount Gravels, Georgia, USA. Beautiful epitaxial intergrowths with hematite occur in Cavradischacht, St. Gotthard, Switzerland and in Ibiara, Bahia, Brazil. It is common as inclusions in smoky citrine (quartz) crystals from Ibiara, Bahia and Itabira, Minas Gerais, Brazil. Kneé-like crystal twins up to 70 (2\(\frac{3}{4}\)) in cm in size were found in the vicinity of Golcav Jenikov and Sobeslav, Czech Republic.
- Application: Ti ore.

Rutile, 48 mm, Bahia, Brazil
Cassiterite

\[\text{SnO}_2 \]

TETRAGONAL

Properties: C – colorless, brown, black; S – white, grayish, brown; L – metallic to adamantine, dull; D – transparent to opaque; DE – 6.3–7.2; H – 6–7; CL – imperfect; F – conchoidal to uneven; M – dipyrudonal and short prismatic crystals, multiple twins, granular, massive.

Origin and occurrence: Magmatic in pegmatites, hydrothermal in high-temperature deposits, metamorphic and in placers, together with wolframite, topaz and other minerals. Crystal twins up to 150 mm (6 in) in size come from Horni Slavkov, Czech Republic. Crystals of similar size were also found in Panaqueira, Portugal. Fine twins up to 80 mm (3 1/3 in) were found in Rossarden, Tasmania, Australia. Crystals up to 70 mm (2 1/4 in) in size were found in Llallagua, colorless and transparent crystals up to 50 mm (2 in) in size in Viloco, Bolivia. Crystals up to 110 mm (4 1/4 in) occurred lately in Tenkerein, Chukotka, Russia. Crystals up to 130 mm (5 1/4 in) in size are known from pegmatites in Minas Gerais, Brazil (Fazenda do Funil). New finds of shiny crystals up to 100 mm (4 in) long were made in Hunan and Yunnan provinces, China.

Application: Sn ore.

Plattnerite

\[\text{PbO}_2 \]

TETRAGONAL

Properties: C – black; S – brown; L – metallic to adamantine; D – opaque; DE – 9.6; H – 5.5; CL – none; M – acicular crystals, botryoidal aggregates, massive.

Origin and occurrence: Secondary, as a result of the oxidation of other Pb minerals, together with pyromorphite, hemimorphite, and other minerals. Fine crystals come from Minas Ojuela, Mapimi, Durango, Mexico and from the Blanchard mine, New Mexico, USA. Botryoidal aggregates, weighing up to 100 kg (220 lb), were found in the Morning mine, Mullan, Idaho, USA.

Plattnerite, 130 mm, Mapimi, Mexico
Pyrolusite
MnO₂

TETRAGONAL

Properties: C – black, steel-gray; S – black; L – metallic to dull; D – opaque; DE – 5.1; H – 6-6.5; CL – perfect; F – uneven; M – prismatic to acicular striated crystals, stalactitic and botryoidal aggregates, granular, massive.

Origin and occurrence: Secondary, as a result of alteration of manganite and other primary Mn minerals, also hydrothermal. Crystals up to 20 mm (0.79 in) long come from Horni Blatná, Czech Republic. Radial shiny aggregates were found in Oheinsleek, Germany. It occurred in Ilfeld, Germany, too. Large sedimentary Mn deposits, where pyrolusite is the main constituent, are known near Chiaturi, Georgia or near Nikopol, Ukraine. Crystals are reported also from Tsauib, Namibia and Hotazel, South Africa.

Application: important Mn ore.

Coronadite
Pb(Mn²⁺,Mn⁶⁺)₂O₈

TETRAGONAL

Properties: C – black, black-gray; S – brown-black; L – submetallic to dull; D – opaque; DE – 5.4; H – 4.5-5.5; M – botryoidal crusts with fibrous structure, massive.

Origin and occurrence: Secondary in the oxidation zone of Mn deposits. Spherical aggregates up to 100 mm (4 in) in diameter come from the Bou Tazoult mine, Imini, Morocco. Small crystals were found in the Beltana mine, Southern Australia, Australia and in the Silver Bill mine, Arizona, USA.

Hollandite
Ba(Mn⁳⁺,Mn⁶⁺)₆O₁₆

MONOCLINIC

Properties: C – gray-black; S – black; L – submetallic; D – opaque; DE – 5; H – 6; CL – good; M – short prismatic crystals, racemous and columnar aggregates.

Coronadite
Pb(Mn²⁺,Mn⁶⁺)₂O₈

TETRAGONAL

Properties: C – black, black-gray; S – brown-black; L – submetallic to dull; D – opaque; DE – 5.4; H – 4.5-5.5; M – botryoidal crusts with fibrous structure, massive.

Origin and occurrence: Secondary in the oxidation zone of Mn deposits. Spherical aggregates up to 100 mm (4 in) in diameter come from the Bou Tazoult mine, Imini, Morocco. Small crystals were found in the Beltana mine, Southern Australia, Australia and in the Silver Bill mine, Arizona, USA.

Todorokite
(Mn²⁺,Ca,Mg)Mn⁶⁺₂O₇·H₂O

MONOCLINIC

Properties: C – gray, brown-black, black; S – brown;
Ferrotapiolite
\(\text{FeTa}_2\text{O}_6 \)

TETRAGONAL

Properties: C – black, brown; V – red-brown; L – submetallic, adamantine, resinous; D – opaque; DE – 7-7.8; H – 6-6.5; CL – none; F – uneven to conchoidal; M – dipyrimalid and short prismatic crystals, massive.

Origin and occurrence: Magnetite in pegmatites, together with manganoantallite, microlite, cassiterite and other minerals. Crystals up to 40 mm (1½ in) in size are known from the vicinity of Governor Valadars, Minas Gerais, Brazil. A crystal 120 mm (4½ in) long has been described from Angur, Morocco. Short prismatic crystals come from pegmatites near Topsham and Paris, Maine, USA.

Ilmenorutile
\((\text{Ti, Nb, Fe})\text{O}_2 \)

TETRAGONAL

Properties: C – black; S – brown; L – submetallic; D – opaque; DE – 4.2; H – 6-6.5; CL – good; F – conchoidal to uneven; M – prismatic crystals, granular.

Origin and occurrence: Magnetite in pegmatites, together with zircon, fluorapatite and other minerals. Prisms several cm long come from Udraz near Pisek, Czech Republic. It is also known from the vicinity of Mizzu, Urals mountains, Russia and Evje, Norway.
Anatase
\text{TiO}_2

TETRAGONAL ***

Properties: C – black-gray, brown, red-brown, blue, rare colorless; S – white; L – submetallic to adamantine; D – transparent to opaque; DE – 3.8-4; H – 5.5-6; CL – perfect; F – conchooidal; M – dipyramidal and tabular crystals.

Origin and occurrence: Hydrothermal in the Alfite type veins, associated with brookite and quartz, also sedimentary and metamorphic. Beautiful crystals up to 50 mm (2 in) long were found in Alpa Lercheltini, Biasut, Switzerland. Famous black-blue crystals reaching up to 30 mm (1\% in) come from Måskorhae, Hardangervidda, Norway. Crystals up to 15 mm (1\% in) were recently found in Dodo, Polar Ural, Russia. Crystals up to 30 mm (1\% in) in size occurred in the Old Lot and Vulcan mines, Colorado, USA.

Brookite
\text{TiO}_2

ORTHRORHOMBIC ***

Properties: C – light to dark brown, yellow-brown, black; S – white to gray; L – submetallic to adamantine; D – transparent to translucent, opaque; DE – 4.1; H – 5.5-6; CL – imperfect; F – conchooidal to uneven; M – tabular, dipyramidal, long and short prismatic crystals.

Origin and occurrence: Hydrothermal along the fissures of the Alpine-type veins and in granitic and alkaline pegmatites; it occurs as pseudo-morphs after titanite and ilmenite; also in sedimentary rocks. Perfect tabular crystals up to 50 mm (2 in) in size found in Rieder Tobel, Switzerland; Magnet Cove, Arkansas, USA; Passo di Viza, Italy. New finds of crystals up to 50 mm in size made in Dodo, Polar Ural, Russia.

Tellurite
\text{TeO}_2

ORTHRORHOMBIC **

Properties: C – yellow, yellow-orange; S – yellowish; L – adamantine; D – transparent; DE –

Anatase. 16 mm, Hardangervidda, Norway

Brookite. 59 mm, Putor, Polar Ural, Russia
Telturite, 1 mm x, Fata Baia, Romania

Ferberite
FeWO₄

MONOCLINIC

Properties: C – black; S – brown-black to black; L – submetallic; D – opaque; DE – 7.5; H – 4-4.5; CL – perfect; F – uneven; M – short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Hydrothermal in high- to medium-temperature ore veins, in greisens and skarns; rare magmatic in granitic pegmatites and granites; it also occurs in placers. It is usually associated with cassiterite, scheelite, sulfides and quartz. Perfect tabular crystals up to 120 mm (4 3/4 in) in size found in the Quartz Creek mine, Colorado, USA; also in Chnovec, Czech Republic; Panaquira, Portugal; Ehrenfriedersdorf, Germany and Potosí, Bolivia.

Application: W ore.

Hübnerite
MoWO₄

MONOCLINIC

Properties: C – yellow-brown, red-brown, black; S – yellow-brown to black-gray; L – submetallic; D – translucent to opaque; DE – 7.2; H – 4-4.5; CL – perfect; F – uneven; M – short prismatic to tabular crystals, granular, massive.

Origin and occurrence: Hydrothermal in high- to medium-temperature ore veins, in greisens; rarely magmatic in granitic pegmatites; also in placers. Perfect tabular to short prismatic crystals up to 25 cm (9 3/4 in) in size, come from the Huayllapon mine, Pasto Bueno, Peru; also from Baja Série, Romania; Kara-Oba, Kazakhstan; the Sweet Home mine, Alma and Silverton, Colorado, USA.

Application: W ore.

Ferberite, 68 mm, Mundo Nuevo, Peru

Hübnerite, 39 mm, Silverton, U.S.A.
Titanowodginite

Titanowodginite

MnTiTa₂O₈

Orthorhombic

Properties: C – dark brown, black; S – dark brown; L – submetallic; D – translucent to opaque; DE – 5.2; H – 5.5; CL – imperfect; F – uneven; M – dipyramidal crystals, granular.

Origin and occurrence: Magmatic in granitic pegmatites. Dipyramidal crystals up to 10 mm (⅜ in) long occur in the Tanco mine, Bernie Lake, Manitoba, Canada.

Application: Ta ore.

Ferrocolumbite

FeNb₂O₆

Orthorhombic

Properties: C – black, red-brown; S – red-brown to black; L – submetallic; D – translucent to opaque; DE – 5.2; H – 6; CL – good; F – uneven to conchoidal; M – long to short prismatic and tabular crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites and granites; rare hydrothermal in high-temperature ore veins and in greisens; also in placers. Tabular crystals up to 1 m (39⅔ in) in size occur in granitic pegmatites near Custer and Key- stone, South Dakota, USA; in Malakalina, Madagas- car; Iehikawa, Japan; masses, weighting up to 270 kg (594 lb) come from the Meyers quarry, Colorado, USA.

Application: Nb ore.

Manganotantalite

MnTiTa₂O₈

Orthorhombic

Properties: C – red, red-brown, black-brown, black; S – dark red to black; L – submetallic; D – translucent to opaque; DE – 8.0; H – 6-6.5; CL – good; F – uneven

Manganotantalite, 19 mm, Nuristan, Afghanistan
Euxenite-(Y), 40 mm, Ambatofotsy, Madagascar

Aeschynite-(Ce), 45 mm, Hitterö, Norway

Euxenite-(Y)
\[(Y,\text{Ce},\text{U},\text{Th})(\text{Nb},\text{Ta},\text{Ti})_2\text{O}_4\]

Orthorhombic

Properties: C – black with brownish and green hues; S – gray, yellowish, brownish; L – submetallic, resinous; D – translucent to opaque; DE – 4.6; H – 6; CL – none; F – conchoidal; M – tabular crystals, granular, massive; R – locally weakly radioactive, commonly metamict.

Origin and occurrence: Magmatic in granitic pegmatites and alkaline pegmatites; also in placers. Typically associated with monazite-(Ce), zircon, ilmenite and other oxides of rare earth elements. Crystals up to 150 mm (6 in) in size are known from Kragerø and Hitterö, Norway; from Ankazobé, Madagascar.

Aeschynite-(Ce)
\[(\text{Ce},\text{Ca})(\text{Ti},\text{Nb})_2\text{O}_6\]

Orthorhombic

Properties: C – black, red-brown, yellow; S – red-yellow; L – vitreous, resinous, adamantine; D – translucent to opaque; DE – 5.6; H – 5.5; CL – none; F – conchoidal; M – prismatic and tabular crystals, granular, massive; R – locally weakly radioactive, commonly metamict.

Origin and occurrence: Magmatic in alkaline and granitic pegmatites and carbonatites. It is associated with zircon and oxides of rare earth elements. Crystals up to 190 mm (7½ in) long occur in Quadville, Ontario, Canada; other localities are Kragerø, Norway; Trout Creek Pass, Colorado, USA.

Stibiotantalite

\[\text{SbTaO}_4\]

Orthorhombic

Properties: C – yellow, yellow-brown, red-brown, yellow-green; S – yellow-brown; L – submetallic, vitreous, resinous; D – transparent to translucent; DE – 7.5; H – 5.5; CL – good; F – uneven to conchoidal; M – prismatic, tabular and dipyramidal crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites; also in placers. Crystals up to 120 mm (4½ in) in size occur in Muiane, Alto Lagoiha, Mozambique; also found in the Little Three mine, Ramona, and the Himalaya mine, Mesa Grande, California, USA. Also known from Greenbushes, Western Australia, Australia.

Application: Ta ore.

Stibiotantalite, 10 mm grain, Dobrá Voda, Czech Republic
Uraninite
\[\text{UO}_2\]

CUBIC

Properties: C – black, black-brown, black-gray; S – black, black-brown to greenish; L – submetallic, greasy, earthy; D – opaque; DE – 7.5-10.6; H – 5-6. earthy aggregates; CL – imperfect; F – uneven to conchoidal; M – cubic crystals, botryoidal aggregates, granular, massive; R – strong radioactive.

Origin and occurrence: Mainly hydrothermal in ore veins, skarns; magmatic in granitic pegmatites; in sedimentary rocks; also in placers.

Usually associated with other U minerals, e.g. coffinite and secondary alteration products, mainly U micas. Perfect crystals up to 100 mm (4 in) in size and weighing up to 2.5 kg (5 lb 8 oz) come from the Fissure mine, Wilberforce, Ontario, Canada, where they occur in simple pegmatites, cross-cutting marbles. Crystals are also known from Dieresis, Spain and Shinkolobwe, Zaire. Rich botryoidal aggregates were found in Jáchymov and Slavkovice, Czech Republic; in Bois-Noirs and Margna, France.

Application: U ore.
Gibbsite
\[\text{Al(OH)}_3 \]

Monoclinic

Properties: C - colorless, gray, white, greenish; S - white; L - vitreous, pearly; D - transparent to translucent; DE - 2.4; H - 2.5-3.5; CL - perfect; F - uneven; M - tabular crystals, lamellar and earthy aggregates, coatings and stalactite films, granular, massive.

Origin and occurrence: Hydrothermal as a product of alteration Al-rich rocks; secondary in the oxidation associated with goethite; metamorphic in weakly metamorphosed Al-rich rocks, typically with diasporic; a constituent of bauxites. Tabular crystals up to 100 mm (4 in) in size were found in Zlatoust, Ural mountains, Russia; also in Villa Rica, Minas Gerais, Brazil.

Brucite
\[\text{Mg(OH)}_2 \]

Trigonal

Properties: C - colorless, gray, white, bluish, blue, yellow, brown; S - white; L - vitreous, pearly; D - transparent to translucent; DE - 2.4; H - 2.5; CL - perfect; F - uneven; M - tabular crystals, foliated, acicular and earthy aggregates, granular, massive.

Origin and occurrence: Hydrothermal in veins in serpentinites or dolomitic marbles, a product of periclase alteration; rare metamorphic in shales and marbles. Perfect crystals up to 18 cm in size, come from the How’s mine, Pennsylvania and the Tilly Foster mine, New York, USA; also known from Asbestos, Quebec, Canada; Predazzo, the Alps, Italy; blue crystals up to 59 mm (2 in) in size were found in the Bazhenovskoye deposit, Azbest, Ural mountains, Russia.

Diaspore
\[\text{Al}_2\text{(OH)}_6 \]

Orthorhombic

Properties: C - colorless, gray, white, greenish, yellowish, pink, purplish; S - white; L - vitreous, pearly; D - transparent to translucent; DE - 3.4; H - 6.5-7; CL - perfect; F - conchoidal; M - tabular crystals, foliated aggregates, stalactite films, granular, massive.

Origin and occurrence: Hydrothermal as a product of alteration Al-rich minerals, e.g. andalusite, typically with pyrophyllite and corundum; metamorphic in Al-rich rocks; a constituent of bauxites. Tabular crystals up to 120 mm (4 3/4 in) in size come from Menderes, Turkey; also from Naxos, Greece; Chester, Massachusetts, USA.

Diaspore, 35 mm, Milas, Turkey
Goethite, 77 mm, Santa Eudalia, Mexico

Goethite, 60 mm, Pribram, Czech Republic.

Goethite
$\text{Fe}^{3+}\text{O(OH)}$

Orthorhombic

Properties: C – black to black-gray; S – red-brown to black; L – submetallic to dull; D – opaque; DE – 4.3; H – 5–5.5; CL – perfect; F – uneven to conchoidal; M – long to short prismatic crystals, acicular and earthy aggregates, concretions, granular, massive.

Origin and occurrence: Hydrothermal in low-temperature ore veins, together with quartz; secondary in the oxidation zone of ore deposits; sedimentary and rare metamorphic in Mn-rich rocks. Druses of black crystals up to 40 mm (1.5 in) long come from the classic locality Illfild, Germany; it also occurs in Ohrenstock and Ilmenau, Germany; in Nikopol, Ukraine; in Sterling Hill, New Jersey, USA; in the N’Chwaning No. 2 mine, Kuruman, South Africa.

Application: Mn ore.

Manganite
$\text{Mn}^{3+}\text{O(OH)}$

Monoclinic

Properties: C – black to black-gray; S – red-brown to black; L – submetallic to dull; D – opaque; DE – 4.3; H – 4; CL – perfect; F – uneven to conchoidal; M – long to short prismatic crystals, acicular and earthy aggregates, concretions, granular, massive.

Origin and occurrence: Secondary as one of the most common minerals of the oxidation zone of ore deposits, it forms a significant part of limonite; hydrothermal in ore veins, in cavities in pegmatites and volcanic rocks. It forms pseudomorphs after pyrite and other Fe sulfides. Rich botryoidal aggregates of velvet ore with a velvety surface come from Pribram, Czech Republic; acicular crystals up to 50 mm (2 in) long are known from Bottalack and Redruth, Cornwall, UK; it also occurs in Siegen and Horhausen, Germany; in Florissant, Colorado, USA.

Application: Fe ore.

Lepidocrocite
$\text{Fe}^{2+}\text{O(OH)}$

Orthorhombic

Properties: C – dark red to red-brown; S – orange to brick-red; L – submetallic, adamantine to silky; D – transparent to opaque; DE – 4.0; H – 5; CL – perfect; F – uneven to conchoidal; M – tabular to short prismatic crystals, acicular, bladed and earthy aggregates, concretions, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits, overgrown on botryoidal goethite. It occurs together with goethite as a constituent of limonite, as tabular crystals and their aggregates are known from Herdorf, Germany and Rancié, France.
Lithiophorite
(AlLi)Mn₄⁺O₄(OH)₂

Monoclinic

Properties: C = black, commonly with bluish tint; S = black-gray to black; L = metallic to dull; D = opaque; DE = 3.3, H = 3, CL = perfect; F = uneven; M = scaly crystals, botryoidal and earthy aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits and along the cracks in sedimentary rocks. Botryoidal aggregates occur in Schneeberg, Germany; Jivina and Zajecov, Czech Republic; Miyazaki, Japan.

Lithiophorite, 60 mm, Rauersdorf, Germany

Curite
Pb₂U₂O₇·7H₂O

Orthorhombic

Properties: C = dark orange to red-orange; S = light orange; L = adamantine to earthy; D = transparent to translucent; DE = 7.4, H = 4.5, CL = good; F = uneven; M = acicular crystals, earthy aggregates, coatings, massive; R = strong radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits, associated with other secondary U minerals, e.g. torbernite, kasolite and uranophane. Rich aggregates were found in Shinkolobwe, Zaire; also known from La Crouzille, France; South Alligator, Northern Territory, Australia.

Curite, 10 mm, Shinkolobwe, Zaire
5. Carbonates

Magnesite

\[\text{MgCO}_3 \]

Trigonal

Properties: C – colorless, white, yellowish, brownish, black; S – white; L – vitreous to dull; D – transparent; DE – 3.1; H – 4; CL – perfect; F – conchoidal; M – rhombohedral and prismatic crystals, massive cleavable aggregates, earthy; LU – occasionally blue or green.

Origin and occurrence: Rarely magmatic, mainly hydrothermal metasomatic and metamorphic. The largest crystals are known from Brumado, Bahia, Brazil, reaching up to 1 m (39% in) in size, embedded in metamorphosed dolomites. Crystals in cavities in the same locality are up to 50 mm (2 in) in size. Also crystals up to 50 mm (2 in) found in the Eugui quarries, Spain. Crystals up to 10 mm (1/8 in) across come also from Val Malenco, Italy. It prevails as massive aggregates, forming huge deposits, like Veitsch, Austria; Liao-Tung, China. Many deposits are located in Slovakia (Jelšavski Dubrava, Hrušta).

Application: heat-resistant material.

Calcite, 40 mm, Houghton Co., U.S.A.

Magnesite, 148 mm, Brumado, Brazil

Smithsonite

\[\text{ZnCO}_3 \]

Trigonal

Properties: C – white, gray, green, pink, blue; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 4.4; H – 4.5; CL – perfect; F – conchoidal to uneven; M – rhombohedral crystals, botryoidal and stalactitic aggregates, massive; LU – sometimes green or blue.

Origin and occurrence: Supergene, as a result of oxidation of the primary Zn ores, associated with other supergene Pb minerals. The largest yellow scalenohedra crystals up to 40 mm (1.57 in) in size come from Broken Hill, New South Wales, Australia. Pink crystals, up to 30 mm (1.18 in) long occurred in Tsuneho, Namibia. World famous blue-green botryoidal crusts up to 100 mm (4 in) thick found in the Kelly Mine, Magdalena, New Mexico, USA. Nice aggregates and banded stalactites described from Monte Poni, Sardinia, Italy.

Smithsonite, 40 mm, New Mexico, U.S.A.
Siderite, 26 mm, Governador Valadares, Brazil

Siderite

FeCO$_3$

TRIGONAL

Properties: C – yellow, brown, black; S – yellowish-white; L – vitreous; D – translucent; D.I – 4, H – 4; CL – perfect; M – rhombohedral crystals, granular, massive.

Origin and occurrence: Hydrothermal in medium- and low-temperature deposits, sedimentary. Crystals up to 40 cm long found in Mont St.-Hilaire, Quebec, Canada. Crystals up to 100 mm (4 in) in size come from Panasqueira, Portugal. Crystals up to 30 mm (1 1/5 in) in size occurred in Neudorf, Germany. Rhombs up to 20 mm (3/4 in) also found in Příbram, Czech Republic. Pseudo-morphs of goethite after siderite up to 70 mm (2 3/4 in) across described from Pilos Peak, Colorado, USA. Deposits of massive siderite in Erzberg and Hüttenberg, Austria yielded crystals up to 50 mm (2 in) long. Fine crystals reported from Tavistock, Devon and Redruth, Cornwall, UK.

Application: important Fe ore.

Sphaerocobaltite

CoCO$_3$

TRIGONAL

Properties: C – pink, gray, brown; S – red; L – vitreous; D – transparent to translucent; DE – 4.1; H – 4; CL – perfect; M – scalenohedral and rhombohedral crystals, radial aggregates, massive.

Origin and occurrence: Secondary, as a product of the oxidation of primary Co minerals. The best specimens, with crystals up to 30 mm (1 1/5 in) long, come from Zaire (Musone; Kakanda). Crystals up to 10 mm (4 in) long known from Bou Azzer, Morocco.
Rhodochrosite

TRIGONAL

Properties: C – white, pink, red, brown, locally black coatings on crystals; S – white; L – vitreous; D – transparent to translucent; DE – 3.6; H – 3.5-4; CLE – perfect; F – conchooidal to uneven; M – rhombohedral and scalenohedral crystals, hemispherical and botryoidal aggregates, granular, massive.

Origin and occurrence: Only rare in pegmatites, hydrothermal in medium- and low-temperature veins, sedimentary and metamorphic. The most beautiful crystals come from the Sweet Home mine, Alina, Colorado, USA, where rhombs up to 150 mm (6 in) in size occur, associated with purple fluorite, hübnerite, tetrahedrite and other minerals. Beautiful dark red scalenohedra, up to 100 mm (4 in) found in the N’Chwaning No.1 and 2 mines, Kuruman, South Africa. Pink rhombs up to 81 mm (3 1/4 in) come from Silverton, Colorado, USA. Nice pink hemispheres and botryoidal aggregates are known from Cavnic and Bâra Spritie, Romania. Similar specimens occurred in Huaron, Peru. Pink banded crusts and stalactites were found in the Mina Capillitas, Catamarca, Argentina. Pink rhombs, associated with bertrandite, were lately found in Kounrad, Kazakhstan.
Calcite
CaCO$_3$

Properties: C – colorless, white, gray, yellow, brown, pink, red, blue, green, black; S – white; L – vitreous to pearly; D – transparent to opaque; DE = 2.7; H = 3; CL – perfect; F – conchoidal; M – crystals of various habit, concretions, stalactites, oolitic aggregates, granular, massive; LU – sometimes red to orange.

Origin and occurrence: One of the most common minerals, resulting from a wide range of conditions, it is magmatic, hydrothermal, sedimentary, metamorphic and secondary, it occurs in various parageneses. Large crystals found in many localities throughout the world. Pinkish and yellow crystals over 500 mm (20 in) long come from Joplin, Missouri and from the Elwood mine, Tennessee, USA. Beautiful calcite crystals, crystallographically of very complex habits, found in Dalnegorsk, Russia. Nice calcite specimens occurred also in Mexico (Nacoz, Chihuahua; Chacras, San Luis Potosi), European localities, like Pribram, Czech Republic; St. Andreasberg, Germany; Kongsberg, Norway. Calcites are found in caves and caverns. Concretions of calcite (so called Iceland spar) were found in basalt cavities in Helgustadir, Iceland. The largest of them reached up to 6 x 2 m (20 x 6 ft 6 in) in size. Very nice scalenohedra up to 80 mm (3¼ in) long with copper inclusions occur in Keweenaw Peninsula, Michigan, USA. Perfect scalenohedra and their twins up to 100 mm (4 in) long are known from Egremont and Frizington, UK. Beautiful butterfly twins up to 80 mm (3¼ in) recently reported from Guiyang, Hunan, China. Crystals of calcite with sand inclusions up to 100 mm (4 in) in size come from the vicinity of Fontainebleau, France.

Application: building industry, optical industry.
Dolomite

$\text{CaMg(CO}_3\text{)}_2$

TRIGONAL

Properties: C – gray-white, pink, red, green, brown, black; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 2.9; H – 3.5; CL – perfect; F – conchoideal; M – rhombohedral crystals; massive.

Origin and occurrence: Magmatic in pegmatites, hydrothermal, metasomatic, sedimentary and metamorphic, together with siderite, magnesite, calcite and other minerals. Crystals up to 100 mm (4 in) long found in Brumado, Bahia, Brazil. Fine crystals also occurred in Banská Štiavnica, Slovakia and in Cavity, Romania. Crystals up to 200 mm (7½ in) in size come from Eugui, Spain. Crystals up to 150 mm (6 in) long found in cavities in dolomite rocks in Lengenbach, Brantal, Switzerland. Crystals several cm long known from Jáchymov, Czech Republic. Large accumulations of massive dolomite are common in magnesite deposits.

Application: metallurgy, heat-resistant material.

Ankerite

$\text{CaFe(CO}_3\text{)}_2$

TRIGONAL

Properties: C – white, yellowish, brown-yellow; S – white; L – vitreous to pearly; D – translucent; DE – 3; H – 3.5-4; CL – perfect; F – conchoideal; M – rhombohedral crystals, granular.

Origin and occurrence: Hydrothermal in medium- and low-temperature veins, also sedimentary and metamorphic, together with siderite and other minerals. Crystals up to 50 mm (2 in) occurred in the Tui mine, New Zealand. Brown rhombs up to 40 mm (1½ in) in size known from Gilman, Colorado, USA. Yellowish crystals up to 10 mm (⅛ in) come from concretions near Kladno, Czech Republic. Massive aggregates are common in metasomatic deposits of siderite (e.g. Nitra Slaná, Slovakia).
Kutnohorite

CaMn\((\text{CO}_3)_2\)

TRIGNONAL

Properties: C – white, gray, pink, yellowish; S – white; L – vitreous; D – translucent; DE – 3.1; H – 3.5-4; CL – perfect; F – conchoidal; M – poorly developed crystals, granular, massive.

Origin and occurrence: Hydrothermal and metamorphic, associated with ankerite, quartz and other minerals. Poorly developed crystals are known from Kutná Hora, Czech Republic. Small crystals several mm in size are described from Mont St.-Hilaire, Quebec, Canada. Large crystals occurred in Moncure, North Carolina, USA. Small gray-white crystals were found in Broken Hill, New South Wales, Australia.

Huntite

CaMg\((\text{CO}_3)_2\)

TRIGNONAL

Properties: C – white; S – white; L – earthy; D – opaque; DE – 2.7; H – 1.5; CL – none; F – conchoidal; M – fibrous aggregates, earthy.

Origin and occurrence: Secondary mineral resulting from the oxidation of dolomite, associated with magnesite and dolomite. Fine fibrous aggregates come
Aragonite
\[\text{CaCO}_3 \]

Orthorhombic

Varieties: flors ferri, hot-spring tufa, peastone, tarnowitzite.

Properties: C – colorless, white, yellow, reddish, greenish, purplish, bluish, gray; S – white; L – vitreous; D – transparent to opaque; DE – 3; H – 3.5-4.5; CL – imperfect; F – conchoidal; M – prismatic crystals, oolitic, banded, columnar and dendritic aggregates, massive; LU – locally weak cream yellow.

Origin and occurrence: Primary as a late hydrothermal mineral of high-temperature deposits more commonly secondary as a product of the oxidation of siderite and pyrite. It also results from precipitation of thermal springs, it is sedimentary and metamorphic. Fine white prismatic crystals up to 70 mm (2.75 in) long found together with blue celestite crystals in Pania Dolina, Slovakia. Similar crystals come from sulfide deposits in Cianciano, Italy and Tarnobrzeg, Poland. Maybe the best aragonite crystals in the world are known from the goosan of the magnesite deposit in Podreecny, Slovakia, where masses of crystals up to 200 mm (7.9 in) long were found. Wine yellow crystals up to 100 mm (3.9 in) long occurred in cavities of volcanic rocks in Florence near Bifina, Czech Republic. Those crystals were the only gem rough, suitable for faceting, in the world. Very interesting copper pseudo-morphs after aragonite come from Corocoro, Bolivia. Banded and oolitic aggregates found in Karlovy Vary, Czech Republic. Dendritic aggregates from Erzberg, Austria and elsewhere are known as flors ferri.

Application: decorative stone.
Strontianite

SrCO₃

Orthorhombic

Properties: C – colorless, gray, yellowish, greenish, reddish, brown; S – white; L – vitreous to resinous; D – transparent to translucent; DE – 3.8; H – 3.5; CL – perfect; F – conchooidal to uneven; M – prismatic and acicular crystals, columnar and fibrous aggregates, massive, earthy.

Origin and occurrence: Hydrothermal in low-temperature deposits with fluorite, barite, calcite and other minerals. Beautiful yellowish crystals up to 120 mm (4 ⅕ in) long come from the Minerva No.1 mine, Cave-in-Rock, Illinois, USA. Crystals, up to 70 mm (2 ⅜ in) in size occurred in Hezham and Alston Moor, England, UK. Its pseudo-hexagonal crystals or botryoidal aggregates were very rare in Příbram, Czech Republic.

Witherite

BaCO₃

Orthorhombic

Properties: C – white, gray, yellowish; S – white; L – vitreous to greasy; D – translucent; DE – 4.3; H – 3.5; CL – good; F – uneven; M – pseudo-hexagonal dipyramidal crystals, fibrous and botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in low-temperature deposits with fluorite, barite, calcite and other minerals. Crystals up to 50 mm long found in marls in Ahlen near Münster, Germany.
prismatic and pyramidal crystals, common trillings and twins, granular, massive; LU – sometimes yellowish.

Origin and occurrence: Secondary mineral, resulting from the oxidation of galena and other Pb minerals, together with pyromorphite, vanadinite, barite and other minerals. The best specimens come from Tsumeb, Namibia, where trillings up to 200 mm (7 3/4 in) in diameter occurred. Large twins also known from Broken Hill, New South Wales, Australia. Beautiful crystals up to 50 mm (2 in) in size reported from Mibladen, Morocco. Fine crystals up to 30 mm (1 1/8 in) long found in Siblíbro, Czech Republic. Typical white acicular crystals, up to 60 mm (2 3/8 in) long come from the Flux mine, Arizona, USA.

Barytocalcite

BaCa\((CO_3)\)_2

Monoclinic

Properties: C – colorless, white, gray, yellowish; S – colorless; L – vitreous to resinous; D – transparent to translucent; DE – 5.7; H – 4; CL – perfect; F – conchooidal to uneven; M – prismatic, often striated crystals, massive; LU – light yellow.

Origin and occurrence: Hydrothermal in low-temperature veins, together with calcite, barite and other minerals. Crystals several cm in size and cleavable masses are known from Alston Moor, Cumbria, UK. Imperfect crystals about 10 mm (3/8 in) in size occurred in Siblíbro, Czech Republic. It is also described from Freiberg, Germany and from Langban, Sweden.

Barytocalcite, 52 mm, Alston Moor, UK
Azurite

\[\text{Cu}_3(\text{CO}_3)_2(\text{OH})_2 \]

MONOCLINIC

Properties: C — blue; S — blue; L — vitreous; D — transparent to opaque; DE — 3.8; H — 3.5; CL — perfect; F — conchooidal; M — tabular and prismatic crystals, pulverulent.

Origin and occurrence: Secondary, resulting from the oxidation of Cu sulfides, mainly associated with malachite. Crystals up to 200 mm (7 1/2 in) long come from Tsumeb, Namibia. Crystals from Touissit, Morocco reach up to 70 mm (2 3/4 in). Tabular crystals up to 50 mm (2 in) in size found in Chessy near Lyon, France. Famous crystals up to 50 mm (2 in) across occurred in the Copper Queen mine in Bisbee, Arizona, USA. Fine azurite concretions with crystals on the surface come from La Sal, Utah, USA. Crystal rosettes, reaching up to 130 mm (5 1/8 in) in size were found in the Yang Chweng Mine, Guang Dong, China.

Application: Cu ore.

Malachite

\[\text{Cu}_2(\text{CO}_3)(\text{OH})_2 \]

MONOCLINIC

Properties: C — green; S — light green; L — vitreous, dull, earthy; D — opaque; DE — 4.1; H — 3.5-4; CL — perfect; F — conchooidal to uneven; M — acicular and prismatic crystals, botryoidal aggregates, stalactites, massive.

Origin and occurrence: The most common supergene mineral of Cu, associated with azurite, cuprite and other minerals. Crystals up to 30 mm (1 1/8 in) in size occur in Kambove, Zaire. Crystals up to 20 mm (7/8 in) also found in Rudabanya, Hungary. Pseudomorphs after azurite crystals up to 100 mm (4 in) in size known from Tsumeb, pseudo-morphs after cuprite crystals up to 50 mm in size come from Onganja, Namibia. The blocks of banded malachite weighing up to 250 tons, occurred in Mednorudniansk, Ural mountains, Russia. Similar material in huge quantities come from many deposits in Shaba.

Malachite, 70 mm, Shaba, Zair
province, Zaire, where stalactites up to 500 mm (20 in) long were also found.

Application: Cu ore, production of decorative objects and jewelry.

Rosasite

\[\text{Cu}_2\text{Zn}_2(\text{CO}_3)\cdot(\text{OH})_2\]

Properties: C – green, blue; S – greenish; D – opaque; DE – 4.0-4.2; H – 4.5; CL – good; M – small acicular crystals, fibrous and botryoidal crusts.

Origin and occurrence: Secondary, forming in the oxidation zone of Cu and Zn deposits, together with other secondary minerals of Cu. Spherical aggregates of acicular crystals up to 10 mm (% in) found in Mina Ojuela, Mapimi, Durango, Mexico. Similar finds were made in Bisbee, Arizona, USA.

Hydrozincite

\[\text{Zn}_6(\text{CO}_3)_{12}(\text{OH})_6\]

Monoclinic • • •

Properties: C – white, yellowish; S – white; L – pearly to dull; D – opaque; DE – 4; H – 2-2.5; CL – perfect; F – conchoidal; M – tabular crystals, massive, earthy; LU – locally blue.

Origin and occurrence: Secondary, resulting from the oxidation of sphalerite, together with cernusite, smithsonite and hemimorphite. Small crystals are known from Mapimi, Durango, Mexico. Spherical aggregates, several mm in diameter, were found in Sterling Hill, New Jersey, USA. Stalactites and thick crusts occurred in Long-Kien, Burma. Crusts and stalactites were also described from Bleiberg, Austria; from Mezica, Slovenia and from Raibl, Italy.

Aurichalcite

\[(\text{Zn},\text{Cu})_6(\text{CO}_3)_{12}(\text{OH})_6\]

Orthorhombic • • •

Properties: C – light green, blue-green, blue; S – blue-green; L – silky to pearly; D – translucent; DE – 4; H – 1-2; CL – perfect; M – acicular crystals, crusts.

Origin and occurrence: Secondary in the oxidation zone of Cu and Zn deposits in the arid climate, associated with linarite and other minerals. Large prismatic crystals come from Mina Ojuela, Mapimi, Durango, Mexico. Nice rosettes of acicular crystals are known from Bisbee and from the 79 mine, Banner district, Arizona, USA. It also occurred in Monteponi, Sardinia, Italy.

Aurichalcite, 80 mm, Arizona, U.S.A.
Dawsonite

\[\text{NaAl(CO}_3\text{)(OH)}_2 \]

Orthorhombic

Properties: C – colorless to white; S – white; L – vitreous; D – transparent; DE – 2.4; H – 3; CL – perfect; M – acicular to blade-like crystals, radial aggregates.

Origin and occurrence: Hydrothermal in low-temperature deposits, associated with calcite, dolomite and other minerals. Fine acicular crystals up to 35 mm (1.3 in) long come from Mont St.-Hilaire, Quebec, Canada. Radial aggregates along the rock cracks were found in Dubnik and Zlatá Bana, Slovakia.

Bastnäsite-(Ce)

\[(\text{Ce},\text{La})(\text{CO}_3)\text{F} \]

Hexagonal

Properties: C – yellow to brown; S – yellow-brown; L – vitreous to greasy; D – translucent; DE – 4.8-5.2;
Bastnäsite-(Ce), 6 mm x, Ariège, France

H – 4-4.5; CL – good; F – uneven; M – tabular crystals, granular, massive.

Origin and occurrence: Magmatic in pegmatites, also metamorphic, together with bastnäsite-(Ce) and other minerals of rare earth elements. Crystals several cm long come from Quincy, Massachusetts, USA. Crystals up to 80 mm (3½ in) long occurred in pegmatites near Hundsholm, Norway. Crystals up to 23 cm (9½ in) long found in the Snowbird mine, Montana, USA. Transparent crystals up to 15 mm (½ in) were later reported in the Trimouns quarry, France. Very unusual association have been described from Muzo, Colombia, where crystals up to 50 mm occur together with emeralds.

Phosgenite

Pb₂(CO₃)Cl₂

TETRAGONAL

Properties: C – colorless, white, yellow-white, gray, brown; S – white; L – adamantine; D – transparent to translucent; DE – 6.1; H – 2-3; CL – good; F – conchoidal; M – short to long prismatic and tabular crystals, granular, massive; LU – sometimes yellow.

Origin and occurrence: Secondary, resulting from the oxidation of galena, associated with cerussite and other secondary Pb minerals. Crystals up to 150 x 100 mm (6 x 4 in) across known from Montepoloni, Sardinia, Italy. Crystals from Tsuneh, Namibia reach up to 100 mm. Crystals up to 30 mm (1¼ in) in size found in Matlock, Derby, UK. Crystals up to 35 mm (1¼ in) long occurred in the Mammoth mine, Tiger, Arizona, USA.

Parisite-(Ce)

CaCe₃(CO₃)₃F₂

TRIGONAL

Properties: C – brown, yellow-brown, gray-yellow; S – brownish; L – vitreous to resinous; D – transparent to translucent; DE – 4.4; H – 4.5; CL – perfect; F – conchoidal to splintery; M – dipyramidal striated crystals.

Origin and occurrence: Magmatic in pegmatites, also hydrothermal and rarely metamorphic, together with bastnäsite-(Ce) and other minerals of rare earth elements. Crystals several cm long come from Quincy, Massachusetts, USA. Crystals up to 80 mm (3½ in) long occurred in pegmatites near Hundsholm, Norway. Crystals up to 23 cm (9½ in) long found in the Snowbird mine, Montana, USA. Transparent crystals up to 15 mm (½ in) were later reported in the Trimouns quarry, France. Very unusual association have been described from Muzo, Colombia, where crystals up to 50 mm occur together with emeralds.
Bismuthite

\[\text{Bi}_2\text{O}_3(\text{CO}_3) \]

Tetragonal

Properties: C - yellow, brown, gray, blue, black; S - white; L - vitreous, pearly to dull; D - translucent to opaque; DE - 6.1-7.7; H - 3.5; CL - good; M - spherical, radial aggregates, massive, pulverulent.

Origin and occurrence: Secondary, originated from pegmatites in Madagascar, Ampangabibe, and Mozambique. Large pebbles found in Kiva province, Zaire. It also occurred in Tassia, Bolivia.

Gaylussite

\[\text{Na}_2\text{Ca}_4(\text{CO}_3)_3 \cdot 5\text{H}_2\text{O} \]

Monoclinic

Properties: C - colorless, white, gray, yellowish; S - colorless; L - vitreous; D - transparent to translucent; DE - 2; H - 2.5-3; CL - perfect; F - conchooidal; M - lenticular to prismatic crystals.

Origin and occurrence: Sedimentary, typical a constituent of salt sediments. Crystals up to 80 mm (3½ in) long come from Searles Lake, California, USA. It also occurs in Borax Lake and Mono Lake, California, USA. Large crystals are known from Amboseli Lake, Kenya.

Weloganite

\[\text{Na}_3\text{Sr}_2\text{Zr}(\text{CO}_3)_6 \cdot 3\text{H}_2\text{O} \]

Triclinic

Properties: C - white, yellow; S - white; L - vitreous; D - transparent to opaque; DE - 3.2; H - 3.5; CL - perfect; F - conchooidal; M - pseudo-hexagonal striated crystals.

Origin and occurrence: Hydrothermal in the alkaline rocks, together with zircon, druzeite and other minerals. Crystals up to 50 mm (2 in) come from cavities in the Francon quarry, Montreal; crystals up to 30 mm (1¼ in) are known from St. Michel, Quebec, Canada.
Artinite
\[\text{Mg}_2(\text{CO}_3)(\text{OH})_2 \cdot 3\text{H}_2\text{O} \]

MONOCLINIC

Properties:
- C - white; S - white; L - silky; D - transparent; DE - 2; H - 2.5; CL - perfect; M - spherical, radial aggregates, veinlets, crusts.
- *Origin and occurrence:* Hydrothermal, originating at low temperatures in serpentinites, associated with magnesite, aragonite and other minerals. Radial aggregates up to 20 mm (0.8 in) in size occur in the Gem Mine, San Benito County, California, USA. Needles up to 20 mm (0.8 in) long come from Val Malenco, Italy. Clusters of acicular crystals were found on Staten Island, New York, USA.

Zaratite
\[\text{Ni}_3(\text{CO}_3)(\text{OH})_4 \cdot 4\text{H}_2\text{O} \]

CUBIC

Properties:
- C - emerald-green; S - light green; L - vitreous to greasy; D - transparent to translucent; DE - 2.6-2.7; H - 3.5; CL - none; F - conchoidal; M - crystalline crusts, stalactites, coatings.
- *Origin and occurrence:* Secondary, originating from the oxidation of Ni minerals, associated with millerite, brucite and other minerals. It occurs as a product of the oxidation of Ni minerals in ultrabasic rocks in Krušně hory and Sobótka, Austria. Large green coatings found in Heazlewood, Tasmania, Australia. It covers millerite needles in the vicinity of Kladno, Czech Republic.

Hydrotalcite
\[\text{Mg}_6\text{Al}_2(\text{CO}_3)(\text{OH})_{16} \cdot 4\text{H}_2\text{O} \]

TRIGONAL

Properties:
- C - white; S - white; L - pearly to waxy; D - transparent; DE - 2.1; H - 2; CL - perfect; M - fibrous and layered aggregates, massive.
- *Origin and occurrence:* Hydrothermal in ultrabasic and metamorphic rocks. It occurred with serpentine in Nordmark, Norway and also found at Franklin and Sterling Hill, New Jersey, USA.
Stichtite

$\text{Mg}_6\text{Cr}_2(\text{CO}_3)(\text{OH})_6 \cdot 4\text{H}_2\text{O}$

Trigonal

Properties: C – pink to purple; S – white to light purple; L – pearly, waxy to greasy; D – translucent; DE – 2.2; H – 1.5-2; CL – perfect; M – lamellar and fibrous aggregates, massive.

Origin and occurrence: It occurs in serpentinites as scaly aggregates and veinlets in Bou Azzer, Morocco; in Dundas, Tasmania, Australia and in Barberton, South Africa.

Alumohydrocalcite

$\text{CaAl}_2(\text{CO}_3)_2(\text{OH})_4 \cdot 3\text{H}_2\text{O}$

Triclinic

Properties: C – white, gray; S – white; L – earthy; D – opaque; DE – 2.2; H – 2.5; CL – perfect; M – chalky aggregates, consisting of acicular crystals.

Origin and occurrence: Secondary, associated with alunite and other minerals. It was described from the Khalkasy deposit, Siberia, Russia, where it originates from the oxidation of alunite. Nice white radial aggregates occurred along the cracks in stalactites in Ladomirovo, Slovakia.

Ancylite-(Ce)

$\text{Sr}_3(\text{Ce,La})_4(\text{CO}_3)_7(\text{OH})_4 \cdot 3\text{H}_2\text{O}$

Orthorhombic

Properties: C – colorless, yellow, yellow- brown, light purple, brown; S – white; L – vitreous to greasy; D – transparent to opaque; DE – 4; H – 4.5-5; CL – none; F – splintery; M – short to long prismatic and pseudo-octahedral crystals.

Origin and occurrence: Hydrothermal in alkaline rocks, associated with nepheline and other minerals. Crystals up to 6 mm (¼ in) long are known from
6. Borates

Ludwigite

\[\text{Mg}_2\text{Fe}^{3+}\text{BO}_5 \]

Orthorhombic

Properties: C – dark green, black-green, black; S – blue-green; L B silky to dull; D – opaque; DE – 3.9; H – 5; CL – perfect; F B uneven; M – prismatic crystals, fibrous aggregates, granular, massive.

Origin and occurrence: Metamorphic in skarns and dolomitic marbles, locally associated with magnetite and other borates. Rich aggregates are known from Oena de Fier, Romania; Kamieniechi, Japan and the Hol Kol mine, Suan, North Korea.

Application: chemical industry; B ore.

Gaudemarite

\[\text{Ca}_2\text{Mn}^{3+}_3(\text{BO}_3)_2\text{CO}_3(\text{O,OH})_3 \]

Hexagonal

Properties: C – black; S – black; L – adamantine to dull; D – opaque; DE – 3.4; H – 6; CL – good; F – uneven; M – prismatic crystals, fibrous and acicular aggregates.

Origin and occurrence: Hydrothermal in calcite veins. Prismatic crystals up to 50 mm (2 in) long

Gaudemarite, 40 mm, Kuruman, South Africa

Ludwigite, 120 mm, Oena de Fier, Romania

Low borates were found on the mine dumps near Tafhangault, Morocco and in the N’Chuaning No. 2 mine and the Wessels mine, Kuruman, South Africa.

Inderite

\[\text{MgB}_3\text{O}_5(\text{OH})_5 \cdot 5\text{H}_2\text{O} \]

Monoclinic

Properties: C – colorless, white to pink in aggregates; S – white; L – vitreous; D – transparent to translucent; DE – 1.8; H – 2.5; CL – good; F – conchoidal to uneven; M – prismatic crystals, acicular and fibrous aggregates, nodules, massive.

Origin and occurrence: Sedimentary in boron deposits, commonly associated with colemanite and other borates. Prismatic crystals up to 100 mm (4 in) long occur in Boron, California, USA. It is also known from Inder, Kazakhstan.

Application: chemical industry; B ore.
Inyoite, 90 mm, Turkey

Borax. 60 mm x, Searles Lake, U.S.A.

Inyoite
Ca₂B₂O₇(OH)₂ · 4 H₂O

MONOCLINIC

Properties: C - colorless, white; S - white; L - vitreous; D - transparent to translucent; DE B 1.9; H - 2; CL - good; F - uneven; M - short prismatic to tabular crystals, columnar aggregates, massive.

Origin and occurrence: Sedimentary in boron deposits, commonly associated with colemanite and other borates. Clear tabular crystals up to 100 mm (4 in) long found in Kirka and Emet, Turkey. It also comes from Inder, Kazakhstan and the Corkscrew mine, California, USA.

Application: chemical industry, B ore.
Borax
Na$_2$B$_4$O$_5$(OH)$_4$.8 H$_2$O

Monoclinic

Properties: C - white, colorless, yellowish, gray, greenish; S - white; L B vitreous to dull; D - transparent, translucent to opaque; DE - 1.7; H - 2-2.5; CL - perfect; F - conchoidal; M - short prismatic to tabular crystals, columnar to earthy aggregates, crusts, coatings, granular, massive; R - soluble in water.

Origin and occurrence: Sedimentary in boron deposits, associated with other borates and halite. Prismatic crystals up to 150 mm long are known from Borax Lake, also Scarls Lake and Boron, California, USA. It also occurs in Kirka, Turkey.

Application: chemical industry, B ore.

Ulexite
NaCa$_2$B$_2$O$_6$(OH)$_6$.5 H$_2$O

Triclinic

Properties: C - white, colorless, light gray; S - white; L B vitreous to silky; D - transparent to translucent; DE - 2.0; H - 2.5; CL - perfect; F B uneven; M - elongated prismatic to acicular crystals, fibrous aggregates, crusts, nodules, granular, massive.

Origin and occurrence: Sedimentary in boron deposits, associated with other borates. Slabs up to 100 mm (4 in) thick consisting of fibrous aggregates occur in Boron, California; also found in Esmeralda, Nevada, USA; Emet, Turkey and Inder, Kazakhstan.

Application: chemical industry, B ore.

Colemanite
Ca$_2$B$_2$O$_7$.5 H$_2$O

Monoclinic

Properties: C - colorless, white, yellowish, light gray; S - white; L - vitreous; D - transparent to translucent; DE - 2.4; H - 4.5; CL - perfect; F B uneven; M - short prismatic and isometric crystals, granular, massive.

Origin and occurrence: Sedimentary in boron deposits, associated with other borates. Perfect crystals up to 200 mm (7½ in), come from Emet and Kirka, Turkey. Crystals up to 70 mm (2¾ in) long occur in Gower Gulch, Inyo, California; also known from Esmeralda, Nevada, USA and Inder, Kazakhstan.

Application: chemical industry, B ore.
Kernite
\[\text{Na}_2\text{B}_4\text{O}_6\text{(OH)}_2 \cdot 3\text{H}_2\text{O} \]
MONOCLINIC

Properties:
C – colorless, white; S – white; L – vitreous to dull, silky; D – transparent, translucent to opaque; DE – 1.9; H – 2.5-3; CL – perfect; F – uneven; M – isometric crystals, fibrous aggregates, granular, massive; R – soluble in water.

Origin and occurrence: Sedimentary in boron deposits, associated with borax and other borates. Platy aggregates and crystals up to 2.5 x 1 m (8 ft x 39¾ in) found in Boron, California, USA; also known from the Tinocalayu mine, Salta province, Argentina.

Hambergite
\[\text{Be}_2\text{BO}_3\text{(OH,F)} \]
ORTHORHOMBIC

Properties:
C – colorless, white, light gray; S – white; L – vitreous; D – transparent to translucent; DE – 2.4; H – 7.5; CL B perfect; F B uneven; M – tabular to prismatic crystals, granular.

Origin and occurrence: Magmatic in granite and rarely also in alkaline pegmatites; hydrothermal in cavities within the pegmatites, associated with tourmaline, danburite and beryl. Tabular crystals up to 200 mm (7¾ in) from the Little Three mine, Ramona, California, USA. Crystals up to 110 mm (4⅜ in) also known from several localities in Madagascar, e.g. Imalo and Anjanabonoina; also found in Hyakule, Nepal and Cidračice, Czech Republic.

Rhodizite
\[\text{(K,Ca)}\text{Al}_4\text{Be}_4\text{(B,Be)}_2\text{O}_{28} \]
CUBIC

Properties:
C – colorless, white, yellow, light gray; S – white; L – vitreous to adamantine; D – transparent to translucent; DE – 3.5; H – 8.5; CL – imperfect; F – conchoidal to uneven; M – isometric crystals, granular.

Origin and occurrence: Magmatic in granitic pegmatites, associated with tourmaline, danburite and beryl. Cubic to tetrahedral crystals, reaching up to 30 mm (1¾ in) occur in several localities in...
Boracite

\[\text{Mg}_3\text{ByO}_{13}\text{Cl} \]

Orthorhombic

Properties: C - colorless, white, yellowish, light gray, light to dark green; S - white; L - vitreous; D - transparent to translucent; DE - 3.6; H - 7-7.5; CL - none; F - conchoidal to uneven; M - isometric crystals, fibrous aggregates, granular, massive.

Origin and occurrence: Sedimentary in evaporite deposits, together with halite, gypsum and anhydrite; metamorphic in metamorphosed evaporates. Crystals up to 15 mm (½ in) come from Alto Chapare, Cochabamba, Bolivia; crystals about 5 mm (¼ in) in size, occur in Stassfurt, Hanover and Kahlberg, Germany. Crystals are also known from Choctaw, Louisiana, USA and the Boulby mine, North Yorkshire, England, UK.

Boracite, 12 mm x, Alto Chapare, Bolivia
7. Sulfates

Anglesite

Orthorhombic

Properties: C – colorless, white, yellowish, gray, greenish; S – white; L – adamantine to greasy; D – transparent to translucent; DE – 6.4; H – 2.5 – 3; CL – double; F – conchoideal; M – thick tabular crystals, massive, L – sometimes yellowish.

Origin and occurrence: Secondary, as a result of the galena oxidation, together with cerussite and other minerals. Beautiful yellowish crystals up to 100 mm (4 in) in size come from Touissit, Morocco. Crystals from Tsumeb, Namibia, reach up to 40 mm (1¾ in). Large crystals are also reported from Phoenixville, Pennsylvania, USA. Crystals up to 20 mm (¾ in) occur in cavities in weathered galena in Sardinia, Italy. Crystals, reaching up to 40 mm (1¼ in) also found in Mošćica, Slovenia. Prismatic crystals up to 75 mm (3 in) long known from the Banker Hill mine, Idaho, USA.

Barite, 17 mm xx, Pillha, Germany
Anhydrite, 55 mm, Simplon Tunnel, Switzerland

Anhydrite

Orthorhombic

Properties: C – colorless, white, bluish, purplish, red, brown; S – white; L – pearly to vitreous; PS – transparent to translucent; DE – 2.8; H – 3–3.5; CL – good; F – splintery to uneven; M – isometric and prismatic crystals, granular, massive.

Origin and occurrence: Mostly sedimentary, as a result of the evaporation of sea water, associated with gypsum, calcite and other minerals; rare in pegmatites and hydrothermal. It is very common in form of massive aggregates in salt deposits in Stassfurt and Wathlingen, Germany, where small crystals also occur. Folded layers in clays known from Wieliczka, Poland. Purplish crystals up to 20 mm (¾ in) found in cracks in metamorphic rocks near Simplon and St. Gotthard, Switzerland. Fine druses of bluish crystals up to 200 mm (7¾ in) long found in Naica, Chihuahua, Mexico.
Celestite
SrSO₄

ORTHORHombic

Properties: C – colorless, white, yellowish, blue; S – white; L – vitreous; D – transparent to translucent; D₆ = 4; H = 3-3.5; CL – perfect; F – uneven; M – prismatic and tabular crystals, columnar aggregates, concretions.

Origin and occurrence: Rare hydrothermal, mainly sedimentary, together with halite, anhydrite and gypsum. Beautiful blue crystals several cm long occur in cavities of concretions in the Sukoany mine, Madagascar. Prismatic crystals up to 100 mm (4 in) long in sulfur deposits in Poland (Tarnobrzeg) and Italy (Caltanissetta). Fine blue tabular crystals associated with aragonite crystals found in Pania Dolina, Slovakia. Fine crystals are known from marls in Tunisia and Libya.

Barite
BaSO₄

ORTHORHombic

Properties: C – white, yellow, blue, red, brown, black; S – white; L – vitreous; D – transparent to translucent; D₆ = 4.3-4.7; H = 3.5; CL – perfect; F – conchoidal to splintery; M – tabular to prismatic crystals, massive; LU – sometimes blue.

Origin and occurrence: Hydrothermal, it originates under medium and low temperatures, also sedimentary, together with fluorite, calcite, cinnabar and other minerals. Beautiful barite crystals up to 50 mm (2 in) found in hydrothermal veins in Průram, Czech Republic. Blue tabular crystals up to 100 mm (4 in) from Didova hora, Czech Republic. Beautiful tabular crystals up to 100 mm (4 in) known from Baník Štiavnica, Slovakia; Cavinic and Buia Sprie, Romania. Very fine crystals of up to 200 mm (7½ in) occurred in Alston Moor, Frizingham and Mowbray, Cumbria, UK. Beautiful druses of honey-brown crystals up to 70 mm (2½ in) long found in Pöhl, Germany. Fine druses of prismatic crystals known from Elk Creek, South Dakota, USA; so-called
desert roses (crystals with inclusion of sand grains) originating in desert climate occur in the vicinity of Norman, Oklahoma, USA. Shiny crystals come from Freiberg and Halsbrücke, Germany.

Application: an ingredient of drilling fluids, chemical, glass, paper and rubber industries.

Antlerite

\[\text{Cu}_6\text{(SO}_4\text{)}_2\text{(OH)}_6 \cdot 3 \text{H}_2\text{O} \]

Orthorhombic

Properties: C – green; S – light green; L – vitreous; D – translucent; DE – 3.9; H – 3.5; CL – perfect; F – conchoidal to uneven; M – short prismatic and acicular crystals, crusts and earthy aggregates.

Origin and occurrence: Secondary, resulting from weathering of Cu ores associated with other secondary Cu minerals. It is a principal mineral of the oxidation zone in Chuquicamata, Chile, where it forms crystals up to 5 mm (1/4 in). Acicular crystals, up to 20 mm (3/4 in) long, occurred in Bisbee, Arizona, USA. Crystalline crusts are known from Spania Dolina and Piesky, Slovakia.

Brochantite

\[\text{Cu}_4\text{(SO}_4\text{)}_3\text{(OH)}_6 \]

Monoclinic

Properties: C – green; S – light green; L – vitreous, in cleavage planes pearly; D – translucent to transparent; DE – 3.9; H – 3.5-4; CL – good; F – conchoidal to uneven; M – long prismatic to acicular crystals, granular.

Origin and occurrence: Secondary, as a result of the oxidation of Cu ores usually in the arid climate, together with other secondary Cu minerals. Crystals up to 70 mm (2 3/4 in) long found in Bisbee, together with pseudo-morphs of malachite after brochantite. Crystals are also known from Tsumeb, Namibia. Prismatic crystals up to 50 mm (2 in) long from Cerro Verde, Peru. Emerald-green crusts occur in L'ubietova, Slovakia.
Linarite

PbCu(SO₄)(OH)₂

MONOCLINIC

Properties: C – azure-blue; S – light blue; L – vitreous to adamantine; D – translucent; DE – 5.3-5.5; H – 2.5; CL – good; F – conchoidal; M – tabular and prismatic crystals, coatings.

Origin and occurrence: Secondary, as a result of the oxidation of Cu and Pb sulfides at low pH. The largest crystals, reaching up to 80 mm (3¼ in), come from the Mammoth mine, Tidong, Arizona, USA. Crystals from the Grand Reef mine in Arizona up to 50 mm (2 in) long. Very fine crystals, up to 30 mm (1⅞ in) were found in Keswick, Cumbria, England, UK. Large crystals were also described from Tsarneb, Namibia and from Broken Hill, New South Wales, Australia.

Alunite

KA₂(SO₄)₂(OH)₆

TRIGONAL

Properties: C – white, yellowish, gray; S – white; L – vitreous to pearly; D – transparent to opaque; DE – 2.8; H – 3.5-4; CL – perfect; F – conchoidal; M – rhombohedral crystals, porous aggregates, granular.

Origin and occurrence: Secondary, as a result of reactions of sulfuric acid with Al-rich rocks, associated with gypsum. Small crystals are known in Berehovo, Ukraine. Massive aggregates occur together with turquoise in Cu deposits in Arizona, USA. (New Cornelia mine and others). Huge alunite deposits, like Zaglik, Azerbaijan, are mined for Al.

Application: Al ore.
Natrojarosite

\[
\text{NaFe}^{3+}\left(\text{SO}_4\right)_2(\text{OH})_6
\]

TRIGONAL

Properties: C - yellow, brown; S - light yellow; L - vitreous; D - transparent to translucent; DE - 3.2; H - 3; CL - good; F - conchoidal; M - tabular to rhombohedral crystals, earthy aggregates.

Origin and occurrence: Secondary, as a result of weathering Fe sulfides, associated with fibroferrite, alunite and other minerals. It occurs in Mødm, Norway; Soda Springs Valley, Nevada, USA; Chuquicamata, Chile and elsewhere.

Jarosite

\[
\text{KFe}^{3+}\left(\text{SO}_4\right)_2(\text{OH})_6
\]

TRIGONAL

Properties: C - yellow; S - light yellow; L - adamantine to dull; D - translucent; DE - 2.9-3.3; H - 2.5-3.5; CL - good; F - conchoidal to uneven; M - rhombohedral to tabular crystals, granular, massive.

Origin and occurrence: Secondary, as a result of weathering Fe sulfides, usually associated with natrojarosite and other sulfates. The world's best specimens come from Peña Blanca Uranium mine, near Aldama, Chihuahua, Mexico, where crystals, up to 20 mm (0.79 in) were found. Crystals, up to 10 mm (0.39 in), were found in Tombstone, Arizona, USA. Crystals, together with pseudo-morphs of jarosite after alunite, occurred in Chuquicamata, Chile. Tabular crystals also were described from Horni Slavkov, Czech Republic.

Beudantite

\[
\text{PbFe}^{3+}\left(\text{AlO}_2\right)(\text{SO}_4)(\text{OH})_6
\]

TRIGONAL

Properties: C - dark green, brown, red-brown; S - greenish, gray-yellow; L - vitreous to resinous; D - transparent to translucent; DE - 4; H - 3.5-4.5; CL - good; M - rhombohedral crystals, crusts.

Origin and occurrence: Secondary, occurring in the oxidation zone of Pb deposits, together with scorodite and other minerals. Crystals, several mm in size, found in Tsumeb, Namibia, are the best in the world. Small crystals are known from Bisbee, Arizona, USA; Ashburton Downs, Western Australia, Australia and Kamaréza near Laurion, Greece.

Beudantite; 70 mm, Mohács, Hungary
Hanksite
Na$_2$K(SO$_4$)$_9$(CO$_3$)$_2$Cl

HEXAGONAL

Properties: C – colorless, yellowish; S – colorless; L – vitreous to dull; D – transparent to translucent; DE – 2.6; H – 3.5; CL – good; F – uneven; M – tabular to short prismatic crystals.

Origin and occurrence: Sedimentary in salt lake sediments, together with halite, borax and other minerals. Crystals up to 200 mm (7/4 in) found in Scarles Lake, California, USA. It is also known from borax deposits in the Death Valley, California, USA.

Caledonite
Cu$_2$Pb$_5$(SO$_4$)$_3$(CO$_3$)(OH)$_6$

ORTHORHOMBIC

Properties: C – green to blue-green; S – light green; L – resinous; D – transparent to translucent; DE – 5.6; H – 2.5-3; CL – perfect; F – uneven; M – prismatic crystals, radial aggregates.

Origin and occurrence: Secondary, occurring in the oxidation zone of Cu and Pb deposits, associated with linarite and other minerals. Crystals up to 20 mm (7/80 in) come from Leadhills, Scotland, UK. Crystals, up to 15 mm (7/10 in), were found in the Mammoth mine, Tiger, Arizona, USA. Rich druses are known from Anaruk, Inns. Crystals reaching up to 20 mm (7/80 in) occurred in the Blue Bell mine, California, USA.

Leadhillite
Pb$_4$(SO$_4$)(CO$_3$)$_2$(OH)$_2$

MONOCLINIC

Properties: C – colorless, yellowish, gray; S – colorless; L – resinous to adamantine; D – transparent to translucent; DE – 6.5; H – 2.5-3; CL – perfect; F – conchooidal; M – pseudo-hexagonal tabular crystals.

Origin and occurrence: Secondary mineral from the oxidation zone of Pb deposits, associated with cerussite, anglesite, linarite and other minerals. The largest crystals, measuring up to 15 cm, come from Tsumeb, Namibia. Crystals up to 25 mm (1 in) found in the Mammoth mine, Tiger, Arizona, USA. Crystals in Leadhills, Scotland, UK were of similar size.

Chalcantite
CuSO$_4$·5H$_2$O

TRICLINIC

Properties: C – deep blue; S – white; L – vitreous to resinous; D – transparent to translucent; DE – 2.3; H – 2.5; CL – imperfect; F – conchooidal; M – short prismatic to tabular crystals, stalactites, films; R – soluble in water.

Hanksite, 30 mm, Scarles Lake, U.S.A.
Melaneterite

\[\text{FeSO}_4 \cdot 7 \text{H}_2\text{O} \]

MONOCLINIC

Varieties: pisanite (with Cu contents), kirovite (with Mg contents)

Properties: C – light green; S – colorless; L – vitreous; D – translucent; DE – 1.9; H – 2; CL – perfect; F – conchoidal; M – granular crusts, botryoidal and stalactitic aggregates, films; R – soluble in water.

Origin and occurrence: Secondary, as a result of the oxidation of Fe sulfides, together with other sulfates. It is unstable under atmospheric conditions. Crystals up to 20 mm (0.79 in) long are known from Bisbee, Arizona and from the Boyd mine, Tennessee, USA. Stalactites, up to 50 cm (20 in) long, occurred in Chvaletice, Czech Republic. It is also common in Rio Tinto, Spain and Banská Štiavnica, Slovakia.
Epsomite
\(\text{MgSO}_4 \cdot 7\text{H}_2\text{O}\)

ORTHORHOMBIC

Properties: C – colorless to white; S – colorless; L – vitreous to silky; D – transparent to translucent; DE – 1.7; HI – 2; CL – perfect; F – conchoidal; M – small crystals, granular, stactitic aggregates; R – soluble in water, decomposing under atmospheric conditions.

Origin and occurrence: Secondary, as a result of the oxidation of Fe sulfides, also from crystallization of the salt lake water, associated with halite and other minerals. Crystals up to 1 m (39.3 in) long were found on Mount Kruger, Washington; prismatic crystals up to 50 mm (2 in) long also occur in Bisbee, Arizona and needles of a similar size come from the White Caps mine, Nevada, USA. It is also known as a product of the activity of fumaroles in Mount Vesuvius, Italy.

Morenosite
\(\text{NiSO}_4 \cdot 7\text{H}_2\text{O}\)

ORTHORHOMBIC

Properties: C – green, green-white; S – greenish; L – vitreous; D – transparent to translucent; DE – 2; HI – 2-2.5; CL – good; F – conchoidal; M – stactitic crusts and euhedral; R – soluble in water.

Origin and occurrence: Secondary, as a product of the oxidation of Ni minerals, stable mainly in the arid regions. It is very common in Sudbury, Ontario, Canada; also in Richeldevorsdorf, Germany and Potštej, Czech Republic.

Coquimbite
\(\text{Fe}_3\text{Fe}(\text{SO}_4)_3 \cdot 9\text{H}_2\text{O}\)

TRIGONAL

Properties: C – purple, yellow, green, colorless; S – colorless; L – vitreous; D – transparent; DE – 2.1 in; HI – 2; CL – imperfect; F – conchoidal to uneven; M – prismatic to tabular crystals, granular, massive; R – soluble in water.

Origin and occurrence: Secondary, associated with other sulfates. Crystals, several cm long, were found in the Dexter No. 7 mine, Calf Mesa, Utah, USA. Small prismatic crystals are known from Železná, tabular crystals occurred in Banská Štiavnica, Slovakia. It is very common in Chilean deposits, like Chuquicamata and Tierra Amarilla.

Alunogen
\(\text{Al}_2(\text{SO}_4)_3 \cdot 17\text{H}_2\text{O}\)

TRICLINIC

Properties: C – colorless, white, gray-yellow; S – colorless; L – silky; PS – transparent; DE – 1.8; HI – 1.5; CL – perfect; M – pseudo-hexagonal crystals, granular; R – soluble in water.

Origin and occurrence: Secondary, as a result of the pyrite oxidation, also a product of sublimation on volcanoes and burning cliffs, associated with other sulfates. Large crystals are known from the Dexter No. 7 mine, Calf Mesa, Utah, crusts, over 1 m (39.3 in) thick were found on Mount Alum, New Mexico.

Epsomite, 10 mm xx, Nassau, Germany

Morenosite, 60 mm, Potštej, Czech Republic
USA. Fine aggregates occur on the walls of underground workings in the old opal mines in Dubnik, Slovakia.

Halotrichite
\[\text{FeAs}_2\text{(SO}_4\text{)}_4 \cdot 22\text{H}_2\text{O}\]

MONOCLINIC

Properties: C – white, greenish; S – colorless; L – vitreous; PS – transparent to translucent; DE – 1.9-2.1; H – 1.5-2; CL – imperfect; F – conchoidal; M – acicular crystals, fibrous aggregates, efflorescences; R – soluble in water.

Origin and occurrence: Secondary, as a result of the pyrite oxidation, also a product of the activity of hot springs and solifluction, associated with other sulfates. Common fibrous crusts occur in Dubnik, Slovakia. It looks similar in Rio Marina, Elba, Italy, and in Chuquicamata, Chile. It is known from soliflucation in Pozzuoli, Italy. It is a product of hot springs activity in the Lassen Peak National Park, California, USA.

Apiohnite
\[\text{MnAs}_2\text{(SO}_4\text{)}_4 \cdot 22\text{H}_2\text{O}\]

MONOCLINIC

Properties: C – colorless, white, pink, greenish, yellow; S – colorless; L – silky; D – transparent; DE – 1.9; H – 1.5; M – fibrous aggregates, coatings, massive; R – soluble in water.

Origin and occurrence: Secondary, occurring together with other sulfates. Large accumulations are known from Little Pigeon Creek, Alum Cave, Tennessee, USA. It also occurs in Delagona Bay, Mozambique.
Bilinite, 60 mm, Bilihna, Czech Republic

Bilinite

\[\text{Fe}^{2+}\text{Fe}^{3+}(\text{SO}_4)_4 \cdot 22 \text{H}_2\text{O} \]

MONOCLINIC

Properties: C - white to yellowish; S - white; L - silky; D - opaque; DE - 1.9; H - 2; M - fibrous aggregates; R - soluble in water.

Origin and occurrence: Secondary as a result of the pyrite oxidation, associated with other sulfates. Fibrous aggregates are known from Svitce near Bilihna, Czech Republic. Also described from Bisbee, Arizona, USA.

Tscheremite

\[(\text{NH}_4)\text{Al} (\text{SO}_4)_2 \cdot 12 \text{H}_2\text{O} \]

CUBIC

Properties: C - colorless; S - colorless; L - vitreous; D - transparent to translucent; DE - 1.6; H - 1.5; F - conchoidal; M - octahedral crystals, fibrous and columnar aggregates; R - soluble in water.

Tscheremite, 50 mm, Nagyoszobsdag, Hungary

Polyhalite

\[\text{KCa}_2\text{Mg}(\text{SO}_4)_4 \cdot 2 \text{H}_2\text{O} \]

TRICLINIC

Properties: C - colorless, brown, red-brown; S - colorless; L - vitreous; D - transparent to translucent; DE - 2.8; H - 3-3.5; CL - perfect; M - acicular to prismatic crystals, columnar, scaly and fibrous aggregates.

Origin and occurrence: Sedimentary, as a constituent of salt deposits, also as a product of volcanic activity. Tabular and prismatic crystals are found rarely together with massive polyhalite aggregates in Stassfurt, Germany. Fibrous aggregates come from Halstatt, Austria. Large deposits of polyhalite are located near Carlsbad, New Mexico, USA. Coatings occur on Mount Vesuvius, Italy.

Görgeyite

\[\text{K}_2\text{Ca}_3\text{Si}(\text{SO}_4)_6 \cdot \text{H}_2\text{O} \]

MONOCLINIC

Properties: C - colorless, yellowish; S - colorless; L - vitreous; D - translucent; DE - 3; H - 3.5;

Polyhalite, 54 mm, Carlsbad, U.S.A.
Gypsum, 62 mm, Carneville, Utah, U.S.A.

Origin and occurrence: Rare primary hydrothermal, mostly sedimentary and as a weathering product, associated with anhydrite, halite and other minerals. Crystals up to 50 mm from Carnevic, Romania are probably hydrothermal. Huge crystals up to 1.5 m (5 ft) long found in karst cavities (Cave of Swords) in gossan of the PbZn deposit Naica, Chihuahua, Mexico. Crystals up to 9 m (29 ft 6 in) long from Santa Eufemia, Chihuahua, Mexico, where they were found combined with interesting aggregates, called ‘ram’s horns’ from their shape. Crystals up to 4 m (13 ft) long occurred in Tarnobrzeg, Poland. Common crystals are also known from Goguel, Spain. The ‘desert roses’ or crystal druses, from Sahara desert in Tunisia and Algeria, with sand grain inclusions are mineralogically interesting. Large slabs of the transparent variety, called Maria-glass, found in Friedrichshöhe, Germany. Fine-grained variety alabaster occurs e.g. in Italy. Fibrous variety selenite (sometimes also called satin spar) comes from the Sylva river basin, Perm, Russia.

Application: building, chemical and medical industries.

Gypsum

CaSO₄ · 2 H₂O

Monoclinic

Varieties: Maria-glass, alabaster, satin spar, selenite.

Properties: C – colorless, white, gray, yellowish; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 2.3; H – 1.5-2; CL – perfect; F – conchoidal; M – typical monoclinic crystals, often twins, fibrous and pearly aggregates, granular, massive; LU – crystals with inclusions sometimes bluish to yellowish.

Görgenite, 80 mm, Inner Lake, Kazakhstan

Langite

Ca₄(Al₂O₄)(OH)₆ · 2 H₂O

Orthorhombic

Properties: C – blue, blue-green; S – light blue; L – vitreous to silky; D – translucent; DE – 3.3; H – 2.5-3; CL – perfect; M – small isometric crystals, fine-grained crusts, earthy aggregates.

Origin and occurrence: Secondary, as a product of the oxidation of Cu ores, associated with gypsum and other minerals. Crystals known from St. Just, Cornwall, UK. Crystals occurred in Tsunf, Namibia. Fine specimens come from Spain Dolina and L’ubietova, Slovakia and from Borovec, Czech Republic. It is also common in Ely, Nevada, USA and in El Colbe, Chile.

Langite, 45 mm, Allihies, Cork, Ireland

147
Fibroferrite

Fe$_3^+$ (SO$_4$)(OH) . 5 H$_2$O

Orthorhombic

Properties: C – yellowish; greenish; gray; S – white; L – silky; D – opaque; DE – 1.9; H – 2.5; CL – perfect; M – small crystals, fibrous and botryoidal crusts; R – soluble in water.

Origin and occurrence: Secondary as a product of the pyrite oxidation, together with other sulphates. Crystals in cavities in melanterite found in the Dexter No.7 mine, Calf Mesa, Utah, USA. Vein fillings up to 3 m (10 ft) thick come from the Santa Elena mine, La Alcapparrosa, Argentina. Fine fibrous aggregates occur in Dubnik, Slovaksia. It is common in many localities in Chile (Tierra Amarilla, Chacricamata).

Aluminite

Al$_2$(SO$_4$)(OH)$_4$. 7 H$_2$O

Monoclinic

Properties: C – white; S – white; L – dull; D – opaque; DE – 1.7-1.8; H – 1-2; CL – none; M – earthy nodules, consisting of microscopic needles.

Origin and occurrence: Secondary, resulting from the reaction of sulphuric acid with Al in Al-rich rocks. Large nodule, 30 cm (12 in) in diameter, known from Newhaven, Sussex, UK. Fine white nodules described from Male Chuchle, Prague, Czech Republic. It also occurs near Halle, Germany and covers limestone in the vicinity of Joplin, Missouri, USA.

Botryogen

MgFe$_2^{3+}$ (SO$_4$)$_2$(OH) . 7 H$_2$O

Monoclinic

Properties: C – orange-red; S – yellow; L – vitreous; D – transparent to translucent; DE – 2.1; H – 2.2-2.5; CL – perfect; F – conchooidal; M – prismatic striated crystals, racemose and spherical aggregates with radial structure.

Origin and occurrence: Secondary, as a result of the pyrite oxidation in arid regions, together with other sulphates. Crystals up to 35 mm (1½ in) long from the Libiola mine near Genoa, Italy. It is common in Chacricamata and Quetena in Chile; also known from Rammelsberg, Germany.

Botryogen

3 mm xx, Knoxville, USA.
Copiapite

\[(Fe^{2+},Mg)Fe^{3+}_{4}(SO_4)_{6}(OH)_{2} \cdot 20 H_2O\]

TRICLINIC

Properties: C – yellow; green-yellow; orange; S – yellow; L – pearly; D – transparent to translucent; DE – 2.1-2.2; H – 2.5; CL – perfect; M – thin tabular crystals, scaly and pulverulent aggregates, earthy.

Origin and occurrence: Secondary, originated from the pyrite oxidation, together with other sulfates.

Tabular crystals come from the Dexter No.7 mine, Calf Meza, Utah, USA and also from Zeleznik, Slovakia. Fine crystals were found in many localities in Chile (Tierra Amarilla, Chuquicamata). It also occurs in Rammelsberg, Germany.

Devilline

\[Cu_2Cu_4(SO_4)_2(OH)_{6} \cdot 3 H_2O\]

MONOCLINIC

Properties: C – emerald-green; S – white to light green; L – vitreous to pearly; D – transparent to translucent; DE – 3.1; H – 2.5; CL – perfect; M – thin tabular pseudo-hexagonal crystals and coatings.

Origin and occurrence: Secondary, as a result of the oxidation of Cu sulfides, associated with other secondary Cu minerals. The world’s best specimens come from Spania Dolina, Slovakia, where crystal rosettes up to 10 mm (⅜ in) in diameter were found in the past century; also known from Botallack, Cornwall, UK and Taunus, Namibia.

Serpierite

\[CaCu(Fe_{2+},Zn)_{4}(SO_4)_{2}(OH)_{6} \cdot 3 H_2O\]

MONOCLINIC

Properties: C – blue; S – white; L – vitreous; D – transparent to translucent; DE – 3.1; H – 2.5; CL – perfect; M – tabular crystals, coatings.

Origin and occurrence: Secondary, originated in the oxidation zone of Cu-Zn deposits, together with smithsonite and other minerals. Its small crystals and aggregates occurred in Laurion, Greece. Recently confirmed at Příbram, Czech Republic.
Ettringite

C₆₅A₄₂(SO₄)₃(OH)₁₂·26 H₂O

HEXAGONAL

Properties: C – colorless, yellow; S – white; L – vitreous to silky; D – transparent; DE – 1.8; H – 2.5; CL – perfect; M – prismatic crystals, fibrous aggregates.

Origin and occurrence: Metamorphic, associated with sturmanite. The world’s best crystals reaching up to 100 mm (4 in) come from the N’Chwaning mine, Kuruman, South Africa. Crystals up to 4 mm (⅛ in) occurred in Franklin, New Jersey, USA. Also known from the contact metamorphic conditions in Crestmore, California, USA.

Sturmanite

C₆₅Fe₃⁺₂(SO₄)₂(B(OH)₄)₂·(OH)₁₂·25 H₂O

TRIGONAL

Properties: C – yellow, yellow-green; S – white; L – vitreous; D – transparent to translucent; DE – 1.9; H – 2.5; CL – perfect; M – flat dipynalional crystals.

Origin and occurrence: Probably metamorphic, associated with barite, hematite and ettringite. Crystals up to 140 mm (5½ in) long come from the N’Chwaning mine, Kuruman, South Africa.

Johannite

Cu(UO₂)₂(SO₄)₂(OH)₁₂·8 H₂O

TRICLINIC

Properties: C – green; S – light green; L – vitreous; D – transparent to translucent; DE – 3.3; H – 2-2.5; CL – good; M – prismatic to thick tabular crystals, scaly aggregates, coatings; R – radioactive.

Origin and occurrence: Secondary, as a result of the uraninite oxidation, together with other secondary U minerals. Crystals are known from Bichynov, Czech Republic and Johanneorgeorgenstadt, Germany. It was common with zippeite in Central City, Colorado, USA and also reported from Mounana, Gabon.

Zippeite

K₄(UO₂)₃(SO₄)₃(OH)₁₀·4 H₂O

ORTHORHOMBIC

Properties: C – orange-yellow; S – yellow; L – dull to earthy; D – opaque; DE – 3.7; H – not determined; CL – perfect; M – acicular and tabular crystals, pulverulent and acicular aggregates, coatings; LU – green; R – radioactive.

Origin and occurrence: Secondary, forming during the uraninite oxidation, associated with other secondary U minerals. Small tabular crystals come from Drmou, Czech Republic. Coatings and
Acicular aggregates are known from Jáchymov, Czech Republic and Central City, Colorado, USA; also occurs in Shinkolobwe, Zaire.

Scheelite

\[\text{CaWO}_4 \]

Tetragonal

Properties: C – colorless, gray-white, yellow-brown, orange, red, greenish; S – white; L – greasy to adamantine; D – translucent; DE – 6.1; H – 4.5-5; CL – good; F – conchoidal to uneven; M – pseudo-octahedral crystals, granular, massive; LU – blue-white.

Origin and occurrence: Magmatic in pegmatites, hydrothermal in greisens and metamorphic; parageneses vary significantly according to the origin. Beautiful brownish crystals up to 100 mm (4 in) in size come from Taewha and Tongwa in Korea. Similar crystals were recently found in China. Orange crystals up to 40 mm (1 1/4 in) in size are associated with cassiterite crystals on quartz crystals from Iultin and Lenkergin, Russia. Clear crystals, weighting up to 50 kg (110 lb), occurred in pegmatites near Naitas, Namibia. Crystals up to 70 mm (2 3/4 in) reported from several mines near Traversella, Italy. Beautiful red crystals up to 20 mm (7/8 in) were very rare in Parnkram, Czech Republic. Yellow crystals up to 40 mm (1 1/8 in) are known from quartz veins with pumpellyite in Obol Dsl, Czech Republic.

Application: W ore.
Stolzite: 20 mm, Arizona, U.S.A.

Stolzite

TETRAGONAL

Properties: C – gray-brown, orange-yellow, red, green; S – colorless; L – adamantine to resinous; D – transparent to translucent; DE – 7.0-8.3; H – 2.5-3; CL – imperfect; F – conchoidal to uneven; M – dipyrail and thick tabular, striated crystals.

Origin and occurrence: Secondary, as a product of the oxidation of primary W minerals. Crystals up to 60 mm (2½ in) from St Leger-de-Peyres, France. Prisms and needles up to 25 mm (1 in) long found in Broken Hill, New South Wales, Australia. Crystals up to 25 mm (1 in) also known from Tsumeb, Namibia. Crystals up to 20 mm (¾ in) reported from Cínovec, Czech Republic and from the Black Pine mine, Montana, USA.

Crocoite: 44 mm, Dundas, Australia

Crocoite

MONOCLINIC

Properties: C – orange, red; S – orange-yellow; L – adamantine to greasy; D – translucent; DE – 6; H – 3; CL – good; F – conchoidal to uneven; M – long prismatic to acicular crystals, crusts.

Origin and occurrence: Secondary, as a result of the galena oxidation in basic rocks. The world’s best specimens come from the Dundas district, Tasmania, Australia where crystals up to 100 mm (4 in) long were found in several mines. Fine crystals up to 40 mm (1⅞ in) long are known from Berezovsk, Ural mountains, Russia. Crystals up to 20 mm (¾ in) were recently found in Callenberg, Germany.

Bazoskdaite: 70 mm, Bayan Tuur, Mongolia
Ferrimolybdite

Fe$_3$(MoO$_4$)$_2$·8H$_2$O

ORTHORHOMBIC

Properties: C – yellow, whitish; S – light yellow; L – adamantine, silky, earthy; D – opaque; DE – 4.4; H – 1-2; M – small acicular crystals, fibrous and radial aggregates, earthy.

Origin and occurrence: Secondary, as a product of the molybdenite oxidation. Microscopic crystals were found in Glen Innes, New South Wales, Australia. It occurred as yellow coatings in Climax and Telluride, Colorado, in the G乏uchell mine, Nevada, USA; also in Hrчky near Eistг, Czech Republic.

Bepakdalite

CaFe$_2$H$_6$(MoO$_4$)$_3$(AsO$_4$)$_2$·8H$_2$O

MONOCLINIC

Properties: C – lemon-yellow; S – yellow; L – vitreous, waxy, dull; D – opaque; DE – 3; H – 3; CL – good; M – short prismatic microscopic crystals, pulverulent.

Origin and occurrence: Secondary mineral. Originally described from Kara-Oba, Kazakhstan. It also occurred in Tsumeb, Namibia and in Krapka, Czech Republic.

Wulfenite

PbMoO$_4$

TETRAGONAL

Properties: C – yellow, orange, brownish, red, greenish; S – white; L – greasy to adamantine; D – transparent to translucent; DE – 6.3-7; H – 3; CL – good; F – uneven to conchoidal; M – thin tabular and dipyramidal crystals, granular, massive.

Origin and occurrence: Secondary, as a result of the galena oxidation, together with cerussite, vanadinite and other minerals. The best specimens are known from the Red Cloud mine near Yuma, Arizona, where red tabular crystals found up to 50 mm (2 in) diameter. Yellow-brown crystals up to 160 mm (4 in) come from the Glove mine, Arizona, USA. Thick tabular orange crystals up to 20 mm (¾ in) in diameter found in the Espanol mine, Villa Ahumada, Los Lamentos, Chihuahua. Beautiful yellow plates up to 60 mm (2½ in) with orange mimetite spheres occurred in the San Francisco mine, Magdalena, Sonora, Mexico. Rare tabular crystals up to 70 mm (2¾ in) across come from Tsumeb, Namibia. Fine orange-yellow tabular crystals up to 20 mm (¾ in) across, and pyramidal crystals are known from Bleiberg, Austria and Medica, Slovenia. Crystals up to 100 mm (4 in) were found recently in Touissit, Morocco.

Wulfenite, 38 mm, Los Lamentos, Mexico
8. Phosphates

Lithiophosphate

$value[0]$

Orthorhombic

Properties: C – colorless, white, pinkish; S – white; L – vitreous; D – transparent to translucent; DE – 2.5; H – 4; CL – perfect; F – uneven; M – prismatic crystals, granular.

Origin and occurrence: Hydrothermal in granitic pegmatites, where it forms by replacement of spodumene and montebrasite. Cleavable aggregates up to 100 mm (4 in) across occur in the Tanco Mine, Bernic Lake, Manitoba, Canada; crystals up to 25 mm (1 in) across in the Foote mine, Kings Mountain, North Carolina, USA.

Beryllonite

$value[1]$

Monoclinic

Properties: C – colorless, white, yellowish; S – white; L – vitreous; D – transparent to translucent; DE – 2.8; H – 5.5–6; CL – perfect; F – uneven; M – short prismatic to tubular crystals, granular.

Origin and occurrence: Hydrothermal in cavities in granitic pegmatites where it is associated with herderite, albite and tourmaline. Crystals and their twins, up to 150 mm (6 in) across come from Stoneham and Newry, Maine, USA; also from Viitaniemi, Finland and Paprok, Afghanistan.

Adamite, 52 mm, Mapimi, Mexico

Lithiophosphate, 50 mm, Tanco, Canada

Triphylite

$value[2]$

Orthorhombic

Properties: C – gray-green, gray-blue, gray, brown; S – gray-white; L – greasy to vitreous; D – transparent to translucent; DE – 3.4; H – 4.5; CL – good; F – uneven; M – short prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites, associated with grafitonite, saccopside and many secondary phosphates. Large triphylite crystals up to 1.5 m (5 ft) across are known from Hagedorf, Germany; from the Tip Top mine, Custer, South Dakota and Palermo No. 1 mine, North Groton, New Hampshire, USA; also from Hühnerkobel, Germany.

Triphylite, 70 mm, Hagedorf, Germany
Lithiophilite
LiMnPO₄

Orthohombic

Properties: C - pink, red-brown, brown; S - white; L - vitreous; D - transparent to translucent; DE - 3.3; H - 4-5; CL - good; F - uneven; M - short prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites. It is sometimes associated with triphilitite and triphylite, typically replaced by many secondary phosphates. Large masses of lithiophilite, reaching up to 1 m (3 3/4 in), occur in Karibib, Namibia; Kitumbe, Rwanda. Other localities are Manguard, Portugal; Tanco mine, Bernie Lake, Manitoba, Canada; Stewart Lithia Mine, Pala, California, USA.

Purpurite
Mn₃PO₄

Orthohombic

Properties: C - pink, purple, dark brown; S B red-purple; L - dull to velvet; D - translucent to opaque; DE - 3.7; H - 4-4.5; CL - good; F - uneven; M B granular, massive.

Origin and occurrence: Hydrothermal, as a product of lithiophilite replacement in granitic pegmatites. It is usually associated with many secondary phosphates. It is known from Kitumbe, Rwanda; Usakos and Sandamab, Namibia; the Tip Top and Bull Moose mines, Custer, South Dakota and Branchville, Connecticut, USA.

Berzelite
(C₉Na₃)₃(Mg,Mn)₂(AsO₄)₃

Cubic

Properties: C - yellow, orange; S - red-purple; L - resinosous; D - transparent to translucent; DE - 4.1; H - 4-4.5; CL - none; F - conchoidal to uneven; M - isometric crystals, granular, massive.

Origin and occurrence: Metamorphic, together with haussmanite, rhodinite and teaphroite. It occurs as massive in Langban and Nordmark, Sweden.

Whitlockite
Ca₅(Mg,Fe)H(PO₄)₇

Trigonal

Properties: C - colorless, white, yellowish, pinkish; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.1; H - 5; CL - none; F - conchoidal to uneven; M - rhombohedral crystals, granular, massive.
Origin and occurrence: Hydrothermal, as a product of replacement of primary phosphates in granitic pegmatites, rare in sedimentary rocks – phosphorites; very rare magmatic in meteorites. Mainly associated with apatite and carbonates. Imperfect crystals around 10 mm (⅛ in) across, occur in the Palermo No. 1 mine, North Groton, New Hampshire; also in the Tip Top mine, Custer, South Dakota, USA.

Xenotime-(Y)

YPO₄

TETRAGONAL

Properties: C – brown, yellow, gray, greenish; S – white; L – vitreous to resinous; D – transparent, translucent to opaque; DE – 4.5; H – 4.5; CL – good; F – conchoidal to uneven; M – long prismatic to tabular crystals, granular; R – sometimes weakly radioactive and metamict.

Origin and occurrence: Magmatic in granitic and alkaline pegmatites, granites and syenites; hydrothermal in the Alpine-type veins; metamorphic in gneisses; common in placers. It is associated with monazite-(Ce) and zircon. Perfect prismatic crystals up to 100 mm (4in) across occur mainly in pegmatites in Kragerø and Hitterø, Norway; Ytterby, Sweden; in several places in Madagascar; in Ichikawa, Japan. Crystals about 20 mm (⅜ in) are known from the Alpine-type veins in Binntal, Switzerland.

Application: ore of rare earth elements.
Manazite-(Ce)

CoPO₄

MONOCLINIC

Properties: C – yellow, brown, red-brown, orange, gray-green; S – white; L – vitreous to resinous; D – transparent, translucent to opaque; DE – 4.6; H – 5.5-5.5; CL – good; F – conchoidal to uneven; M – long prismatic to tabular crystals, granular; R – sometimes weakly radioactive and metamict.

Origin and occurrence: Magmatic in granite and alkaline pegmatites, granites, syenites, carbonatites; hydrothermal in the Alpine-type veins and greisens; metamorphic in gneisses; common in placers.

It is associated with apatite, xenotime-(Y) and zircon. Perfect prismatic crystals up to 200 mm (7½ in) come from Mars Hill, North Carolina, Trout Creek Pass, Colorado, USA; also from Arendal, Norway; Ambatofotsikely and Ampangabé, Madagascar, where masses weighing several kg are common; crystals, up to 200 mm (7½ in) across found in Minas Gerais, Jaguaraçu, Brazil.

Application: ore of rare earth elements.

Hydroxylherderite

CaBe₂(PO₄)(OH,F)

MONOCLINIC

Properties: C – colorless, white, yellowish, greenish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.0; H – 5-5.5; CL – good; F – conchoidal to uneven; M – prismatic to tabular crystals, radial aggregates, granular.

Origin and occurrence: Hydrothermal in cavities in granite pegmatites and in greisens. Perfect crystals, up to 120 mm (4½ in) long come from Mariana and together with colored tourmalines from Virginia da Lapa, Minas Gerais, Brazil; also known from Topsham and Stoneham, Maine, USA.

Amblygonite

LiAl(PO₄)(F,OH)

TRIGLICLINIC

Properties: C – colorless, white, yellowish, blueish, gray; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.1; H – 5-5-6; CL – good; F – conchoidal to uneven; M – short prismatic crystals, granular, massive.

Application:
Montebrasite, 80 mm, White Picaecho, Arizona, U.S.A.

Origin and occurrence: Magmatic in granitic pegmatites and some granites; rare hydrothermal in greisens and in ore veins. Large ambygonite masses, several meters across, come from pegmatites, like the Beecher, Custer and Hugo mines, Keystone, South Dakota, USA, where its blocks weighed up to 200 tons; also known from Viitaniemi, Finland; U30, Sweden. Typical representative of the quartz-amblygonite veins is Vernéróv, Czech Republic.

Application: Li ore and raw material for ceramics.

Montebrasite
\(\text{LiAl}[(\text{PO}_4)_(\text{OH},\text{F})] \)

TRICLINIC

Properties: C — colorless, white, yellowish, yellow, bluish, gray; S — white; L — vitreous to dull; D — transparent to translucent; DE — 3.0; H — 5.5-6; CL — good; F — conchoidal to uneven; M — short prismatic to tabular crystals, granular, massive.

Wagnerite, 18 mm x, Werfen, Austria

Origin and occurrence: Magmatic in granitic pegmatites; metamorphic in greisens and eclogites; hydrothermal in quartz veins and in salt deposits. The most famous finds come from the quartz veins in Hölzgraben and Radelgraben, the Alps, Austria, where wagnerite occurs together with lazulite and forms crystals up to 30 mm (\(\frac{1}{3} \) in) across; also known from Manguade, Portugal and Bodenmais, Germany.

Wagnerite
\(\text{Mg}_2[(\text{PO}_4)_(\text{F},\text{OH})] \)

MONOCLINIC

Properties: C — light yellow, yellowish-green, yellow-brown, green; S — white; L — vitreous to greasy; D — transparent, translucent to opaque; DE — 3.2; H — 5-5.5; CL — imperfect; F — conchoidal to uneven; M — short prismatic crystals, granular, massive.

Amblygonite, 55 mm, Minas Gerais, Brazil

159
Zwieselite

Fe₂(PO₄)(F,OH)

MONOCLINIC

Properties: C – dark brown to black-brown; S – light brown; L – vitreous to greasy; D – translucent to opaque; DE – 4.0; H – 5-5.5; CL – imperfect; F – conchooidal to uneven; M – short prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites; rare hydrothermal in greisens. It is associated withapatite, triplite and secondary phosphates. Imperfect crystals and granular aggregates are known from pegmatites near Zwiesel, Germany; Dolní Bory, Czech Republic.

Libethenite

80 mm, L'ubietová, Slovakia

Triplite

Mn₂(PO₄)(F,OH)

MONOCLINIC

Properties: C – pink, light brown; S – light brown; L – vitreous to greasy; D – translucent to opaque; DE – 3.8; H – 5-5.5; CL – imperfect; F – conchooidal to uneven; M – short prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites and granites; hydrothermal in greisens and in quartz veins. It is usually hydrothermally altered and replaced by secondary phosphates. Huge masses several meters in size come from pegmatites in Karibib, Namibia; it also occurs in Manguale, Portugal and in Sukola, Finland.

Libethenite

Cu₂(PO₄)(OH)

ORTHORHOMBIC

Properties: C – black-green to light green; S – olive-green; L – greasy; D – translucent; DE – 3.9; H – 4; CL – imperfect; F – conchooidal to uneven; M – short prismatic and dipyramidal crystals, botryoidal aggregates, granular, massive.

Origin and occurrence: Secondary in Cu deposits, where it occurs together with malachite, pseudomalachite and brochantite. Perfect crystals, up to 30 mm (1¼ in) across, come from the Rokana mine, Zambia; crystals, up to 10 mm (¼ in), are known from Kambwe, Zaire; L'ubietová, Slovakia; Nižňany Tagil, Ural Mts., Russia.
Olivenite

\[\text{Cu}_2(\text{AsO}_4)(\text{OH}) \]

ORTHORHOMBIC

Properties: C – olive-green, green-brown, grey-green to gray; S – light green; L – greasy; D – translucent to opaque; DE – 4.4; H – 3; CL – imperfect; F – conchoidal to uneven; M – long to short prismatic and dipyramidal crystals, acicular and radial aggregates, massive.

Origin and occurrence: Secondary in Zn deposits, associated with hemimorphite, goethite and smithsonite. Rich druses of green and rare purple crystals up to 70 mm (2 3/4 in) across come from Mine Ojuela, Mapimi, Durango, Mexico; also known from Tsumeb, Namibia; Laurion, Greece and Cap Carbonne, France.

Adamite

\[\text{Zn}_2(\text{AsO}_4)(\text{OH}) \]

ORTHORHOMBIC

Properties: C – yellow-green, yellow, green, colorless, purple; S – white; L – vitreous; D – transparent to translucent; DE – 4.4; H – 3.5; CL – imperfect; F – conchoidal to uneven; M – long to short prismatic and dipyramidal crystals, acicular and radial aggregates, massive; LU – yellow-green.

Adamite, 34 mm, Mapimi, Mexico
Lazulite, 11 mm x. Lincoln Co., U.S.A.

![Lazulite Image](image)

Lazulite

\(\text{MgAl}_2(\text{PO}_4)_2(\text{OH})_2\)

MONOCLINIC

Properties: C – dark to light blue, blue-green; S – white; L – vitreous; D – transparent to translucent; DE – 3.1; H – 5.5-6; CL – imperfect; F – conchooidal to uneven; M – prismatic crystals, granular, massive.

Origin and occurrence: Hydrothermal in granite veins and granite pegmatites, where it is formed by decomposition of primary phosphates; metamorphic in quartzites. Imperfect crystals up to 100 mm (4 in) across come from Hornsjoberg, Sweden; perfect crystals about 50 mm found in Ashudi, Pakistan; also known from Big Fish River, Yukon, Canada and near Werfen, Austria.

Scorzalite

\(\text{FeAl}_4(\text{PO}_4)_2(\text{OH})_2\)

MONOCLINIC

Properties: C – dark blue, blue-green; S – white; L – vitreous; D – transparent to translucent; DE – 3.3; H – 6; CL – imperfect; F – conchooidal to uneven; M – prismatic crystals, granular, massive.

Origin and occurrence: Hydrothermal in granite pegmatites, as a replacement product of primary phosphates, rare in quartz veins. Dark blue, granular aggregates up to 100 mm (4 in) across occur in the Palermo No. 1 and No. 2 mines, North Groton, New Hampshire and the Victory mine, Custer, South Dakota, USA.

Rockbridgeite

\(\text{Fe}^{2+}\text{Fe}^{3+}_4(\text{PO}_4)_3(\text{OH})_5\)

ORTHORHOMBIC

Properties: C – dark and light green, black-green; S – green; L – dull; D – translucent to opaque; DE – 3.4; H – 4.5; CL – good; F – uneven; M – acicular crystals, radial aggregates and crusts, granular, massive.

Origin and occurrence: Secondary in granite pegmatites and in Fe deposits. It mostly originates from the hydrothermal alteration of primary phosphates, mainly triphylite, and is associated with other secondary phosphates. Rich radial aggregates up to 50 mm (2 in) across come from Hagendorf, Germany; the Tip Top mine, Custer, South Dakota and the Fletcher mine, Groton, New Hampshire, USA.

![Rockbridgeite Image](image)

Rockbridgeite, 70 mm, Hagendorf, Germany.
Frondelite

\[\text{MnFe}^{3+}\text{Fe}^{2+}\text{(PO}_4\text{)}_3\text{(OH)}_5 \]

Orthorhombic

Properties: C – light olive-green, brown, black-green; S – green; L – dull; D – translucent to opaque; DE – 3.5; H – 4.5; CL – good; F – uneven; M – acicular crystals, radial aggregates and crusts, granular, massive.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a result of the hydrothermal alteration of primary phosphates, mainly lithiophilite. Radial aggregates occur in the Fletcher mine, Groton, New Hampshire, USA; also in Sapucania, Minas Gerais, Brazil.

Dufrenite

\[\text{Fe}^{2+}\text{Fe}^{3+}\text{Fe}^{2+}\text{(PO}_4\text{)}_3\text{(OH)}_5 \cdot 2 \text{H}_2\text{O} \]

Monoclinic

Properties: C – dark green, black-green, black; S – green; L – vitreous to dull; D – translucent to opaque; DE – 3.4; H – 3.5-4.5; CL – good; F – uneven; M – radial aggregates and crusts, granular, massive.

Origin and occurrence: Secondary in granitic pegmatites and in the oxidation zone of Fe deposits; it forms in pegmatites as a result of the hydrothermal alteration of primary phosphates. Radial aggregates occur in pegmatites in Hagedorn and Hühnerkobel, Germany; also in gossan in the Wheal Phoenix mine, Cornwall, UK.

Pseudomalachite

\[\text{Cu}_5\text{(PO}_4\text{)}_3\text{(OH)}_4 \]

Monoclinic

Properties: C – green, black-green; S – green; L – vitreous to dull; D – translucent to opaque; DE – 4.3; H – 4.5-5; CL – good; F – uneven; M – short prismatic crystals, botryoidal aggregates with radial structure, massive.

Origin and occurrence: Secondary in Cu deposits, associated with malachite, chrysocolla, libethenite and goethite. Botryoidal aggregates and large masses come from Nizhniy Tagil, Ural mountains, Russia; also from Ehl and Virneberg, Germany; from Lubietová, Slovakia; and also from many localities in Shaba province, Zaire.

Pseudomalachite, 80 mm, Lubietová, Slovakia
Cornubite
\(\text{Cu}_2(\text{AsO}_4)_2(\text{OH})_4 \)

TRICLINIC

- Properties: C – light to dark green; S – light green; L – vitreous to dull; D – translucent; DE – 4.8; H – not determined; CL – not determined; F – uneven; M – botryoidal aggregates, massive.
- **Origin and occurrence**: Secondary in Cu deposits. It was found together with olivenite and clinozoisite in the Bedford United quarry, Cornwall, UK; also in Ashburton Downs, Western Australia, Australia and France, Slovakia.

Cornellite, 10 mm aggregate, Lumumbashi, Zaire

Augelite
\(\text{Al}_2(\text{PO}_4)(\text{OH})_3 \)

MONOCLINIC

- Properties: C – colorless, white, yellowish, pinkish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.7; H – 4.5-5; CL – good; F – uneven; M – thick tabular to prismatic crystals, granular, massive.
- **Origin and occurrence**: Hydrothermal in granitic pegmatites as a product of primary phosphates replacement; rare metamorphic in quartzites. Massive aggregates several decimeters across occur in pegmatites in Burango, Rwanda; also in the Hugo mine, Custer, South Dakota and Mount White, California, USA. Crystals up to 20 mm (0.8 in) across come from Rapid Creek, Yukon, Canada and from the Champion mine, California; rare small crystals found in the Palermo No. 1 mine, North Groton, New Hampshire, USA.

Cornellite
\(\text{Cu}_3(\text{PO}_4)(\text{OH})_3 \)

ORTHORHOMBIC

- Properties: C – dark blue to blue-green; S – light blue; L – vitreous; D – transparent to translucent; DE – 4.1; H – 4.5; CL – none; F – conchooidal to uneven; M – short prismatic crystals, coatings.
- **Origin and occurrence**: Secondary in Cu deposits. It is rare in the Etoile mine near Lumumbashi and in Kalagi, Shaba province, Zaire; also occurs in Yerington, Nevada and in Saginaw Hill, Arizona, USA.
Clinoclase
Cu₂(AsO₄)(OH)₃
MONOCLINIC • •

Properties: C – dark green-blue to black-green; S – blue-green; L – vitreous; D – transparent to translucent; DE – 4.4; H – 2.5-3; CL – perfect; F – uneven; M – prismatic and tabular crystals, botryoidal aggregates.
Origin and occurrence: Secondary in Cu deposits, often associated with malachite, azurite and other secondary Cu minerals. Spherical aggregates up to 10 mm (½ in) known from the Majoka Hill mine, Nevada, USA; occurs rarely near Tavistock, Devon, UK; also in Novoveská Huta, Slovakia.

Conichalcite
Cu₃Ca(AsO₄)₂(OH)
ORTHORHOMBIC • •

Properties: C – yellow-green to emerald-green; S – light green; L – vitreous to greasy; D – transparent to translucent; DE – 4.3; H – 4.5; CL – none; F – uneven; M – short prismatic crystals, botryoidal aggregates with radial structure, massive.
Origin and occurrence: Secondary in Cu deposits. It occurs as rich botryoidal aggregates in Otavi, Namibia; Tintic, Utah, in the Higgins mine, Bisbee, Arizona and Yerington, Nevada, USA.

Dufite
PbCu(AsO₄)(OH)
ORTHORHOMBIC • •

Properties: C – yellow-green, olive-green to grey-green; S – light green; L – vitreous to greasy; D – translucent; DE – 6.5; H – 3; CL – not determined; F – uneven; M – small crystals, botryoidal aggregates and coatings.
Origin and occurrence: Secondary in base metals deposits. It is associated with malachite and azurite in Tsumeb, Namibia; in Mina Ojuela, Mapimi, Durango, Mexico; in Moldava, Czech Republic.

Dufite, 40 mm, Ogilvy, USA
Desclizite
PbZn(VO₄)(OH)

ORTHORHOMBIC •••

Properties: C – red-orange, red-brown to brown-black, gray-green; S – light yellow-brown; L – greasy; D – transparent, translucent to opaque; DE – 6.1; H – 3-3.5; CL – none; F – conchooidal to uneven; M – crystals of different habits, mostly pyramidal or prismatic, botryoidal and skeletal aggregates, massive.

Origin and occurrence: Secondary in base metals deposits. It is mainly associated with pyromorphite, mimetite, vanadinite and other secondary Pb minerals. Occurs as crystals up to 30 mm (1½ in) long in Tsunurb and Berg Aukas, Namibia; also Broken Hill, Zambia; and the Mammoth mine, Tiger, Arizona, USA.

Arsendesclizite
PbZn(Al₂O₄)(OH)

ORTHORHOMBIC •

Properties: C – light yellow; S – white; L – adamantine to greasy; D – transparent to translucent; DE – 6.1; H – 4; CL – none; F – conchooidal to uneven; M – tabular crystals, rosette-like aggregates.
Origin and occurrence: Secondary in base metals deposits, associated with mimetite and goethite. Found rarely as crystals of 1 mm (½ in) in size in Tsumeb, Namibia; also Mina Ojuela, Mapimi, Durango, Mexico.

Mottramite
\[\text{PbCu(AsO}_4\text{)(OH)} \]

ORTHORHOMBIC • •

Properties: \(C \) – grass-green to black-green; \(L \) – light green; \(V \) – vitreous to dull; \(D \) – transparent to opaque; \(DE \) – 5.9; \(H \) – 3-3.5; \(CL \) – none; \(F \) – conchooidal to uneven; \(M \) – crystals of different habits, botryoidal and dendritic aggregates, crusts and coatings, massive.

Origin and occurrence: Secondary in base metals deposits, associated with mimetite, descoelite and varadinite. It occurs in Mottram, Cheshire, UK; in Tsumeb, Namibia; Mammoth mine, Tiger, Arizona, USA.

Brazilianite
\[\text{NaAl}_3(\text{PO}_4)_2(\text{OH})_4 \]

MONOCLINIC • • •

Properties: \(C \) – colorless, white, yellowish, yellow-green; \(S \) – white; \(L \) – vitreous; \(V \) – transparent to translucent; \(DE \) – 3.0; \(H \) – 5.5-6; \(CL \) – good; \(F \) – uneven; \(M \) – short prismatic to isometric crystals, radial aggregates, granular.

Origin and occurrence: Hydrothermal in cavities in granitic pegmatites, where it is associated with fluorapatite, albite and tourmaline. It occasionally originates as a product of amblygonite replacement. Perfect yellow-green crystals up to 150 mm (6 in) across found in cavities in pegmatites in Conselheira Pena and Corrego Frio, Linopolis, Minas Gerais and from Pietras Lavadas, Parnaiba, Brazil.

Mottramite, 60 mm, Tiger, Arizona, U.S.A.

Cafarsite, 9 mm x. Binnal, Switzerland

Cafarsite
\[\text{Ca}_9(\text{Ti},\text{Fe}^{2+},\text{Fe}^{3+},\text{Mn})(\text{As}^{2+}\text{O}_4)_3\text{Cl}_2 \cdot 4\text{H}_2\text{O} \]

CUBIC •

Properties: \(C \) – dark brown; \(S \) – yellow-brown; \(L \) – submetallic; \(V \) – translucent; \(DE \) – 3.9; \(H \) – 5.5-6; \(CL \) – none; \(F \) – conchooidal; \(M \) – isometric crystals.

Origin and occurrence: Hydrothermal along cracks in Alpine-type veins. Cubic crystals up to 30 mm (1¼ in) across from Binnal, Switzerland and Pizzo Cervandone, Italy.

Brazilianite, 37 mm, Conselheira Pena, Brazil
Carminite

PbFe\(^{3+}\)_2(AsO₄)_2(OH)\(_2\)

ORTHORHOMBIC

Properties: C – crimson-red, red-brown; S – red-yellow; L – adamantine to pearly; D – translucent; DE – 5.5; H – 3.5; CL – good; F – conchooidal to uneven; M – prismatic crystals, acicular, radial, felt-like to porous aggregates, coatings and crusts.

Origin and occurrence: Secondary in base metals deposits, associated with mimetite and scorodite. Crystals up to 10 mm (¼ in) across occur in Tsumeb, Namibia; in Mina Ojuela, Mapimi, Durango, Mexico; in Calstock, Cornwall, UK.

Bayldonite

PbCu₃(AsO₄)_2(OH)\(_2\) · H₂O

MONOCLINIC

Properties: C – yellow-green, olive-green; S – light green; L – resinous; D – translucent; DE – 5.5; H – 4.5; CL – not determined; F – uneven; M – earthy aggregates, coatings, massive.

Origin and occurrence: Secondary in the oxidation zone in hydrothermal Cu deposits and in greisens. It occurs as common yellow-green coatings and crystals up to 10 mm (¼ in) across, associated with large azurite and mimetite crystals in Tsumeb, Namibia; also as coatings in St. Day, Cornwall, UK; in Moldava, Czech Republic.

Vésignièrite

BaCu₃(VO₄)_2(OH)\(_2\)

MONOCLINIC

Properties: C – yellow-green, olive-green; S – light yellow-green; L – vitreous to dull; D – translucent;
Arsentsumebite
\[
\text{Pb}_2\text{Cu}(\text{AsO}_4)(\text{SO}_4)(\text{OH})
\]

Properties: C – bluish-green to light green; S – light green; L – dull; D – translucent; DE – 6.5; H – 3; CL – good; F – uneven; M – earthy aggregates, coatings, massive.

Origin and occurrence: Secondary in the oxidation zone, where it forms as a result of mimetic replacement. Found rarely in Moldava, Czech Republic; in Tsumeb, Namibia, where it forms pseudo-morphs after azurite crystals.
Fluorapatite
\[\text{Ca}_5(\text{PO}_4)_3\text{F} \]

HEXAGONAL

Properties:
- C - colorless, white, yellowish, pinkish, blue, purple, green, brown with various hues; S - white; L - vitreous to dull; D - transparent to translucent, sometimes opaque; DE - 3.2; H - 5; CL - imperfect; F - conchoidal to uneven; M - long prismatic to tabular crystals, botryoidal, earthy and fibrous aggregates, massive; LU - yellow.

Origin and occurrence:
Magmaic in granites, syenites, diorites, gabbros and various types of pegmatites, also in volcanic rocks; hydrothermal in quartz veins, ore veins, greisens and Alpine-type veins; metamorphic in different types of greisses, migmatites, mica schists, skarns and amphibolites; in different types of sedimentary rocks. Perfect, short prismatic, purple transparent crystals up to 40 x 40 mm (1 1/8 x 1 1/8 in) are renowned from pegmatite in the Palaifer quarry, Mount Apatitie, Auburn, Maine, USA; pink crystals from Dusso, Pakistan. Perfect crystals about 100 mm (4 in) across also from Alpine-type veins, e.g. in Fiesch, Switzerland; also known from the quartz veins in greisens, associated with wolframite, in Panasqueira, Portugal; in Horni Slavkov, Czech Republic; Ehrenfriedersdorf, Germany. Also found in skarns at Cerro de Mercado, Durango, Mexico. Large deposits of mass.
sive apatite located in Kola Peninsula, Russia; crystals weighing up to 300 kg (660 lb) from the vicinity of Clear Lake, Ontario, Canada. Application: main source of P, chemical industry, fertilizer.

Chlorapatite

$\text{Ca}_5(\text{PO}_4)\text{Cl}$

HEXAGONAL

Properties: C – white, various hues of yellow; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 5; CL – imperfect; F – conchoidal to uneven; M – long prismatic to tabular crystals, granular.

Origin and occurrence: Mafic in nepheline syenites and their pegmatites, some gabbros and volcanic rocks, also in meteorites; metamorphic in skarns. It is usually associated with scapolite, amphibole, titanite and magnetite. Perfect prismatic crystals up to 35 cm (13/4 in) long, come from pegmatites in Bamle, Norway; also from Kurokura, Japan.

Hydroxyapatite

$\text{Ca}_5(\text{PO}_4)\text{OH}$

HEXAGONAL

Properties: C – white, yellow, various hues of gray; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 5; CL – imperfect; F – conchoidal to uneven; M – short prismatic to tabular crystals, acicular aggregates, granular.

Origin and occurrence: Metamorphic in talc schists and serpentine; hydrothermal in granitic pegmatites; sedimentary in organic remains. Crystals up to 30 mm (1 1/4 in) across known from Snarum, Norway; Hospental, Switzerland; Eagle, Colorado, USA.

Carbonate-fluorapatite

$\text{Ca}_5(\text{PO}_4,\text{CO}_3)\text{F}$

HEXAGONAL

Properties: C – white, gray; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 5; CL – imperfect; F – conchoidal to uneven; M D spherical and botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in ore veins and along the cracks in volcanic rocks. Rich botryoidal aggregates are known together with hyalite opal from Valec, Czech Republic; the Wheal Franco mine, Tavistock, Devon, UK.
Pyromorphite

\[\text{Pb}_5(\text{PO}_4)_3\text{Cl} \]

HEXAGONAL

Properties: C – green, brown, yellow, orange, white, gray; S – white; L – adamantine to greasy; D – transparent to translucent; DE – 7.1; H – 3.5-4; CL – imperfect; F – conchoidal to uneven; M – long prismatic to tabular and pyramidal crystals, botryoidal aggregates with radial structure, acicular and earthy aggregates, massive.

Origin and occurrence: Secondary in the oxidation zone of Pb deposit, associated with cerussite, goethite and other secondary minerals. Perfect crystals up to 40 mm (1\(\frac{3}{8}\) in) long come from many localities, e.g. green and brown ones from Bad Ems and Zschopau, Germany; yellow-brown ones from Les Farges, France; green, brown and yellow ones from Mina Ojuela, Mapimi, Durango, Mexico. Green, orange and brown crystals, up to 60 mm (2\(\frac{3}{8}\) in) long, are known from the Bunker Hill mine, Idaho, USA.
Mimetite
$\text{Pb}_5(\text{AsO}_4)_2\text{Cl}$

HEXAGONAL

Varieties: campylite

Properties: C – yellow, orange, brown, yellow-brown, white, gray; S – white; L – adamantine to greasy; D – transparent to translucent; DE – 7.3; H – 3.5-4; CL – imperfect; F – conchoidal to uneven; M – long to short prismatic and pyramidal crystals, botryoidal aggregates with radial structure, acicular and earthy aggregates, granular.

Origin and occurrence: Secondary in Pb deposits, associated with pyromorphite, wulfenite and goethite. Perfect crystals up to 130 mm (5½ in) long come from Djebel Mahsour and Mibladen, Morocco. Prismatic crystals were also found in Tsumeb, Namibia; in the Old Yuma, Red Cloud, Apache and Mammoth mines, Arizona, USA.

Vanadinite
$\text{Pb}_5(\text{VO}_4)_2\text{Cl}$

HEXAGONAL

Properties: C – yellow, orange, red, brown, yellow-brown; S – white; L – adamantine to greasy; D – transparent to translucent; DE – 6.9; H – 2.5-3; CL – none; F – conchoidal to uneven; M – long to short prismatic and pyramidal crystals, botryoidal aggregates with radial structure, acicular and earthy aggregates, granular.

Origin and occurrence: Secondary in Pb deposits, associated with pyromorphite and goethite. Perfect crystals up to 20 mm (¾ in) long come from Johanngeorgenstadt, Germany; campylite occurs in Drygill, UK; crystals up to 50 mm (2 in) across found in Tsumeb, Namibia; Santa Eulalia and San Pedro, Chihuahua, Mexico. Beautiful yellow crystals up to 30 mm (1¼ in) found recently in Hat Yai province, Thailand.
Atelestit
$\text{Bi}_2(\text{AsO}_4)\text{O(OH)}$

MONOCLINIC

Properties: C - yellow, yellow-green; S - white; L - adamantine to greasy; D - transparent to translucent; DE - 7.0; H - 4.5-5; CL - imperfect; F - conchooidal to uneven; M - small tabular crystals, spherical aggregates.

Origin and occurrence: Secondary in the oxidation zone of Bi deposits. It was found in Schneeberg, Germany.

Hüréaultite
$\text{Mn}_3(\text{PO}_4)_2[\text{PO}_3(\text{OH})]_2 \cdot 4\text{H}_2\text{O}$

MONOCLINIC

Properties: C - orange-red, pink, purplish, white, gray; S - white; L - vitreous; D - transparent to translucent; DE - 3.2; H - 3.5; CL - good; F - uneven; M - prismatic to tabular crystals, coatings, granular, massive.

Hüréaultite, 53 mm, Shingas, Pakistan

Variscite
$\text{Al}((\text{PO}_4)\cdot 2\text{H}_2\text{O}$

ORTHORHOMBIC

Properties: C - colorless, greenish, blue-green; S - white; L - vitreous; D - transparent to translucent; DE - 2.6; H - 3.5-4.5; CL - good; F - uneven; M - isometric crystals, botryoidal aggregates, nodules, coatings, massive.

Origin and occurrence: Hydrothermal in cracks in sedimentary rocks, rich in Al and P, also in phosphates deposits. It is associated with apatite, wavellite and other phosphates. Renowned greenish nodules up to 30 cm (12 in) in diameter come from Clay Canyon, Fairfield, Utah, USA; also known from Ronneburg, Germany and Jivina near Beroun, Czech Republic.

Strengite
$\text{Fe}^{3+}((\text{PO}_4)\cdot 2\text{H}_2\text{O}$

ORTHORHOMBIC

Properties: C - colorless, pinkish, red-purple; S - white; L - vitreous; D - transparent to translucent; DE - 2.8; H - 3.5-4.5; CL - good; F - conchooidal; M - isometric, tabular to short prismatic crystals, botryoidal aggregates with radial structure, coatings.

Origin and occurrence: Secondary in granitic
Scorodite, 10 mm x, Zacatecas, Mexico

Scorodite, 34 mm, Svappavaara, Sweden

Scorodite where it forms as a result of hydrothermal replacement of primary phosphates; in the oxidation zone of Fe deposit together with goethite. Purple crystals up to 5 mm (∼1/4 in) across, come from the Bull Moose mine, Custer, South Dakota, USA; also known from Pleystein, Germany and from Tesikov, Czech Republic.

Scorodite

\[
\text{Fe}^{3+} (\text{AsO}_4) \cdot 2 \text{H}_2\text{O}
\]

Orthorhombic

Properties: B – light green, gray-green, olive-green, colorless, blue, yellow-brown; S – light green; L – vitreous to resinous; D – transparent to translucent; DE – 3.3; H – 3.5–4; CL – imperfect; F – conchoidal; M – dipyramidal to short prismatic crystals, botryoidal and earthy aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits, associated with arsenopyrite, löllingite and other arsenides; in granitic pegmatites; hydrothermal in the hot springs. Perfect crystals up to 50 mm (2 in) across come from Tsumeb, Namibia; the Kiara mine, Otto, Japan; Mina Ojuela, Nupirí, Durango, Mexico; green crusts, several cm thick, were found in Djebel Debar, Algeria.
Phosphophyllite

\[\text{Zn}_2\text{Fe}^2(\text{PO}_4)_2 \cdot 4\text{H}_2\text{O} \]

MONOCLINIC

Properties: C – colorless, blue-green, blue; S – white; L – vitreous; D – transparent to translucent; DE – 3.1; H – 3.5; CL – good; F – uneven; M – long to short prismatic and thick tabular crystals, granular.

Origin and occurrence: Secondary in the oxidation zone of ore deposits; in granitic pegmatites, where it replaces primary phosphates. Perfect crystals, up to 140 mm (5.5 in) across come from sulfide cavities in the Unifinada mine, Potosí, Bolivia. Also occurs at Hagenförd, Germany.

Ludlamite

\[\text{Fe}_3(\text{PO}_4)_2 \cdot 4\text{H}_2\text{O} \]

MONOCLINIC

Properties: C – light green, green; S – white; L – vitreous; D – transparent to translucent; DE – 3.2; H – 3.5; CL – perfect; F – uneven; M – thin to thick tabular crystals, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits; in granitic pegmatites, where it replaces primary phosphates. Perfect crystals up to 90 mm (3.5 in) across known from the San Antonio mine, Santa Eulalia, Chihuahua, Mexico; also from Morococa, Bolivia and the Blackbird district, Idaho, USA.

Anapaite

\[\text{Ca}_2\text{Fe}^2(\text{PO}_4)_2 \cdot 4\text{H}_2\text{O} \]

TRICLINIC

Properties: C – light to dark green, colorless; S – white; L – vitreous; D – transparent to translucent; DE – 2.8; H – 3.5; CL – perfect; F – uneven; M – thin to thick tabular crystals, rosette-like aggregates, granular.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits and in sedimentary rocks, rich in P. Tabular crystals several mm across and spherical aggregates, up to 30 mm (1.18 in) across, come from the cracks within oolitic ores near Anapa and Kerch, Crimea, Ukraine; also known from Bellaver de Cerdanya, Spain.

Vivianite

\[\text{Fe}_3(\text{PO}_4)_2 \cdot 8\text{H}_2\text{O} \]

MONOCLINIC

Properties: C – colorless when fresh, quickly oxidizes to blue, green, purple, black-blue; S – white to bluish; L – vitreous; D – transparent, translucent to opaque; DE – 2.7; H – 1.5–2; CL – perfect; F – uneven; M – long prismatic to acicular crystals, fibrous, earthy to pulverulent aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits; in granitic pegmatites, where it forms by the replacement of primary phosphates and in sedimentary rocks in proximity of organic
material; hydrothermal in the ore deposits. Crystals up to 1.5 m (5 ft) long found in clay sediments in Anloua, Cameroon; crystals up to 200 mm (7½ in) across known from Morocco, Bolivia. Smaller crystals come from Trepca, Serbia; Leadville, Colorado, Bingham Canyon, Utah, USA; also from Kerch and Anapa, Crimea, Ukraine.

Erythrine
$\text{Co}_3(\text{AsO}_4)_2 \cdot 8 \text{H}_2\text{O}$

MONOCLINIC

Properties: C – dark purple, pink, colorless; S – light pink to white; L – vitreous; D – transparent to translucent; D.B. – 3.2; H – 1.5-2.5; CL – perfect; F – uneven; M – long prismatic, acicular to tabular crystals, earthy aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Co, Ni and U deposits. Tabular crystals up to 60 mm (2½ in) long come from Bou Azzer, Morocco. Other important localities are Schneeberg, Germany; Taimyr, Iran; Cobalt, Ontario, Canada; Mount Cobalt, Queensland, Australia.

Vivianite, 48 mm, Morocco, Bolivia
Phosphophyllite

\[\text{Zn}_2\text{Fe(PO}_4\text{)}_2 \cdot 4\text{H}_2\text{O} \]

Monoclinic

Properties: C - colorless, blue-green, blue; S - white; L - vitreous; D - transparent to translucent; DE - 3.1; H - 3.5; CL - good; F - uneven; M - long to short prismatic and thick tabular crystals, granular.

Origin and occurrence: Secondary in the oxidation zone of ore deposits; in granitic pegmatites, where it replaces primary phosphates. Perfect crystals, up to 140 mm (5.5/ in) across, come from sulfide cavities in the Unifizada mine, Potosí, Bolivia. Also occurs at Hagerdorf, Germany.

Lužilamite

\[\text{Fe}_3\text{(PO}_4\text{)}_2 \cdot 4\text{H}_2\text{O} \]

Monoclinic

Properties: C - light green, green; S - white; L - vitreous; D - transparent to translucent; DE - 3.2; H - 3.5; CL - perfect; F - uneven; M - thin to thick tabular crystals, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits; in granitic pegmatites, where it replaces primary phosphates. Perfect crystals up to 90 mm (3.5/ in) across known from the San Antonio mine, Santa Eulalia, Chihuahua, Mexico; also from Monroe County, Bolivia and the Blackbird district, Idaho, USA.

Anapaite

\[\text{Cu}_2\text{Fe(PO}_4\text{)}_2 \cdot 4\text{H}_2\text{O} \]

Triclinic

Properties: C - light to dark green, colorless; S - white; L - vitreous; D - transparent to translucent; DE - 2.8; H - 3.5; CL - perfect; F - uneven; M - thin to thick tabular crystals, rosette-like aggregates, granular.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits and in sedimentary rocks, rich in P. Tabular crystals several mm across and spherical aggregates, up to 30 mm (1.5/ in) across, come from the cracks within oolitic ores near Anapa and Kerch, Crimea, Ukraine; also known from Bellaver de Cerdena, Spain.

Vivianite

\[\text{Fe}_3\text{(PO}_4\text{)}_2 \cdot 8\text{H}_2\text{O} \]

Monoclinic

Properties: C - colorless when fresh, quickly oxidizes to blue, green, purple, black-blue; S - white to bluish; L - vitreous; D - transparent, translucent to opaque; DE - 2.7; H - 1.5-2; CL - perfect; F - uneven; M - long prismatic to acicular crystals, fibrous, coarse to powdery aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits; in granitic pegmatites, where it forms by the replacement of primary phosphates and in sedimentary rocks in proximity of organic
material; hydrothermal in the ore deposits. Crystals up to 1.5 m (5 ft) long found in clay sediments in Anbua, Cameroun; crystals up to 200 mm (7½ in) across known from Morococca, Bolivia. Smaller crystals come from Trepeca, Serbia; Leadville, Colorado, Bingham Canyon, Utah, USA; also from Kerch and Anapa, Crimea, Ukraine.

Erythrine

\[\text{Co}_2(\text{AsO}_4)_2 \cdot 8 \text{H}_2\text{O} \]

Monoclinic

Properties: C – dark purple, pink, colorless; S – light pink to white; L – vitreous; D – transparent to translucent; DE – 3.2; H – 1.5-2.5; CL – perfect; F – uneven; M – long prismatic, acicular to tabular crystals, earthy aggregates, coatings, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Co, Ni and U deposits. Tabular crystals up to 60 mm (2½ in) long come from Bou Azzer, Morocco. Other important localities are Schneeberg, Germany; Talmessi, Iran; Cobala, Ontario, Canada; Mount Cobalt, Queensland, Australia.

Vesuvianite, 48 mm, Morococca, Bolivia
Annabergite

\[\text{Ni}_3(\text{AsO}_4)\text{H}_2 \cdot 8 \text{H}_2\text{O} \]

MONOCLINIC

Varieties: cabrerite (Mg contents)

Properties: C – light to dark green, white; S – white; L – vitreous; D – transparent to translucent; DE = 3.2; H – 1.5–2.5; CL – perfect; F – uneven; M – long prismatic to acicular and tabular crystals, acicular and earthy aggregates, coatings, granular, massive. **Origin and occurrence:** Secondary in the oxidation zone of Ni deposits, associated with erythrite. Crystals up to 5 mm (\% in) across occur in Gukuroren, Turkey; Sierra Cabrera, Spain; Laurion, Greece. Nodules up to 20 mm (\% in) come from the Snowbird mine, Montana, USA.

Symblesite

\[\text{Fe}_3(\text{AsO}_4)\text{H}_2 \cdot 8 \text{H}_2\text{O} \]

TRICLINIC

Properties: C – bluish, dark blue, light green, black-green; S – white; L – vitreous; D – transparent to translucent; DE = 3.0 H = 2.5; CL – perfect; F – uneven; M – acicular to tabular crystals, spherical aggregates with radial structure, earthy aggregates and coatings, granular, massive. **Origin and occurrence:** Secondary in the oxidation zone of ore deposits and in granitic pegmatites with...
As minerals, mainly arsenopyrite and löllingite. It occurs in Schneeberg, Germany; Baia Sprie, Romania and Trebko, Czech Republic.

Picropharmacolite

\[\text{Ca}_2\text{Hg}_2\text{H}_2\text{(AsO}_4\text{)}_4 \cdot 12 \text{H}_2\text{O} \]

TRICLINIC

Properties: C – colorless, white; S – white; L – vitreous; D – transparent to translucent; DE – 2.6; H – 2.5; CL – perfect; F – uneven; M – acicular crystals, spherical aggregates with radial structure, coatings.

Origin and occurrence: Secondary in the oxidation zone of ore deposits with As minerals, mostly arsenopyrite and löllingite. It is also known from Ste-Marie-aux-Mines and Saisigne, France; Freiberg, Germany and Sluchyn, Czech Republic.

Brushite

\[\text{CaH(P}_2\text{O}_4\text{)} \cdot 2 \text{H}_2\text{O} \]

MONOCLINIC

Properties: C – colorless, white; S – white; L – vitreous, pearly on cleavage planes; D – transparent to translucent; DE – 2.3; H – 2.5; CL – perfect; F – uneven; M – prismatic, acicular to tabular crystals, earthy aggregates and coatings, massive.

Origin and occurrence: Secondary on bat and bird excrements and bones, it impregnates bones, along the cracks of phosphorites. Tabular crystals up to 20 mm (\(\frac{8}{4}\) in) across come from Quercy, France also occurs near Oran, Algeria and Pig Hole, Virginia, USA.

Legrandite

\[\text{Zn}_2\text{(AsO}_4\text{)(OH)} \cdot 3 \text{H}_2\text{O} \]

MONOCLINIC

Properties: C – colorless, yellow, purple; S – white; L – vitreous; D – transparent to translucent; DE – 4.0 H – 4.5; CL – imperfect; F – uneven; M – long prismatic crystals and their inter-growths, radial aggregates.

Origin and occurrence: Secondary in the oxidation zone of Zn deposits and in pegmatites. Prismatic crystals up to 250 mm (\(\frac{9}{16}\) in) long found in Mina Ojuela, Mapimi, Durango, Mexico. It is also known from Galíléia, Minas Gerais, Brazil and Tsumeb, Namibia.

179
Euchroite

Cu₃(AsO₄)(OH) . 3 H₂O

Orthorhombic

Properties: C - emerald-green; S - white; L - vitreous; D - transparent to translucent; DE - 3.5; H - 3.5-4; CL - imperfect; F - conchoidal to uneven; M - short prismatic to thick tabular crystals, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, associated with olivine and malachite. Thick tabular crystals up to 30 mm (1/4 in) come from L'ubietová, Slovakia. It also occurs in Zapatitsa, Bulgaria and Chessey, France.

Euchroite, 10 mm xx, L'ubietová, Slovakia

Vauxite

Fe₃Al₂(PO₄)₂(PO₃OH)₂ . 6 H₂O

Triclinic

Properties: C - light to dark blue; S - white; L - vitreous; D - transparent to translucent; DE - 2.4; H - 3.5; CL - none; F - uneven; M - tabular crystals, radial aggregates, massive.

Origin and occurrence: Secondary in the oxidation zone of Sn deposits, associated with wavellite. Crystals occur in the Siglo XX Mine, Llallagua, Bolivia.

Vauxite, 20 mm xx, Llallagua, Bolivia

Strunzite

MnFe₃⁺₂(PO₄)₂(PO₃OH)₂ . 6 H₂O

Monoclinic

Properties: C - light yellow, yellow-brown; S - yellowish; L - vitreous; D - transparent to translucent; DE - 2.5; H - not determined; CL - not determined; F - uneven; M - acicular crystals, acicular and fibrous aggregates.

Origin and occurrence: Secondary in granitic pegmatites, as a result of weathering of primary phosphates, mostly triphylite; rarely hydrothermal in the cracks of Fe-rich sedimentary rocks. Acicular crystals up to 20 mm (¾ in) across known from Hagendorf, Germany; the Palermo No. 1 and No. 2 mines, North Groton and the Fletcher mine, Groton, New Hampshire, USA.

Strunzite, 10 mm xx, Hagendorf, Germany
Cacoxenite

\[
(\text{Fe}^{3+}, \text{Al})_{25}(\text{PO}_4)_{17} \text{O}_6(\text{OH})_{12} \cdot 75 \text{H}_2\text{O}
\]

Hexagonal

Properties: C = light yellow, yellow-brown, orange; S = yellow; L = silky; D = transparent to translucent; DE = 2.3; H = 3-4; CL = not determined; F = uneven; M = acicular and fibrous aggregates, often with radial structure, botryoidal crusts and coatings.

Origin and occurrence: Hydrothermal on the cracks of sedimentary Fe ores, associated with wavelite; rare as secondary in granite pegmatites, as a product of weathering of primary phosphates. Crystals up to 10 mm (⅝ in) across come from the Horcajo mine, Ciudad Real, Spain; golden-yellow acicular aggregates occur in Hřebek near Svatá Dobročivá and Trenice, Czech Republic and in Amberg, Germany.

Beraunite

\[
\text{Fe}^{2+25}\text{Fe}^{3+5}(\text{PO}_4)_{14}(\text{OH})_8 \cdot 4 \text{H}_2\text{O}
\]

Monoclinic

Properties: C = red-brown, red, gray-green; S = yellow to green-brown; L = vitreous to dull; D = translucent; DE = 3.0; H = 3.5-4; CL = good; F = uneven; M = acicular aggregates, often with radial structure, botryoidal crusts and coatings.

Origin and occurrence: Hydrothermal on the cracks of sedimentary Fe ores, typically together with wavelite; secondary in granite pegmatites, as a product of weathering of primary phosphates. Acicular aggregates up to 10 mm (⅝ in) across occur in Mount Indian, Alabama, USA; also known from Hřebek near Svatá Dobročivá, Czech Republic and Amberg, Germany.

Diodochite

\[
\text{Fe}^{3+2}(\text{PO}_4)_{10}(\text{SO}_4)(\text{OH}) \cdot 5 \text{H}_2\text{O}
\]

Triclinic

Properties: C = yellow-brown, brown, red-brown, yellow-green, gray-green; S = yellow to light brown; L = dull, waxy; D = translucent to opaque; DE = 2.0-2.4; H = 3; CL = not determined; F = uneven, conchoidal, earthy; M = nodules, coatings and crusts, massive.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits. Diodochite caves in abandoned mines are known from Saalfeld, Germany; nodules found in New Idria, California and Eureka, Nevada, USA.

Diodochite, 46 mm, Rießl, Hungary
Wavellite
$\text{Al}_2(\text{PO}_4)_2(\text{OH})_3 \cdot 5\text{H}_2\text{O}$

ORTHORHOMBIC

Properties: C – colorless, white, greenish, light blue-green, green, yellowish; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 2.4; H – 3.5-4; CL – perfect; F – uneven; M – isometric crystals, hemispherical aggregates with radial structure, botryoidal aggregates, nodules, coatings, massive.

Origin and occurrence: Hydrothermal in the cracks of Al and P-rich sediments, also in phosphate deposits, ore veins and pegmatites. Beautiful hemispherical aggregates up to 40 mm (1.6 in) in diameter occur in Pencil, Garland and Magnet Cove, Arkansas, USA; also known from Trenice and Milina, Czech Republic and Ronomyburg, Germany.

Eosphorite
$\text{MnAl}_2(\text{PO}_4)_2(\text{OH})_2 \cdot \text{H}_2\text{O}$

ORTHORHOMBIC

Properties: C – pinkish, colorless, white, brownish, red-brown; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 3.1; H – 5; CL – imperfect; F – uneven to conchoelid; M – long to short prismatic crystals, radial aggregates, granular.

Origin and occurrence: Secondary in granite pegmatites, as a product of hydrothermal replacement of primary phosphates. Crystals up to 100 mm (4in) long found in the Joao Modeiro dos Santos mine, Minas Gerais, Brazil. It occurs in Rapid Creek, Yukon, Canada, too.

Turquoise
$\text{CuAl}_6(\text{PO}_4)_4(\text{OH})_8 \cdot 4\text{H}_2\text{O}$

TRICLINIC

Properties: C – blue, blue-green, green; S – white; L – waxy; D – transparent, translucent to opaque; DE – 2.9; H – 5-6; CL – good; F – conchoelid to uneven; M – short prismatic crystals, botryoidal aggregates, coatings, massive.

Origin and occurrence: Secondary in the surface parts of rocks with elevated contents of P and Cu, e.g. in the oxidation zone of some Cu deposits. Small crystals occurred near Lynch Station, Virginia, USA. Massive blue and blue-green concretions come from Mount Ali Mirsal near Mirdan, Iran. Other localities are Cortez, Nevada, Los Cerillos and Eureka, New Mexico and Bisbee, Arizona, USA.

Application: popular gemstone.
Chalcosiderite
CuFe3+(PO\textsubscript{4})\textsubscript{4}(OH)\textsubscript{6} \cdot 4 H\textsubscript{2}O

TRICLINIC

Properties: C – dark green; S – white; L – vitreous; D – transparent to translucent; DE – 3.3; H – 4.5; CL – good; F – conchooidal to uneven; M – short prismatic crystals, coatings.

Turbquoise, 50 mm, Kazakhstan

Origin and occurrence: Secondary in the oxidation zone of some Cu deposits, together with goethite, dufrenite and phyllosiderite. It occurs in Bisbee, Arizona, USA; in the Wheel Phoenix mine, Cornwall, UK; Schneekeinstein, Germany; Horni Slavkov, Czech Republic.

Chalcosiderite, 50 mm, Cornwall, UK
Chenevixite
Cu₂Fe³⁺₄(AsO₄)₃(OH)₄·H₂O

Monoclinic

Properties:
- C – dark green, olive-green to yellow-green
- S – yellow-green
- L – greasy
- D – translucent
- DE – 3.9
- H – 3.5-4.5
- CL – not determined
- F – conchoidal to uneven
- M – earthy aggregates, coatings, massive

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, associated with malachite, tyrolite, azurite and other minerals. Massive aggregates occur in the Mammoth mine, Tintic, Utah, USA; also in Klein Spitzkopje, Namibia.

Tyrolite
Ca₂Cu₆(AsO₄)₂(CO₃)(OH)₄·6H₂O

Orthorhombic

Properties:
- C – apple-green, green-blue to blue
- S – light green to blue-green
- L – vitreous to pearly
- D – transparent to translucent
- DE – 3.3
- H – 2
- CL – perfect
- F – uneven
- M – B scalpy and fan-shaped aggregates, coatings and crusts

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, frequently associated with chalcophyllite. Rich aggregates occur in the Majuba Hill mine, Nevada, also in Tintic, Utah, USA. It is also known from Brixlegg, Austria; Saalfeld and Schneeberg, Germany; Novoveská Huta, Slovakia.

Delvauxite
CaFe³⁺₂(PO₄)₂(SO₄)(OH)₈·4.4H₂O

Amorphous

Properties:
- C – yellow-brown, brown, red-brown, black-brown
- S – yellow
- L – greasy, waxy
- D – translucent to opaque
- DE – 1.8-2.0
- H – 2.5
- CL – not determined
- M – nodules, stalactites, coatings and crusts, massive

Origin and occurrence: Secondary in oxidation zone of Fe deposits. Nodules of 50 cm (20 in) across in Czech Republic. Also known in Berneau and Richelle, Belgium; Zelenýk, Slovakia; Kerc, Crimea, Ukraine.

Delvauxite
Cu₂Fe³⁺₄(AsO₄)₃(OH)₄·H₂O

Properties:
- C – dark green, olive-green to yellow-green
- S – yellow-green
- L – greasy
- D – translucent to opaque
- DE – 3.9
- H – 3.5-4.5
- CL – not determined
- F – conchoidal to uneven
- M – earthy aggregates, coatings, massive

Origin and occurrence: Secondary in the oxidation zone of Cu deposits. Nodules of 50 cm (20 in) across in Czech Republic. Also known in Berneau and Richelle, Belgium; Zelenýk, Slovakia; Kerc, Crimea, Ukraine.

Delvauxite
Cu₂Fe³⁺₄(AsO₄)₃(OH)₄·H₂O

Properties:
- C – dark green, olive-green to yellow-green
- S – yellow-green
- L – greasy
- D – translucent to opaque
- DE – 3.9
- H – 3.5-4.5
- CL – not determined
- F – conchoidal to uneven
- M – earthy aggregates, coatings, massive

Origin and occurrence: Secondary in the oxidation zone of Cu deposits. Nodules of 50 cm (20 in) across in Czech Republic. Also known in Berneau and Richelle, Belgium; Zelenýk, Slovakia; Kerc, Crimea, Ukraine.
Bukovskýite
$\text{Fe}^{3+} \text{(AsO}_4\text{)}(\text{SO}_4\text{)}(\text{OH}) \cdot 7 \text{H}_2\text{O}$

Triclinic •

Properties: C - yellow-green, gray-green; S - yellowish white; L - dull to earthy; D - translucent to opaque; DE - 2.3; H - not determined; CL - not determined; F - earthy; M - botryoidal aggregates and nodules.

Origin and occurrence: Secondary on the old mine dumps where it forms as a product of arsenopyrite weathering. Nodules up to 60 cm (24 in) occur on medieval dumps in Kuki near Skalík Hora, Czech Republic.

Veselyite
$\text{Cu}_2\text{Zn}_3(\text{PO}_4\text{)}(\text{OH})_3 \cdot 2 \text{H}_2\text{O}$

Monoclinal • •

Properties: C - green, blue-green, dark blue; S - green; L - vitreous; D - translucent; DE - 3.4; H - 3.5-4; CL - good; F - uneven; M - short prismatic to tabular crystals, granular.

Origin and occurrence: Secondary in the oxidation zone of Cu-Zn deposits. Crystals up to 50 mm (2 in) across found in the Black Pine mine, Philipsburg, Montana, USA; also from Moravita, Romania; Arikawa, Japan; Wanlockhead, Scotland, UK.

Chalcophylite
$\text{Cu}_{18}\text{Al}_2(\text{AsO}_4\text{)}_3(\text{SO}_4\text{)}_3(\text{OH})_{17} \cdot 36 \text{H}_2\text{O}$

Trigonal • • •

Properties: C - emerald-green, blue-green; S - light green; L - vitreous, pearly; D - transparent to translucent; DE - 2.6; H - 2; CL - perfect; F - uneven; M - tabular crystals, scaly, fan-shaped aggregates, coatings, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, usually associated with tyrolite. Rich aggregates occur in the Majahua Hill, Nevada and in the Tintic district, Utah, USA. Nice specimens also come from Novoveská Huť and Piesky, Slovakia; Nižný Tagil, Ural mountains, Russia; Cap Carrone, France.

Veselyite
13 mm, Philipsburg, USA.
Evansite
$\text{Al}_3(\text{PO}_4)(\text{OH})_6 \cdot 6 \text{H}_2\text{O}$

AMORPHOUS 3

Properties: C – colorless, white, greenish, light blue-green, yellowish; S – white; L – vitreous, resinosus, waxy; D – transparent to translucent; DE – 1.8-2.2; H – 3-4; CL – none; F – conchooidal; M – botryoidal, stalactitic and hemispherical aggregates and coatings.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits, rich in F, associated with alopeane and goethite. Rich stalactitic aggregates come from Zeleznik, Slovakia and from Epernay, France.

Whiteite-(CaFeMg)
$\text{CaFeMg}_2\text{Al}_2(\text{PO}_4)_4(\text{OH})_2 \cdot 8 \text{H}_2\text{O}$

MONOCLINIC

Properties: C – brown; S – white; L – vitreous; D – transparent to translucent; DE – 2.6; H – 4; CL – good; F – uneven; M – short prismatic crystals.

Origin and occurrence: Hydrothermal in the cracks of P-rich sediments. Perfect crystals up to 20 mm (⅝ in) across come from Big Fish River, Yukon, Canada. Crystals up to 5 mm (⅛ in), are known from Lavra da Ilha de Tiquaral, Minas Gerais, Brazil.

Lirokonit
$\text{Cu}_2\text{Al}_2(\text{AsO}_4)(\text{OH})_4 \cdot 4 \text{H}_2\text{O}$

MONOCLINIC

Properties: C – blue, green; S – light blue; L – vitreous to resinous; D – transparent to translucent; DE – 3.0; H – 2-2.5; CL – imperfect; F – conchooidal to uneven; M – lenticular, dipyramidal crystals, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, together with olivinite, malachite and azurite. Perfect crystals up to 30 mm (1⅝ in) across come from Redruth and St. Day, Cornwall, UK. It is also known from Cerro Gordo, California, USA.

Evansite, 5 mm aggregates. Sirk – Zeleznik, Slovakia

Whiteite-(CaFeMg), 65 mm, Yukon Territory, Canada
Johnsite-(CaMnMg)
CaMnMg\(_2\)Fe\(^{3+}\)\(_2\)(PO\(_4\))\(_4\)(OH)\(_4\)·8H\(_2\)O

MONOCLINIC

Properties: C – yellow, light to dark brown; S – light yellow; L – vitreous; D – transparent to translucent; DE – 2.6; H – not determined; CL – good; F – uneven; M – short to long prismatic crystals; granular.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a result of replacement of primary phosphates. Perfect crystals up to 10 mm (1/4 in) across occur in the Tip Top mine, Custer, South Dakota, USA. It is also known from Hagendorf, Germany.

Wardite
NaAl\(_2\)(PO\(_4\))\(_2\)(OH)\(_4\)·2H\(_2\)O

TETRAGONAL

Properties: C – colorless, white, greenish, light blue-green; S – white; L – vitreous; D – transparent to translucent; DE – 2.8; H – 5; CL – perfect; F – uneven; M – dipyramidal crystals, radial and hemispherical aggregates, coatings, crusts, granular.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a product of primary phosphate replacement; hydrothermal in the cracks in P-rich sediments. Perfect crystals up to 30 mm (1 1/4 in) across come from Rapid Creek, Yukon, Canada. It is also known from Piedras Lavradas, Paraiba, Brazil.

Cyrilovite
NaFe\(^{3+}\)\(_2\)(PO\(_4\))\(_4\)(OH)\(_4\)·2H\(_2\)O

TETRAGONAL

Properties: C – yellow, orange, brown-yellow; S – yellow; L – vitreous; D – transparent to translucent; DE – 3.1; H – 4; CL – good; F – conchoideal; M – tabular and dipyramidal crystals, coatings and crusts.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a result of replacement of primary phosphates. Small crystals occur in Cyrilov, Czech Republic; Hagendorf, Germany and Sapucenia, Minas Gerais, Brazil.

Cyrilovite, 90 mm, Iron Monarch, Australia
Lirokonit

Cu₂Al₃(AsO₄)(OH)₄ ⋅ 4 H₂O

MONOCLINIC

Properties: C — blue, green; S — light blue; L — vitreous to resinous; D — transparent to translucent; DE — 3.0; H — 2.5; CL — imperfect; F — conchoideal to uneven; M — lenticular, dipyradiad crystals, massive.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, together with olivenite, malachite and azurite. Perfect crystals up to 30 mm (1¼ in) across come from Redruth and St. Day, Cornwall, UK. It is also known from Cerro Gordo, California, USA.

Evansite, 5 mm aggregate, Slia – Železná, Slovakia

Evansite

Al₃(PO₄)(OH)₂ ⋅ 6 H₂O

AMORPHOUS 3

Properties: C — colorless, white, greenish, light blue-green, yellowish; S — white; L — vitreous, resinous, waxy; D — transparent to translucent; DE — 1.8-2.2; H — 3-4; CL — none; F — conchoideal; M — botryoidal, stalactitic and hemispherical aggregates and coatings.

Origin and occurrence: Secondary in the oxidation zone of Fe deposits, rich in P, associated with ulophane and goethite. Rich stalactitic aggregates come from Železná, Slovakia and from Epernay, France.

Whiteite-(CaFeMg)

CaFe₂Al₂(PO₄)₃(OH)₂ ⋅ 8 H₂O

MONOCLINIC

Properties: C — brown; S — white; L — vitreous; D — transparent to translucent; DE — 2.6; H — 4; CL — good; F — uneven; M — short prismatic crystals.

Origin and occurrence: Hydrothermal in the cracks of P-rich sediments. Perfect crystals up to 20 mm (¾ in) across come from Big Fish River, Yukon, Canada. Crystals up to 5 mm (¼ in), are known from Lavra da Ilha de Taquaral, Mira Gerais, Brazil.

Whiteite-(CaFeMg), 65 mm, Yukon Territory, Canada
Jahnite-(CaMnMg)

\[\text{CaMnMg}_{2} \text{Fe}^{3+}_{2}(\text{PO}_4)_{4}(\text{OH})_4 \cdot 8 \text{H}_2\text{O} \]

MONOCLINIC

Properties: C – yellow, light to dark brown; S – light yellow; L – vitreous; D – transparent to translucent; DE – 2.6; H – not determined; CL – good; F – uneven; M – short to long prismatic crystals, granular.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a result of replacement of primary phosphates. Perfect crystals up to 10 mm (1/8 in) across occur in the Tip Top mine, Custer, South Dakota, USA. It is also known from Hagendorf, Germany.

Wardite

\[\text{NaAl}_2(\text{PO}_4)_2(\text{OH})_4 \cdot 2 \text{H}_2\text{O} \]

TETRAGONAL

Properties: C – colorless, white, greenish, light blue-green; S – white; L – vitreous; D – transparent to translucent; DE – 2.8; H – 5; CL – perfect; F – uneven; M – dipyramidal crystals, radial and hemispherical aggregates, coatings, crusts, granular.

Origin and occurrence: Secondary in granitic pegmatites, where it forms as a product of primary phosphate replacement; hydrothermal in the cracks in F-rich sediments. Perfect crystals up to 30 mm (11/16 in) across come from Rapid Creek, Yukon, Canada. It is also known from Piedras Lavadas, Paraíba, Brazil.
Pharmacosiderite

Pharmacosiderite

\[
\text{KFe}^{3+}\text{(AsO}_4\text{)}\text{OH}_4 \cdot 5\text{H}_2\text{O}
\]

CUBIC

Properties: C – green, yellow-brown, brown; S – white; L – adamantine to greasy; D – transparent to translucent; DE – 2.8; H – 2.5; CL – imperfect; F – uneven; M – cubic crystals, coatings, crusts, granular, massive.

Origin and occurrence: Secondary in granitic pegmatites and in the oxidation zone of ore deposits, where it forms as a product of arsenopyrite and löllingite replacement. Cubic crystals up to 10 mm (% in) across occur in St. Day, Liskeard and Redruth, Cornwall, UK. It also comes from the Majuba Hill mine, Nevada, USA; Herhausen, Germany and Cap Garrone, France.

Arseniosiderite

Arseniosiderite

\[
\text{CaFe}^{3+}\text{(AsO}_4\text{)}\text{O}_2 \cdot 3\text{H}_2\text{O}
\]

MONOCLINIC

Properties: C – yellow, light to dark brown; S – yellow; L – submetallic to silky; D – opaque; DE – 3.6; H – 1.5; CL – good; F – uneven; M – fibrous and earthy aggregates, coatings, crusts, massive.

Origin and occurrence: Secondary in the oxidation zone of ore deposits and in granitic pegmatites, where it forms as a product of arsenopyrite and löllingite replacement. Rich aggregates occur in Rommanche, France; also from the Rueda mine, Tintic, Utah, USA and Wittichen, Germany.

Lavendulane

Lavendulane

\[
\text{NaCaCu}_6\text{CuAs}_4\text{O}_4\text{Cl} \cdot 5\text{H}_2\text{O}
\]

ORTHORHOMBIC

Properties: C – light blue-purple, blue; S – white; L – vitreous to waxy; D – translucent; DE – 3.5; H – 2.5; CL – good; F – uneven; M – acicular crystals, acicular and earthy aggregates, coatings.

Origin and occurrence: Secondary in the oxidation zone of Co, Cu and Ni deposits, as a result of arsenide weathering, associated with pyrite. Rich acicular aggregates come from Talmessi and Anarak, Iran. Small crystals found in the Blanca mine, San Juan, Chile and in Annaberg, Germany. Crystals up to 4 mm (% in) across occur in the Gold Hill mine, Utah, USA.
Kovdorskite

Kovdorskite

$\text{Mg}_2(\text{PO}_4)_2(\text{CO}_3)(\text{OH})_2 \cdot 4.5 \text{H}_2\text{O}$

MONOCLINIC

Properties: C – light pink-brown, white, blue; S – white; L – vitreous; D – transparent to translucent; DE – 2.6; H – 4; CL – none; F – conchoidal to uneven; M – tabular crystals, massive.

Origin and occurrence: Hydrothermal, associated with magnesite, magnetite and other minerals. Blue and pink-brown crystals up to 25 mm (1 in) across from the Zheleznyi mine, Kovdor, Kola Peninsula, Russia.

Torbernite

Torbernite

$\text{Cu}_2(\text{UO}_2)_2(\text{PO}_4)_2 \cdot 8-12 \text{H}_2\text{O}$

TETRAGONAL

Properties: C – emerald-green to grass-green; S – light green; L – vitreous to dull, pearly on the cleavage planes; D – transparent to translucent; DE – 3.3; H – 2–2.5; CL – perfect; F – uneven; M – tabular to prismatic crystals, earthy aggregates, coatings, granular, massive; R – strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits, also in pegmatites and sedimentary rocks, resulting from the hydrothermal alteration of uraninite and other U minerals. Emerald-green tabular crystals, several cm across, come from Sobuagal, Portugal; Jadhwon, Czech Republic; Shinkolobwe, Zaire; Bois-Noirs, France; Moctezuma, Mexico and many localities in the Colorado Plateau, Utah, USA. Beautiful druses of crystals up to 20 mm (0.75 in) across, found in the Margabal mine, Aveyron, France.

Application: U ore.

Mixite

$\text{BiCu}_6(\text{AsO}_4)_3(\text{OH})_6 \cdot 3 \text{H}_2\text{O}$

HEXAGONAL

Properties: C – emerald-green, blue-green, light blue, light green, whitish; S – light green, light blue; L – adamantine to dull; D – translucent; DE – 3.8; H – 3.4; CL – not determined; F – uneven; M – acicular crystals, acicular and earthy aggregates, coatings, massive.

Origin and occurrence: Secondary in the oxidation zone of Bi and Cu deposits, together with bismuthinite. It occurred in Jadhwon, Czech Republic; in Tintic, Utah, USA; Schneeberg and Witteken, Germany.

Torbernite, 120 mm, Kaitanga, Zaire
Autunite

\[\text{Ca}_2(\text{UO}_2)_2(\text{PO}_4)_2 \cdot 10-12 \text{H}_2\text{O} \]

TETRAGONAL

Properties: C – light to dark yellow, yellow-green to green; S – light yellow; L – vitreous to dull; D – transparent to translucent; DE – 3.1; H – 2-2.5; CL – perfect; F – uneven; M – tabular crystals, foliated, scaly, cryptic and powdery aggregates, coatings, massive; LU – yellow-green; R – strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits, in pegmatites and in some U-rich sedimentary rocks, as a result of hydrothermal alteration of uraninite and other U minerals. It is frequently associated with torbernite and other U secondary minerals. Tabular crystals up to 30 mm (1/4 in) across come from Schneeberg and Johanngeorgenstadt, Germany and Autun, France. It is also known from Rum Jungle, Northern Territory, Australia; St. Austel, Cornwall, UK; Mount Spokane, Washington, USA and Jáchymov, Czech Republic. Application: U ore.

Uranocirsite

\[\text{Ba}_2(\text{UO}_2)_2(\text{PO}_4)_2 \cdot 10 \text{H}_2\text{O} \]

TETRAGONAL

Properties: C – light to dark yellow, light yellow-green; S – light yellow; L – vitreous to dull, pearly on the cleavage planes; D – transparent to translucent.
cent; DE - 3.5; H - 2-2.5; CL - perfect; F - uneven; M - tabular crystals, foliated and earthy aggregates, pulverulent coatings, massive; LU - green; R - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits. Yellow tabular crystals up to 10 mm (⅛ in) across occurred in Dunaotice, Czech Republic; Bergen and Wölssendorf, Germany and in the Sao Pedro mine, Suaqui, Minas Gerais, Brazil.

Nováčeckite

\[\text{Mg(UO}_2\text{)}_2\text{(AsO}_4\text{)}_2\cdot 10\text{H}_2\text{O}\]

TETRAGONAL

Properties: C - straw-yellow, light yellow; S - light yellow; L - vitreous to dull; D - transparent to translucent; DE - 3.7; H - 2.5; CL - perfect; F - uneven; M - tabular crystals, lamellar, earthy and pulverulent aggregates, massive; LU - dark green; R - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits. Tabular crystals up to 50 mm (2 in) across come from the Pedra Preta Mine, Brumado, Bahia, Brazil. Lamellar aggregates are known from Záleś, Czech Republic; Aldama, Chihuahua, Mexico; Wittichen, Germany.

Zeunerite

\[\text{Cu(UO}_2\text{)}_2\text{(AsO}_4\text{)}_2\cdot 10\text{H}_2\text{O}\]

TETRAGONAL

Properties: C - emerald-green, yellow-green; S - light green; L - vitreous to dull; D - transparent to translucent; DE - 3.4; H - 2.5; CL - perfect; F - uneven; M - tabular crystals, foliated aggregates, massive; R - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits. Tabular crystals up to 30 mm (1¼ in) across, come from the Pedra Preta Mine, Brumado, Bahia, Brazil. It is also known from Záleś, Czech Republic and Schneeberg, Germany.

Carnotite

\[\text{K}_2\text{(UO}_2\text{)}_2\text{(VO}_4\text{)}_2\cdot 3\text{H}_2\text{O}\]

MONOCLINIC

Properties: C - light to dark yellow, yellow-green; S - light yellow; L - dull; D - transparent to translucent, opaque; DE - 4.9; H - not determined; CL - perfect; F - uneven; M - earthy aggregates, massive; R - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of sedimentary U deposits, typically associated with tyuyamanite. Platy crystals, up to 2 mm (⅛ in) across found in the Mashamba West mine, Zaire. Earthy and pulverulent aggregates occur in many localities in the Colorado Plateau, e.g., Paradox Valley, Colorado and La Sal, Utah, USA. Also known from Tyuya Mayun, Uzbekistan and Radium Hill, Southern Australia, Australia.

Application: U and V ore.

Tyuyamanite

\[\text{Ca(UO}_2\text{)}_2\text{(VO}_4\text{)}_2\cdot 5\text{H}_2\text{O}\]

ORTHORHOMBIC

Properties: C - yellow-green, canary yellow; S - light yellow; L - silky to adamantine; D - translucent to opaque; DE - 3.6; H - 2; CL - perfect; F - uneven; M - earthy aggregates, massive; LU - weak yellow-green; R - strongly radioactive.

Origin and occurrence: Secondary in the oxidation zone of sedimentary U deposits, together with carnotite. Common earthy and pulverulent aggregates occur in many localities in the Colorado Plateau, e.g., Paradox Valley, Colorado and Red Creek, Utah, USA. It was described from Tyuya Mayun, Uzbekistan.

Application: U and V ore.

Tyuyamanite, 50 mm, Fergana, Uzbekistan.
9. Silicates

Phenakite

Be₂SiO₄

TRIGONAL

Properties: C — colorless, white, yellowish; S — white; L — strong vitreous; D — transparent to translucent; D_E = 3.0; H = 8; CL — imperfect; F — conchoidal; M — long prismatic to tabular crystals, radial aggregates, granular.

Origin and occurrence: Magmatic in granitic pegmatites; hydrothermal in greisens; metamorphic in micaschists, associated with beryl, chrysoberyl, apatite and quartz. Prismatic crystals up to 250 mm (9 ⅔ in) long occurred in Kragerø, Norway. It is also known from Sao Miguel de Piracicaba, Minas Gerais, Brazil in crystals, up to 100 mm (4 in) long. The other localities are Hubachau, Austria; Malyshovo, Russia; Anjanabonoina, Madagascar.

Application: sporadically cut as a gemstone.

Willemite

Zn₂SiO₄

TRIGONAL

Properties: C — white, yellowish, gray, green; S — white; L — vitreous; D — translucent; D_E = 4.0, H = 5.5; CL — good; P B conchoidal to uneven; M — prismatic to tabular crystals, radial aggregates, granular; LW — distinct light green.

Origin and occurrence: Metamorphic in marbles; secondary in the oxidation zone of ore deposits, associated with zincoxite, franklinite, hemimorphite and smithsonite. Crystals up to 100 mm (4 in) across come from Franklin, New Jersey, USA, Mont St-Hilaire, Quebec, Canada.

Application: as Zn ore.
Forsterite
OLIVINE GROUP
Mg$_2$SiO$_4$

ORTHORHOMBIC

Properties: C – yellowish, greenish, colorless; S – white; L – vitreous; D – transparent to opaque; DE – 3.3; H – 6.5-7; CL – good; F – conchoidal to uneven; M – tabular to prismatic crystals, granular.

Origin and occurrence: Metamorphic in regionally and contact metamorphosed dolomites. Typical rock-forming mineral, associated with enstatite, spinel, phlogopite and chlorite. Green gummy crystals up to 80 mm ($3\frac{3}{4}$ in) long come from Suppat, Pakistan. It also occurred in Crestmore, California, USA, Mount Timokey, British Columbia, Canada and Monte Summa, Italy.

Olivine
OLIVINE GROUP
(Mg$_{0.6}$Fe$_{0.4}$)$_2$SiO$_4$

ORTHORHOMBIC

Varieties: chrysolite

Properties: C – green, yellow-green (chrysolite), brown-green to black-green; S – white; L – vitreous; D – translucent to opaque; DE – 3.3-3.6; H – 6.5-7; CL – good; F B conchoidal to uneven; M – imperfect crystals, granular.

Origin and occurrence: Magnatic in some ultrabasic rocks, e.g. dunites, lherzolites, peridotites, gabbros and in meteorites. Typical rock-forming mineral, usually associated with diopside, magnetite and pyrope. Classic locality of chrysolite is Zebringet Island in the Red Sea, Egypt, where tabular crystals.
Fayalite
OLIVINE GROUP
Fe₂SiO₄

ORTHORHOMBIC

Properties: C - black-green to black; S - gray; L - dull to vitreous; D - opaque; DE - 4.2; H - 6.5-7; CL - good; F B conchoidal to uneven; M - imperfect prismatic crystals, granular.

Origin and occurrence: Magmatic in granitic pegmatites, granites and syenites, associated with orthoclase, gadolinite-(Y) and epidote; rare metamorphic. Poorly developed crystals up to 150 mm (6 in) long found in pegmatites near Baveno, the Alps, Italy.

Fayalite, 80 mm, Rockport, U.S.A.

It is also known from Strzezom, Poland and the Sawtooth Batholith, Idaho, USA.

Tephroite
OLIVINE GROUP
Mn₂SiO₄

ORTHORHOMBIC

Properties: C - gray, olive-green, red-brown; S - white; L - dull to vitreous; D - translucent to transparent; DE - 4.2; H - 6; CL - good; F B conchoidal to uneven; M - prismatic crystals, granular.

Origin and occurrence: Metamorphic in skarns and Mn-rich metamorphosed sediments, together with rhodonite, franklinite and spessartine. Granular aggregates and perfect crystals up to 50 mm (2 in) across known from Franklin, New Jersey, USA; Langban, Sweden. It comes also from Tarnobrzeg, Poland, in crystals, up to 80 mm (3 ½ in) across.

Tephroite, 60 mm, Harstigen, Sweden
Pyrope, 3 mm grains, Trebívlice, Czech Republic

Pyrope
GARNET GROUP
Mg$_3$Al$_2$Si$_3$O$_{12}$

CUBIC

Properties: C – red to purple-red, light purple, black-brown; S – white; L – vitreous; D – transparent to translucent; DE – 3.5; H – 7–7.5; CL – none; F B conchooidal to uneven; M – isometric crystals, granular.

Origin and occurrence: Magma in some ultrabasic rocks, e.g., lherzolites, peridotites, kimberlites, eclogites and serpentinites; metamorphic in quartzites; also known from placers. It is associated with diopside, magnetite and diamond. It comes from many localities in ultrabasic rocks, like Trebívlice and Mirunice, Czech Republic; Zöblitz, Germany; Madras, India; Kimberley, South Africa. Crystals up to 250 mm (9 1/8 in) across were found in Dora Maria, the Alps, Italy.

Application: cut as a gemstone.

Almandine
GARNET GROUP
Fe$_3$Al$_2$Si$_3$O$_{12}$

CUBIC

Properties: C – red to purple-red, black-brown; S – white; L – vitreous; D – transparent to translucent; DE – 4.3; H – 7; CL – none; F B conchooidal to uneven; M B well-formed crystals, granular.

Origin and occurrence: Metamorphic in regionally metamorphosed rocks, as chlorite schists, gneisses, Serratina, 96 mm, Gilgit, Pakistan.
mica schists and migmatites; magmatic in some granites and pegmatites; also in placers. Well-developed crystals up to 150 mm (6 in) across are known from Ishikawa pegmatites, Japan and Shingus, Pakistan. It comes from many mica schists and gneisses as crystals, up to about 50 mm (2 in), like Fort Wrangel, Alaska, USA; Otztal, Austria; Bodø, Norway. It occurs in placers near Ratnapura, Sri Lanka.

Application: cut as a gemstone, abrasive material.

Spessartine

GARNET GROUP

Mn$_3$Al$_2$Si$_5$O$_{12}$

CUBIC

Properties: C – red, orange, light brown to yellowish; S – white; L – vitreous; D – transparent to translucent; DE – 4.3; H – 7-7.5; CL – none; F B conchoidal to uneven; M – perfect crystals, granular.

Origin and occurrence: Magmatic in granite pegmatites and some granites; hydrothermal in cavities in rhyolites; metamorphic in some skarns and Mn-rich metamorphic rocks. Perfect crystals up to 30 mm (1⅓ in) across were found in granite pegmatites in the Hercules mine, Ramona, California, USA; near Marienfluss river, Namibia and in rhyolite cavities in Nathrop, Colorado, USA. Gemmy crystal fragments up to 50 mm (2 in) across were recently found in an undisclosed locality in Minas Gerais, Brazil.

Application: cut as a gemstone.

Grossular

GARNET GROUP

Ca$_3$Al$_2$Si$_3$O$_{12}$

CUBIC

Varieties: hessonite, tsavorite

Properties: C – red, green (tsavorite), orange, red-brown (hessonite) to colorless; S – white; L – vitreous; D – transparent to translucent; DE – 3.4; H – 6.5-7; CL – none; F B conchoidal to uneven; M – perfect crystals, granular.

Origin and occurrence: Metamorphic in Ca-rich, contact metamorphic rocks, skarns, rodingites; hydrothermal along the cracks in these rocks, associated with diopside, vesuvianite, wollastonite, scapolite and epidote. Perfect crystals about 30 mm (1⅓ in) across occur in the Jeffrey quarry, Asbestos, Quebec, Canada and Sierra de las Cruces, Coahuila, Mexico. Tsavorite crystals up to 50 mm (2 in) across come from the Tsavo National Park, Kenya and Merelani Hills, Arusha, Tanzania. The other well-known localities are Ala, Italy and Ciclova, Romania. Grossular crystals up to 100 mm (4 in) in size in Vápenná, Czech Republic; Xalosotc, Mexico and Sandaré, Mali.

Application: cut as a gemstone.
Andradite
GARNET GROUP
Ca$_3$Fe$^{3+}$$_{3}Si_3O_{12}$

CUBIC

Varieties: demantoid, melanite

Properties: C – dark red, black-brown, brown, green to yellow-green (demantoid), black-brown to black (melanite); S – white; L – vitreous; D – translucent to translucent; D = 3.9; H = 6.5-7; CL = none; F B conchoidal to uneven; M B well-developed crystals, granular.

Origin and occurrence: Metamorphic in Ca and Fe rich contact metamorphosed rocks, skarns, rodingites; hydrothermal along the cracks of these rocks; magmatic in some alkaline igneous rocks, usually in the same localities as grossular. Crystals up to 40 mm (1½ in) across come from Sinerochenskoye, Russia. Fine crystals were also found in the Namgar mine, Usakos, Namibia and Ciclova, Romania. Fine melanite crystals occur in Magnet Cove, Arkansas, USA. Demantoid crystals up to 30 mm (1½ in) across known from Val Malenco, Italy and in the Bobrovka river basin, Ural mountains, Russia.

Application: demantoid is cut as a gemstone.

Demantoid, 3 mm xx, Bobrovka, Russia

Melanite, 5 mm xx, Rudnyi, Kazakhstan
Uvarovite
GARNET GROUP
Ca₃Cr₂Si₂O₁₂

CUBIC

Properties: C — dark emerald-green; S — white; L — vitreous; D — transparent to translucent; DE — 3.9; H — 6.5-7; CL — none; F B conchoideal to uneven; M — perfect crystals, granular.

Origin and occurrence: Metamorphic and also hydrothermal are almost only limited to rocks with increased Cr content, ultrabasic rocks with chromite, serpentinites and skarns. It occurs as crystals up to 8 mm (1/5 in) across along cracks in chromite in Sarany, Ural mountains, Russia. Crystals up to 20 mm (3/4 in) across, come from Outokumpu, Finland. It is also known from Orford, Quebec, Canada.

Zircon
ZrSiO₄

TETRAGONAL

Varieties: jargon, hyacinth.

Properties: C — yellow (jargon), brown, yellow-brown, red-orange (hyacinth), red to colorless; S — white; L — vitreous, greasy to adamantine; D — transparent to translucent; DE — 4.7; H — 7.5; CL — imperfect; F B conchoideal to uneven; M — perfect long and short prismatic crystals, granular; LU — yellow; R B sometimes radioactive and usually metamict.

Origin and occurrence: Magmatic and metamorphic as an accessory mineral in different rock types; rarely hydrothermal in the Alpine-type and quartz veins; also in sediments and placers. Prismatic crystals up to 30 cm (12 in) across, occur in syenite pegmatites in Renfrew and Bancroft, Ontario, Canada. It is also known from Mias, Ural mountains and from Mount Vavilov, Lovozero massif, Kola Peninsula, Russia. Classic occurrences in granitic pegmatites are Alto Ligonha, Mozambique; Arendal, Norway; Vitterby, Sweden and Jaguaraçu, Minas Gerais, Brazil. Gemmy zircons of different colors up to 80 mm (3/4 in) in size come from placers near Ratnapura, Sri Lanka and elsewhere.

Application: hyacinth and jargon are cut as gemstones, Zr ore.
Eulytine
$\text{Bi}_4\text{Si}_3\text{O}_{12}$

CUBIC

Properties: C – brown, yellow, gray, colorless; S – white; L – greasy; D – translucent; DE – 6.6; H – 4.5; CL – good; F B conchoidal to uneven; M – small dipyramidal crystals, radial aggregates, granular.

Origin and occurrence: Secondary in Bt deposits, typically associated with bismuth.

Eulytine, 42 mm, Minas Novas, Brazil

Euclase
$\text{BeAlSiO}_4(\text{OH})$

MONOCLINIC

Properties: C – colorless, white, greenish, blue; S – white; L – vitreous; D – transparent to translucent; DE – 3.1; H – 7.5; CL – good; F B conchoidal to uneven.

Euclase, 42 mm, Minas Novas, Brazil

Silimanite, 16 mm grains, Havířskáv Brod, Czech Republic

Republic; Schneeberg and Johanngeorgenstadt, Germany.
uneven; M - long prismatic crystals, radial aggregates, granular.

Origin and occurrence: Hydrothermal occurs in pegmatites, greisens and in quartz and Alpine-type veins; rare in placers. Well-formed crystals up to 80 mm (3 1/2 in) in size known from Santa do Encoberto, Minas Gerais, Brazil. Blue crystals up to 50 mm (2 in) across occurred in the Last Hope Mine, Karori, Zimbabwe. It also come from the sediments of Sananka River, Ural mountains, Russia. Dark blue crystals up to 150 mm (6 in) across were found recently in the Chivor Mine, Colombia.

Application: locally cut as a gemstone.

Sillimanite

\[
\text{Al}_2\text{SiO}_5
\]

Orthorhombic

Properties: C - white, gray, greenish, yellowish; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.3; H - 6.5-7.5; CL - good; F - uneven; M - long prismatic crystals, fibrous aggregates, granular.

Origin and occurrence: Almost exclusively metamorphic in gneisses and migmatites; only rare magmatic in pegmatites and granites; also in placers. Typical rock-forming mineral, very commonly associated with andalusite. Typical localities are Bodenmais, Germany and Mai-kov, Czech Republic. Gemmy crystals up to 20 mm (1/4 in) long are known from Railwana-Dentawy, Sri Lanka.

Andalusite

\[
\text{Al}_2\text{SiO}_5
\]

Orthorhombic

Varieties: chiastolite, viridine

Properties: C - pink, red-brown, red, gray, whitish, green (viridine); S - white; L - vitreous to dull; D - translucent to transparent; DE - 3.2; H - 6.3-7.5; CL - good; F - uneven; M - prismatic crystals, fibrous aggregates, granular, massive.

Origin and occurrence: Metamorphic in regionally and contact metamorphosed rocks; magmatic in pegmatites and granites; hydrothermal in quartzites. Typical rock-forming mineral, commonly associated with sillimanite, corundum and cordierite. Renowned localities are Lisens, the Alps, Austria; Bimbowie, South Australia, Australia. Green gemmy crystals come from Morro do Chapeú, Bahia, Brazil. Viridine is known from Darmstadt, Germany.
Kyanite
Al_2SiO_3

TRICLINIC

Properties: C = blue, gray, white, green, dark gray, colorless; S = white; L = vitreous to dull; D = transparent to translucent; DE = 3.6; H = 4.5-7.5; CL = good; F = uneven; M = prismatic to tabular crystals, fibrous aggregates, granular, massive.

Origin and occurrence: Almost only metamorphic in regionally metamorphosed rocks, mica schists, gneisses, granulites and eclogites; less frequently magmatic in pegmatites and granites; rarely hydrothermal in quartz veins. Typical rock-forming mineral, associated with andalusite and sillimanite. Blue columnar aggregates and crystals up to 150 mm (6 in) long occur in Barra do Salinas, Minas Gerais, Brazil. Other renowned localities are Pizzo Forno, Switzerland; Prilep, Macedonia; Kevy, Kola Peninsula, Russia.

Kyanite, 87 mm, Minas Gerais, Brazil

Topaz
$\text{Al}_2\text{SiO}_4\text{(F,OH)}$

ORTHORHOMBIC

Varieties: pectolite

Properties: C = colorless, blue, yellow, gray, white, greenish, pinkish, red; S = white; L = vitreous; D = transparent to translucent; DE = 3.6; H = 8; CL = good; F = uneven; M = perfect prismatic to tabular crystals, radial and columnar aggregates, granular.

Origin and occurrence: Magmatic in pegmatites and granites; hydrothermal in greisens, in rhyolite cavities, in quartz veins, also in placers. Topaz crystals in pegmatites are occasionally very large, like the crystal measuring 80 x 60 x 60 cm (31½ x 24 x 24 in) across from Fazenda do Funil; crystals

Topaz, 18 mm xx, Ghurda Hill, Pakistan
up to 30 cm (12 in) from Virgem da Lapa, both Minas Gerais, Brazil. Blue, brownish and bicolor crystals up to 40 cm (15¾ in) long come from Volodarsk Volynskii, Ukraine. Other topaz localities are Iceland, Norway; Murzinka, Ural mountains, Russia; Little Three mine, Ramona, California; Pikes Peak, Colorado, USA; Gilgit, Pakistan; Spitzkopje, Namibia. Orange to red topaz (imperial topaz) comes from quartz veins near Ouro Preto, Minas Gerais, Brazil. Pink topaz crystals up to 70 mm (2¾ in) found at Mount Ghausia, Mardan, Pakistan. Important topaz specimens were also found in Schneckenstein, Germany; Thomas Range, Utah, USA; Nerchinsk, Siberia. Russia. Columnar aggregates of pynite come from Cínovec, Czech Republic and Altenberg, Germany.

Application: cut as a gemstone.
Staurolite
\(\text{Fe}_2\text{Al}_3\text{Si}_4\text{O}_{22}(\text{OH})_2 \)

Orthorhombic

Properties: C - dark to light brown, yellow; S - white; L - dull to vitreous; D - transparent to almost opaque; DE - 3.7; H - 7-7.5; CL - good; F - uneven;

Sapphire, 29 mm, Yohinena, Madagascar

M - prismatic to tabular crystals and their combinations, granular.

Origin and occurrence: Metamorphic in regionally metamorphosed rocks, gneisses and mica schists; rare in magmatic in granites; also in placers, commonly associated with almandine, andalusite and kyanite. Crystals up to 50 mm (2 in) across come from Pizzo Forno, Switzerland. It is also known from Rio Arriba, New Mexico, USA. Its cross-like twins, up to 200 mm (7 1/4 in) across, occur in Keivy, Kola Peninsula, Russia and Morbihan, France.

Sapphireine
\(\text{Mg}_2\text{Al}_4\text{Si}_4\text{O}_{10} \)

Monoclinic

Properties: C - dark to light blue, green; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.5; H - 7.5; CL - imperfect; F - uneven; M - tabular crystals, granular.

Origin and occurrence: Metamorphic in regionally metamorphosed rocks, rich in Al and Mg and poor in Si, associated with spinel and corundum. Crystals up to 40 mm (1 1/2 in) across come from Fisknesset, Greenland; Betroka and Androy, Madagascar. Other localities include Val Codera, Italy and Enderby Land, Antarctica.
Chondrodite
$\text{Mg}_2\text{Si}_2\text{O}_5(\text{OH},\text{F})_2$

MONOCLINIC

Properties: C – yellow, greenish, brown; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 6-6.5; CL – imperfect; F – uneven; M – crystals of different habits, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed carbonate rocks; rare magmatic in carbonatites, typically associated with spinel, chlorite and phlogopite. Perfect crystals up to 50 mm (2 in) long come from the Tilly Foster mine, Brewster, New York, USA. Other localities are Pargas, Finland; Monte Somma, Italy; Riverside, California, USA.

Clinohumite
$\text{Mg}_4\text{Si}_4\text{O}_{16}(\text{OH},\text{F})_2$

MONOCLINIC

Properties: C – yellow, red, brown, white; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.3; H – 6; CL – imperfect; F – uneven; M – crystals of different habits, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed carbonate rocks, serpentinites and tectonic schists, associated with spinel, chlorite, forsterite, serpentinite and phlogopite. Gemmy yellow crystals up to 30 mm (1½ in) across come from Khash-i-Lal, Pamir, Tajikistan. Other localities are Pargas, Finland; Monte Somma, Italy; Jensen quarry, California, USA.

Chapmanite
$\text{Sb}_2\text{Fe}^{3+}_2\text{Si}_2\text{O}_9(\text{OH})$

MONOCLINIC

Properties: C – olive-green to dark yellow; S – yellowish to yellow; L – dull; D – translucent; DE – 3.7; H – 2.5; CL – imperfect; F – uneven; M – elongated crystals, massive.

Origin and occurrence: Hydrothermal and secondary in the cracks of rocks, sometimes with stibnite. Its massive aggregates occur in Smilkov near Votice, Czech Republic; in the Keely mine, Cobalt, Ontario, Canada.
Braunite, 60 mm, Langban, Sweden

Braunite

\[\text{Mn}^{2+} \text{Mn}^{3+} \text{SiO}_4 \]

TETRAGONAL

Properties: C – black; black-gray; black-brown; S – gray; L – submetallic to metallic; D – opaque; DE – 4.7; H – 6-6.5; CL – perfect; F – uneven to conchoidal; M – dipyramidal crystals, granular.

Origin and occurrence: Metamorphic in regionally and contact metamorphosed rocks; hydrothermal in sedimentary rocks rich in Mn and in hydrothermal veins, associated with hausmanite, pyrolusite and other Mn minerals. Its perfect crystals up to 70 mm (2¾ in) long, come from Kacharhawe and Tiriodi, India. It is also known from Langban, Sweden; Lifeld and Ilmenau, Germany; St. Marcel, Italy; Tizi Bashikan, Morocco.

Application: Mn ore.

Thaumasite

\[\text{Ca}_2\text{Mg}_2(\text{CO}_3)_2(\text{SO}_4)_2(\text{OH})_4 \cdot 24 \text{H}_2\text{O} \]

HEXAGONAL

Properties: C – white to colorless; S – white; L – vitreous to dull; D – transparent to translucent; DE – 1.9; H – 3.5; CL – imperfect; F – uneven; M – acicular aggregates, granular, massive; LU – white.

Origin and occurrence: Hydrothermal or metamorphic in contact metamorphosed carbonate rocks, usually associated with other Ca silicates and carbonates, like ettringite and prehnite. Typical localities are Crestmore, California; West Paterson, New Jersey, USA; Langban, Sweden; N’Chwaning mine No. 2, Kuruman, South Africa.

Tianite

\[\text{CaTiSO}_4 \]

MONOCLINIC

Properties: C – colorless, yellow, brown, green, gray to black; S – white; L – vitreous to dull; D – transparent, translucent to opaque; DE – 3.5; H – 5-5.5; CL – good; F – uneven to conchoidal; M – tabular crystals and their combinations, granular, massive.

Origin and occurrence: Metamorphic and magmatic as a common accessory mineral in many igneous and

Fersmanite, 16 mm x, Khilsagy Massif, Kola, Russia
metamorphic rocks and pegmatites; hydrothermal in
the Alpine-type veins; also in placers.
The most beautiful crystals up to 180 mm (7/16 in)
long occur in Alpine-type veins in Tavetsch and
Binntal, Switzerland; Zillertal and Felbertal, Austria;
Dodo, Polar Ural, Russia. Large, poorly developed
crystals weighing up to 40 kg (88 lb), come from
Eganville, Ontario, Canada and Rossie, New York,
USA.

Fersmanite
(Na,Ca)(Ti,Nb)2Si2O11(OH,F)2
TRICLINIC • •
Properties: C – light to dark brown; S – white; L –
vitreous to dull; D – translucent; DE – 3.5; H – 5.5;
CL – none; F – uneven to conchoidal; M – tabular
crystals.
Origin and occurrence: Magmatic to hydrothermal in
alkaline pegmatites together with pectolite, apatite and
sulfides. Crystals up to 30 mm (1/4 in) across known
from Mount Evesfjehhor, Khibiny massif, Kola
Peninsula, Russia.

Chloritoid
Fe3Al4Si2O10(OH)2
MONOCLINIC, TRICLINIC • • •
Properties: C – dark gray, gray-green to black-green;
S – gray; L – vitreous to dull; D – translucent; DE –
3.6; H – 6.5; CL – perfect; F – uneven to conchoidal;
M – tabular crystals, foliated and scaly aggregates,
granular.
Origin and occurrence: Metamorphic in some mica
schists and phyllites; hydrothermal alteration
product in lavas. Typical localities are Zermatt,
Switzerland; Othrez, Belgium; Pregarten, Austria.

Titanite, 20 mm xx, Stubachal, Austria

Chloritoid, 30 mm, Ile de Croix, France
Datolite

CaBSiO_4(OH)

MONOCLINIC

Properties: C – white to colorless, yellowish, greenish, gray; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.1; H – 5-5.5; CL – none; F – uneven to conchoidal; M – prismatic to tabular crystals, nodules, granular.

Origin and occurrence: Metamorphic and hydrothermal in contact metamorphosed rocks, in cavities in volcanic rocks, in ore veins and pegmatites. It is commonly associated with zeolites, prehnite, calcite and also with tourmaline. Prismatic and tubular crystals up to 100 mm (4 in) long occur in Dalnegorsk, Russia. Other typical localities are West Paterson, New Jersey; Keweenaw Peninsula, Michigan, USA; Haslach, Germany; Charcas, San Luis Potosí, Mexico.

Gadolinite-(Y)

Y_2FeBe_2Si_2O_10

MONOCLINIC

Properties: C – black, dark red, brown, greenish; S – gray-green; L – vitreous to greasy; D – transparent to translucent; DE – 4.4; H – 6.5-7; CL – none; F –

Hovlita, 30 mm, California, U.S.A.
Dumortierite
\(\text{Al}_2\text{Mg}_3\text{Al}_4\text{BSi}_2\text{O}_{16}(\text{O},\text{OH})_2\)

Orthorhombic

Properties: C — purple, pink, blue, brown; S — white; L — vitreous to dull; D — transparent to translucent; DE — 3.4; H — 8.5; CL — good; F — uneven; M — prismatic crystals, radial and acicular aggregates, massive.

Origin and occurrence: Metamorphic in some Al-rich metamorphic rocks, e.g. in migmatites and gneisses; magmatic in granites and pegmatites; hydrothermal in altered rocks. It comes from Dehesa, California; Rochester, Nevada, USA; Beau- nan, France; crystals are known from the vicinity of Kutná Hora, Czech Republic; Soavina, Madagascar.

Howlite
\(\text{Ca}_2\text{B}_5\text{Si}_2\text{O}_{9}(\text{OH})_5\)

Monoclinic

Properties: C — white; S — white; L — vitreous to dull; D — transparent to translucent; DE — 2.5; H — 3.5; CL — good; F — uneven; M — tabular crystals, nodules, massive.

Origin and occurrence: Hydrothermal in borate deposits, associated with ulexite and colemanite. Crystals, several cm across, come from the vicinity of Bras d’Or Lake, Nova Scotia, Canada. It occurs also in Lang and Daggett, California, USA.

Kornerupine
\(\text{Mg}_2\text{Al}_2(\text{Si},\text{Al},\text{B})_3\text{O}_{11}(\text{OH})\)

Orthorhombic

Properties: C — colorless, white, greenish, gray, brown; S — white; L — vitreous to dull; D — transparent to translucent; DE — 3.3; H — 6.5-7; CL — none; F — conchoidal; M — prismatic crystals, radial aggregates, granular.

Origin and occurrence: Metamorphic in strongly metamorphosed rocks, as granulites. Crystals up to 230 mm (9/8 in) across known from Fiskensæset, Greenland. It also occurs in Lac Ste-Marie, Quebec, Canada; Waldheim, Germany; Itrongay, Madagascar.
Cuproskloاداتサイト
Cu(\text{UO}_2)_2\text{Si}_2\text{O}_7 \cdot 6\text{H}_2\text{O}

\text{MONOCLINIC}

Properties: C – various hues of green; S – greenish; L – vitreous to dull; D – transparent to translucent;

Uranophane, 125 mm, Brewster, Texas, U.S.A.

\text{DE} – 3.8; \text{H} – 4; \text{CL} – good; \text{F} – uneven; \text{M} – radial, acicular aggregates, thin coatings, granular, massive; \text{R} – strong radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits, associated with autunite, torbernite, uranium and other U secondary minerals. Crystals, up to several cm long, come from

Kasolite, 30 mm, Musonoi, Zaire
the Mashamba West mine, Musonoi, Zaire. It also occurred in Jáchymov, Czech Republic.

Uranophane

\[\text{Ca(UO}_2\text{)}_{2.5}\text{Si}_2\text{O}_7 \cdot 6 \text{H}_2\text{O} \]

MONOCLINIC

Properties: C – various hues of yellow to brown; S – yellowish; L – vitreous to dull; D – transparent to translucent; DE = 3.9; H = 2.5; CL = good; F – uneven; M – radial, acicular aggregates, thin coatings, granular, massive; LU – yellow-green; R – strong radioactive.

Origin and occurrence: Secondary in the oxidation zone of U deposits as a product of uraninite alteration, associated with autunite, torbernite and other secondary U minerals. Needles up to 10 mm (½ in) long, come from Musonoi, Shinkolobwe, Zaire. It is also known from the Faraday mine, Bancroft, Ontario, Canada. It occurs in Wülseendorf, Germany, as well as in Jáchymov, Czech Republic.

Kasolite

\[\text{Pb(UO}_2\text{)}_{2}\text{SiO}_4 \cdot \text{H}_2\text{O} \]

MONOCLINIC

Properties: C – various hues of yellow, green to brown; S – yellowish; L – vitreous to dull; D – translucent to opaque; DE = 6.2; H = 4.5; CL = good; F – uneven; M – prismatic crystals, radial and acicular aggregates, thin coatings, granular, massive; R – strong radioactive.

Origin and occurrence: Secondary mineral in the oxidation zone of U deposits. It is a product of uraninite alteration and is associated with uranophane, torbernite and U hydroxides. Crystals up to 10 mm (½ in) long occur in Shinkolobwe, Kasolo, Zaire and Mounana, Gabon.

Akermanite

\[\text{Ca}_2\text{Mg}_5\text{Si}_2\text{O}_7 \]

TETRAGONAL

Properties: C – white, gray, green, brown; S – white; L – vitreous to dull; D – transparent to translucent; DE = 2.9; H = 5.5; CL = good; F – uneven to conchoidal; M – short prismatic crystals, granular.

Origin and occurrence: Magmatic in volcanic basic rocks; metasomatic in contact metamorphosed marbles. A typical representative of localities in marbles is Crestmore, California, USA. It occurs also in Ca-rich volcanic rocks in Velardeña, Mexico.

Gehlenite

\[\text{Ca}_2\text{Al}_2\text{Si}_2\text{O}_7 \]

TETRAGONAL

Properties: C – white, gray, yellowish; S – white; L – vitreous to dull; D – transparent to translucent; DE = 3.0; H = 5.6; CL = good; F – uneven to conchoidal; M – short prismatic crystals, granular.

Origin and occurrence: Magmatic in volcanic basic rocks; metamorphic in contact metamorphosed marbles. It occurs in Crestmore, California, USA; Monzoni, Italy; Oraviza, Romania and elsewhere.
Ilvaite

\[\text{CaFe}^{2+}\text{Fe}^{3+}\text{Si}_2\text{O}_8(\text{OH}) \]

Orthorhombic \(**

Properties: C – black to black-gray; S – black; L – submetallic to dull; D – opaque; DE – 4.1; H – 5.5-6; CL – good; F – uneven; M – prismatic crystals, granular.

Origin and occurrence: Metamorphic and hydrothermal in contact metamorphosed Fe, Zn and Cu deposits. Prismatic crystals up to 100 mm (4 in) long come from Rio Marina, Elba, Italy. Crystals up to 30 cm (12 in) long are known from Serifos Island, Greece. Crystals, several cm long occur also in Dalnegorsk, Russia and in the Laxey mine, Idaho, USA.

Bertrandite

\[\text{Be}_4\text{Si}_2\text{O}_7(\text{OH})_2 \]

Orthorhombic \(**

Properties: C – colorless, white, yellowish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.6; H – 6-7; CL – perfect; F – uneven; M – tabular crystals and their combinations, radial aggregates, granular, massive.

Origin and occurrence: Hydrothermal in granitic pegmatites, greisens and in hydrothermal veins, together with beryl, also in pseudo-morphs after beryl. Tabular crystals up to 50 mm (2 in) across occur in Conselheiro Pena, Minas Gerais, Brazil. It is known from Kourkad and Kara-Oba, Kazakhstan in crystals up to 30 mm (1 1/4 in) across. It also comes from Stoneham, Maine, USA; Pisek, Czech Republic and Iceland, Norway.

Application: the most important Be ore.

Hemimorphite

\[\text{Zn}_4\text{Si}_2\text{O}_7(\text{OH})_2 \cdot \text{H}_2\text{O} \]

Orthorhombic \(**

Properties: C – colorless, white, yellowish, greenish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.4; H – 4.5-5; CL – perfect; F – uneven; M – tabular crystals and their combinations, botryoidal and radial aggregates, granular, massive.

Origin and occurrence: Secondary in the oxidation zone of Zn deposits, associated with sphalerite, smithsonite and cerussite. Crystals up to 100 mm (4 in) long come from Bisbee, Arizona, USA. It is also from the El Potosí Mine, Santa Euaria, Chihuahua, Mexico; Bliesberg, Austria, Cho-Dien, Vietnam.

Application: Zn ore.
Lamprophyllite

Na₂Sr₂Ti₃Si₄O₁₆(OH,F)₂

MONOCLINIC

Properties: C – brown to dark brown; S – white; L – vitreous to submetallic; D – translucent; DE – 3.5; H – 2-3; CL – perfect; F – uneven; M – tabular crystals, radial aggregates.

Origin and occurrence: Magmatic in alkaline syenites and their pegmatites, associated with nepheline, aegirine and endialyte. The best crystals up to 150 mm (6 in) long come from Mount Flora, Lovozero massif, Kola Peninsula, Russia. It is also known from Langøysundsfjord, Norway and Mont St.-Hilaire, Quebec, Canada.

Hemimorphite, 30 mm xx, Maganini, Mexico

Lamprophyllite, 30 mm xx, Lovozero Massif, Kola, Russia

Hemimorphite, 26 mm, Arizona, U.S.A.
Clinoczoisite
$\text{Ca}_2\text{Al}_2\text{Si}_3\text{O}_{12}(OH)$

MONOCLINIC

Properties: C – colorless, yellowish, green, pink; S – white; L – vitreous to dull; PS – transparent to translucent; DE – 3.4; H – 6.5; CL – good; F – uneven; M – prismatic crystals, columnar, radial aggregates, granular, massive.

Origin and occurrence: Metamorphic in marble/ granite contacts; hydrothermal in the Alpine-type veins and in hydrothermally altered rocks, typically associated with albite, prehnite and amphibole. Its green crystals up to 140 mm (5.5 in) long were found in Sobotin, Czech Republic. Perfect crystals up to 100 mm (4 in) across come from Knappenweder, Austria. Thick tabular crystals occur in Prince of Wales Island, Alaska, USA. Fine crystals, resembling Austrian crystals, were found recently in Achnur, Shigar, Pakistan. Fine columnar aggregates of crystals are known from Pampa Blanca, Peru and also reported from Arendal, Norway.

Piemontite
$\text{Ca}_2(\text{Al}_{2}\text{Mn}^{2+})_3\text{Si}_3\text{O}_{12}(OH)$

MONOCLINIC

Properties: C – red-brown to black, crimson, red-yellow; S – white; L – vitreous to dull; D – translucent, locally opaque; DE – 3.5; H – 6; CL – good; F – uneven; M – prismatic crystals, radial aggregates, granular.

Origin and occurrence: Metamorphic in shales and Mn-rich metamorphic rocks; rare magmatic in rhyolites and pegmatites. Needles up to 30 mm (1.2 in).

Epidote
$\text{Ca}_2(\text{Al}_{2}\text{Fe}^{3+})_3\text{Si}_3\text{O}_{12}(OH)$

MONOCLINIC

Properties: C – green, brown, greenish, yellow-green; S – white; L – vitreous to dull; D – transparent to translucent, locally opaque; DE – 3.4; H – 6.7; CL
In) long come from St. Marcel, Piedmont, Italy and Osakikama, Japan.

Allanite-(Ce)
(Ca,Ce,Y)\(_2\)(Al,Fe\(^{2+}\))\(_3\)Si\(_3\)O\(_{12}\)(OH)

MONOCLINIC

Properties: C – black to dark brown; S – light gray; L – gummy to submetallic; D – translucent to opaque; D = 3.9; H = 5.5-6; CL – none; F – conchooidal to uneven; M – tabular crystals, granular; R – usually metamict.

Origin and occurrence: Magmatic in pegmatites and granites; metamorphic in various types of metamorphic rocks, e.g. migmatites, amphibolites and gneisses. Grains, up to 70 cm (27\% in) across found in pegmatites near Bancroft, Ontario, Canada. Also occurs in Barringer Hill, Colorado; Amelia district, Virginia, USA; Arendal and Hittero, Norway; Ytterby and Riddarhyttan, Sweden; Yates mine, Quebec, Canada.
Zoisite

\[\text{C}_2\text{Al}_2\text{Si}_3\text{O}_{12}(\text{OH}) \]

Orthorhombic

Varieties: thulite, tanzanite

Properties: C – colorless, yellowish, green, pink, red (thulite), blue (tanzanite); S – white; I – vitreous to dull; D – transparent to translucent; DE – 3.4; H – 6.5; CL – good; F – uneven; M – prismatic crystals, radial aggregates, granular.

Origin and occurrence: Metamorphic in regionally metamorphosed Ca-rich rocks, mainly in pyroclastic gneisses, amphibolites and in marble contacts. It is known from many localities like Saulpeople, Austria; Zermatt, Switzerland; Lexvik, Norway (thulite); Traversella, Italy; Alchur, Pakistan; Merelani Hills, Arusha, Tanzania (tanzanite), where crystals up to 70 mm (2½ in) long were found. Application: tanzanite and thulite are cut as gemstones.
Vesuvianite

\[\text{Ca}_9\text{(Al,Mg,Fe)}_{13}\text{Si}_8\text{O}_{48}\text{(OH,F,O)}_{10} \]

TETRAGONAL

Properties: C – brown, yellowish, green, blue, purple, colorless; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3; H – 6-7; CL – imperfect; F – uneven to conchoidal; M – prismatic to tabular crystals, columnar aggregates with radial structure, granular, massive.

Origin and occurrence: Metamorphic and hydrothermal in contact metamorphosed Ca-rich rocks, mainly in skarns, in marble contacts, also in rodingites; rarely mugmate in alkaline rocks. It is usually associated with grossular, wollastonite and diopside. Perfect green crystals up to 180 mm (7\(\frac{1}{2}\) in) long and purple crystals up to 70 mm (2\(\frac{3}{4}\) in) long come from the Jeffrey quarry, Asbestos, Quebec, Canada. It is also known from Hazlov, Czech Republic; Cresmore, California, Franklin, New Jersey, USA; Morzoni, Italy.

Viluite

\[\text{Ca}_9\text{(Al,Mg)}_{13}\text{Si}_8\text{O}_{48}\text{(OH,OH)}_{10} \]

TETRAGONAL

Properties: C – dark green, gray-brown; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3; H – 6; CL – imperfect; F – uneven to conchoidal; M – prismatic crystals.

Origin and occurrence: Metamorphic in serpentinitized skarn, associated with grossular. Its perfect prismatic crystals up to 50 mm (2 in) long are only known from the Vilui River basin, Yakutia, Russia.
Benitoite
BaTiSi₂O₇

TRIGONAL ••

Properties: C – blue, pink, white, colorless; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.6; H – 6.5; CL – imperfect; F – uneven to conchoidal; M – prismatic to tabular crystals, mainly with trigonal cross-section; LU – bluish.

Origin and occurrence: Hydrothermal in veins, cross-cutting serpentininites, always associated with neptunite and natrolite. Its classic locality is the Benitoite Gem mine, San Benito Co., California, USA, where it forms tabular crystals up to 40 mm (1½ in) across.

Cataplelite
Na₂ZrSi₃O₉ . 2 H₂O

HEXAGONAL ••

Properties: C – light yellow, yellow-brown, pink, brown, blue; S – white; L – vitreous to dull; D – transparent to opaque; DE – 2.8; H – 5-6; CL – good; F – uneven; M – thin tabular crystals, lamellar aggregates.

Origin and occurrence: Magmatic in nepheline syenites and their pegmatites, together with aegirine, nepheline and microcline. It occurs in Mont St.-Hilaire, Quebec, Canada, as tabular crystals up to 150 mm (6 in) across. Crystals up to 30 mm (1½ in) across come from Mount Yakapok, Khibiny massif, Kola Peninsula, Russia. It is also known from Langensunds fjord, Norway; Magnet Cove, Arkansas, USA.

Eudialyte
Na₄(Ca,Fe,Co,Mn)₃ZrSi₆O₁₆(OH,Cl)

TRIGONAL ••

Properties: C – red, pink to brown; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.8; H – 5-5.5; CL – imperfect; F – uneven; M – prismatic and tabular crystals, granular.

Origin and occurrence: Magmatic in nepheline syenites and their pegmatites, associated with aegirine, nepheline and microcline. Crystals up to 80 mm (3½ in) across come from Mount Kukisvumchailor, Khibiny massif, Kola Peninsula, Russia. Crystals up to 50 mm (2 in) across are also known from Mont St.-Hilaire, Quebec, Canada. It also occurs in Langensunds fjord, Norway and in Los Island, Guinea.

Ferroaxinite
Ca₃FeAl₃BSi₄O₁₅(OH)

TRICLINIC •••

Properties: C – brown to purple-brown, light purple; S – white; L – vitreous to dull; D – trans-

Cataplelite, 37 mm, Mont St.-Hilaire, Canada
parent to translucent; DE – 3.3; H – 6, 5.7; CL –
good; F – uneven to conchooidal; M – tabular crystals,
platy aggregates, granular, massive.

Origin and occurrence: Metamorphic and hydro-
thermal in contacts of marbles and granites,
associated with clinozoisite, prehnite, calcite and
actinolite, also in the Alpine-type veins and peg-
matites. Perfect tabular crystals up to 150 mm (6 in)
across come from Puiva, Polar Urals, Russia. Other
renowned localities are Ohira, Japan; Bourg
d’Oisans, France; Monte Sopci, Switzerland.

Tinzenite

\[\text{Ca}_(\text{Mn,Fe})_2\text{Al}_2\text{BSi}_4\text{O}_{15}(\text{OH}) \]

TRICLINIC

Properties: C – yellow, orange to red; S – white; L –
vitreous to dull; D – transparent to translucent; DE –
3.3; H – 6.5-7; CL – good; F – uneven to conchooidal;
M – tabular crystals, platy and fibrous aggregates,
granular, massive.

Origin and occurrence: Hydrothermal in the Alpine-
type veins, cross-cutting a rock, rich in braunite. It
comes from Tinzen, Val d’Err, Switzerland and in the
Cassagnai mine, Genova, Italy.
Beryl
\(\text{Be}_3\text{Al}_2\text{Si}_6\text{O}_{18}\)

HEXAGONAL

Varieties: emerald, aquamarine, heliodor, morganite, goshenite, red beryl (biotite).

Properties: C – variable in different varieties; common beryl – mostly yellow, yellow-green, light green to white, rare blue; varieties: emerald – dark emerald-green; aquamarine – light to dark blue-green; morganite – pink; heliodor – light yellow to yellow-green; goshenite – white to colorless; red beryl B red; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.6; H – 7.5-8; CL – imperfect; F – uneven to conchoidal; M – long prismatic to tabular crystals, columnar and radial aggregates, granular, massive.

Origin and occurrence: Magmatic in pegmatites and granites; hydrothermal in greisens, in cavities in rhyolite, in quartz veins; metamorphic in mica schists. Perfect prismatic crystals of common beryl up to 9 m (29 ft 6 in) long found in the Etta mine, Keystone, South Dakota, USA. Crystals weighing up to 177 tons, come from Namivo, Alto Ligonha, Mozambique. Other localities are Pici, Brazil; Iceland, Norway; Antsirabe, Madagascar. Emerald crystals occur in mica-schists, marbles and ultrabasic rocks, associated with other Be minerals, phenakite and...
chrysoberyl. Beautiful dark green transparent crystals are known from Malyshevo, Ural Mts., Russia; Muzo and Cocuy, Colombia; Habachtal, Austria, and where the largest crystals reach up to 120 mm (4 3/4 in) in size. Aquamarine is mainly known from pegmatites and hydrothermal veins, commonly
associated with tourmaline, quartz and albite. Intense blue crystals are known from many pegmatites in Minas Gerais, Brazil, where in the Marambita mine, crystals up to 70 cm (27½ in) long and weighing up to 110 kg (242 lb) found. Very beautiful gummy crystals over 20 cm (12 in) long recently occurred in the Medina Mine. It also come from Murzinka, Ural mountains and Adan Chilon, Siberia, Russia. It also comes from Spitzkopje, Namibia; Gilgit, Pakistan and elsewhere. Morganite is a typical mineral of granitic pegmatites, where it occurs in mainly in cavities, usually associated with color varieties of tourmaline, quartz and albite. Its tabular crystals up to 100 mm (4 in) across found in the White Queen mine, Pala, California, USA. Smaller crystals come from San Piero in Campo, Elba, Italy. Crystals up to 50 cm (20 in) across reported from several localities in Minas Gerais, Brazil. Heliodor also occurs in pegmatitic cavities, hydrothermal veins and in gneisses, commonly associated with quartz and albite. Prismatic crystals up to 200 mm (7½ in) long, come from Volodarsk Volynskii, Ukraine. It is also known from Nerchinsk, Siberia, Russia and several mines in Minas Gerais, Brazil. Goshenite occurs only in pegmatites. Its prismatic crystals come from Gosben, Massachusetts,
Goshenite, 39 mm, Apshyan, Pakistan

Red beryl, 17 mm x, Wah Wah Mts., U.S.A.

USA; San Piero in Campo, Elba, Italy. Red beryl occurs in Violet Claims, Wah Wah mountains, Utah, USA, where crystals up to 50 mm (2 in) were found. Application: Be ore, color varieties are cut as gemstones.

Morganite, 43 mm x, San Diego Co., U.S.A.
Bazzite

\[\text{B}_{2}\text{O}_{3}(\text{Si},\text{Al})_2\text{Si}_4\text{O}_{18} \]

HEXAGONAL

Properties: C - light to intense blue; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.8; H - 6.5; CL - imperfect; F - uneven to conchoidal; M - long prismatic crystals, columnar and radial aggregates.

Origin and occurrence: Hydrothermal in the Alpine-type veins and pegmatites. Crystals up to 20 mm \(\frac{3}{4}\) in) long come from Tordal, Norway. It is also known from Lago Maggiore, Italy and St. Gotthard, Switzerland.

Cordierite

\[\text{Mg}_2\text{Al}_4\text{Si}_5\text{O}_{18} \]

ORTHORHOMBIC

Varieties: iolite (gemmy blue)

Sekaninaite

\[\text{Fe}_2\text{Al}_4\text{Si}_5\text{O}_{18} \]

ORTHORHOMBIC

Properties: C - blue, purple, strongly pleochroic; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.5; H - 7-7.5; CL - imperfect; F - uneven to conchoidal; M - short prismatic crystals, granular.

Origin and occurrence: Metamorphic in migmatites and gneisses and in contact cherts; magmatic in granites and granite pegmatites, usually associated with andalusite and sillimanite, also known from placers. It is a typical rock-forming mineral. Its prismatic crystals are very rare. Poorly developed transparent crystals up to 200 mm (7½ in) long come from Närberg, Sweden. It also occurs in Onhärvi, Finland; Kangerø, Norway; Bodenmais, Germany. Gemmy pebbles are known from the vicinity of Rainapura, Sri Lanka.
Dravite, 27 mm, Gujarkot, Nepal

- white; L - vitreous to dull; D - transparent to translucent; DE - 2.8; H - 7-7.5; CL - imperfect; F - uneven to conchoidal; M - short prismatic crystals, granular.

Origin and occurrence: Magmatic in granitic pegmatites and some granites, associated with andalusite and tourmaline; metamorphic in gneisses and migmatites. Conical, imperfect crystals, up to 70 cm (27.5 in) long typically come from Dolini Bory, Czech Republic; also known from San Pedro in Campo, Elbas, Italy.

Dravite
TOURMALINE GROUP
Na$_2$Si$_3$Al$_6$(BO$_3$)$_3$Si$_4$O$_{16}$(OH)$_4$

TRIGONAL
Properties: C - light to dark black-brown, blue, colorless, commonly pleochroic; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.0; H - 7-7.5; CL - none; F - uneven to conchoidal; M - long to short prismatic crystals, columnar to acicular aggregates, granular.

Buergelite
TOURMALINE GROUP
NaFe$^{3+}$Si$_3$Al$_6$(BO$_3$)$_3$Si$_4$O$_{16}$F

TRIGONAL
Properties: C - black, strongly pleochroic; S - yellow-brown; L - vitreous to dull; D - translucent to opaque; DE - 3.3; H - 7; CL - none; F - uneven to conchoidal; M B prismatic crystals, granular.

Origin and occurrence: Hydrothermal in rhyolites. Its black crystals, up to 40 mm (19/16 in) long, are known from Mexquitic, San Luis Potosi, Mexico.
Schorl
TOURMALINE GROUP
NaFe\textsubscript{2}Al\textsubscript{4}(BO\textsubscript{3})\textsubscript{3}Si\textsubscript{6}O\textsubscript{18}(OH)\textsubscript{4}

TRIGONAL

Properties: C – black, black-brown, blue-black, strongly pleochroic; S – white; L – vitreous to dull; D – translucent to opaque; DE – 3.3; H – 7-7.5; CL – none; P – uneven to conchoidal; M – long to short prismatic crystals, columnar to acicular aggregates, granular, massive.

Origin and occurrence: Migmatic in granites and granite pegmatites; hydrothermal in gneisses, in quartz and ore veins; metamorphic in migmatisites, gneisses, mica schists and tourmalinites; also known from placers. It is usually associated with muscovite, quartz and albite. Perfect black crystals come from many pegmatite localities. Its long prismatic crystals, up to 5 m long, come from Arendal, Norway. Very good crystals are also known from Kaatiala, Finland; Dolní Bory, Czech Republic; Conselheiro Pena and Gaúlica, Minas Gerais, Brazil.

Povondraite
TOURMALINE GROUP
NaFe3+\textsubscript{3}M\textsubscript{2+}\textsubscript{4}Fe3+\textsubscript{4}(BO\textsubscript{3})\textsubscript{3}Si\textsubscript{6}O\textsubscript{18}(OH)\textsubscript{4}

TRIGONAL

Properties: C – black; S – gray; L – vitreous to dull; D – translucent to opaque; DE – 3.3; H – 7; CL –

Povondraite, 60 mm, Alto Chapare, Bolivia
none; F – uneven to conchoideal; M – short prismatic crystals, granular.

Origin and occurrence: Hydrothermal along the cracks in metamorphosed evaporites. Its black crystals up to 10 mm (½ in) long typically come from Alto Chapare, Cochabamba, Bolivia.

Elbaite
TOURMALINE GROUP
Na$_2$(Li$_{1.5}$Al$_{1.5}$)Al$_3$(BO$_3$)$_2$Si$_6$O$_{18}$(OH)$_2$F

TRIGONAL

Varieties: rubellite, verdelite, indicolite, achroite

Properties: C – varies in different varieties, rubellite – pink to red; verdelite – various hues of green; indicolite – blue; achroite – colorless, other colors include yellow, brown and black; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.0; H – 7; CL – none; F – uneven to conchoideal; M – prismatic crystals, columnar aggregates, granular, massive.

Origin and occurrence: Almost only magmatic and hydrothermal in granite pegmatites, typically associated with lepidolite and albite; also in placers. Its crystals are mostly known from pegmatite cavities.
ties in many localities. Rubellite crystal called 'The Rocket' (109 cm/43½ in long) was found in the Jonas mine, Minas Gerais, Brazil. Rubellite crystals up to 40 cm (15½ in) long come from Alto Ligonha district, Mozambique. Rubellite crystals up to 250 mm (9½ in) long occurred in the Stewart Lithia, Tourmaline King and Tourmaline Queen mines, Pala, California, USA. Verdelite crystal 270 mm (10½ in) long, is known from the Dunton mine, Newry, Maine, USA. Other important localities include San Piero in Campo, Elba, Italy; Malkhan, Transbaikalia, Russia; Rožňava, Czech Republic; Uti, Sweden; Gilgit, Pakistan; Paprok, Afghanistan.

Application: commonly used as a gemstone.

Uvite

TOURMALINE GROUP

\[\text{Ca}_3\text{Mg}_2\text{Al}_5(\text{BO}_3)_3\text{Si}_6\text{O}_{18}(\text{OH,F})_4\]

TRIGONAL

Properties: C – gray, black, brown, green, red, pleochroic; S – white; L – vitreous to dull; D – translucent to opaque; DE – 3.3; H – 7-7.5; CL – none; F – uneven to conchoidal; M – long to short prismatic crystals, columnar aggregates, granular.

Origin and occurrence: Metamorphic in Ca-rich rocks, marbles, skarns; magmatic in some pegmatites; hydrothermal in ore veins.

Perfect green and red crystals, up to 30 mm (1½ in) across, occur in Brumado, Bahia, Brazil. It is also known from Gouverneur and Pierrepont, New York, USA.

Liddicoatite

TOURMALINE GROUP

\[\text{Ca}(\text{Li}_2\text{Al})\text{Al}_4(\text{BO}_3)_3\text{Si}_6\text{O}_{18}(\text{OH,F})_3\text{F}\]

TRIGONAL

Varieties: rubellite, verdelite

Properties: C – varies in different varieties, mainly pink, green, green-brown to yellow-brown; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.1; H – 7; CL – none; F – uneven to conchoidal; M – prismatic crystals, columnar aggregates, granular.

Origin and occurrence: Magmatic in granitic peg-
Verdelite, 24 mm, Gillette Quarry, U.S.A.

Indigoite, 32 mm, Esmeralda Mine, Mesa Grande, U.S.A.

Verdelite is characterized by long, perfect crystals of green to yellowish-green color. It is often found in pegmatite cavities in association with lepidolite, spodumene, and allanite. Its crystals can grow up to 250 mm (9 3/4 in) long in many localities in Madagascar, e.g., Sahary and Anjanabonoima. It is also found in Bližná, Czech Republic.

Application: Cut as a gemstone.
Foitite

TOURMALINE GROUP

\[\text{Fe}_2\text{Al}_4\text{Si}_3\text{O}_3\text{(BO}_3\text{)}_3\text{Si}_2\text{O}_8\text{(OH)}_4 \]

TRIGONAL

Properties: C – black to black-purple; S – white; L – vitreous to dull; D – transparent to opaque; DE – 3.3; H – 7; CL – none; F – uneven to conchooidal; M – prismatic crystals, acicular aggregates.

Origin and occurrence: Magmatic in granitic pegmatites and granites; hydrothermal in pegmatitic cavities. Foitite typically forms black tips of elbaite crystals (moors heads) in Dobrá Voda, Czech Republic; San Piero in Campo, Elba, Italy; White Queen mine, Pala, California, USA. It occurs together with schorl in some granitic pegmatites, like Rožná, Czech Republic.

Rosmanite

TOURMALINE GROUP

\[\text{Li}_2\text{Al}_4\text{(BO}_3\text{)}_3\text{Si}_2\text{O}_8\text{Fe}_2\text{O}_3\text{OH} \]

TRIGONAL

Properties: C – pink; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.1; H – 7; CL – none; F – uneven to conchooidal; M – prismatic crystals, columnar aggregates.

Origin and occurrence: Magmatic in granitic pegmatites. Prismatic crystals, up to 20 mm (0.8 in) long, were found in massive lepidolite in Rožná, also in Laštovičky, Czech Republic.

Dioptase

CuSi_2O_5 \cdot 6 H_2O

TRIGONAL

Properties: C – emerald-green to blue-green; S – light blue-green; L – vitreous to dull; D – transparent to translucent; DE – 3.3; H – 5; CL – good; F – uneven to conchooidal; M – long to short prismatic crystals, granular.

Origin and occurrence: Secondary in the oxidation zone of Cu deposits, associated with other secondary Cu minerals. Beautiful crystals up to 50 mm (2 in) across occur in Tsumeb, Namibia; Altyn Tyube, Kazakhstan; Renaveville, Congo. It also comes from the Mammoth mine, Tiger, Arizona, USA.

Milarite

KCa_2AlBe_2Si_2O_8 \cdot H_2O

HEXAGONAL

Properties: C – colorless, white, gray, light green; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.5; H – 5-6; CL – none; F – uneven to conchooidal; M – long prismatic to acicular crystals, granular.

Origin and occurrence: Hydrothermal in the Alpinetype veins, in pegmatites and hydrothermal veins, associated with adularia. Crystals up to 40 mm (1.6 in) long come from Jaguaraçu, Minas Gerais, Brazil. It was also found in St. Gotthard, Switzerland; Klein Spitzkopje, Namibia; Valencia mine, Guanajuato, Mexico.

Rosmanite, 10 mm xx, Laštovičky, Czech Republic
Sugilite
KNa2(Fe, Mn, Al)2Li3Si12O30

HEXAGONAL

Properties:
- C – purple; S – white; L – vitreous to dull;
- D – transparent to translucent; DE – 2.7; H – 6-6.5; CL.

Miluite, 22 mm, Jequiuacu, Brazil

- none; F – uneven to conchoidal; M – long prismatic to acicular crystals, granular.

Origin and occurrence: Hydrothermal in alkaline syenites, associated withpectolite, albite and aegirine. It occurs in Iwagi Island, Japan and Hotazel, South Africa. *Application:* cut and polished as a gemstone and decorative stone.

Sugilite, 40 mm, Hotazel, South Africa
Enstatite
PYROXENE GROUP
Mg2Si2O6
ORTHORHOMBIC

Varieties: bronzite

Properties: C – colorless, gray, yellowish, greenish, brown (bronzite); S – white; L – vitreous to dull; D – transparent to opaque; DE – 3.2; H – 5-6; CL – good; F – uneven to conchoidal; M – prismatic crystals, granular.

Origin and occurrence: Magmatic in ultrabasic rocks, gabbros, peridotites and in meteorites; metamorphic in marbles, associated mainly with olivine and pyrope. Known from Bamle, Norway in crystals up to 50 cm (20 in) long. It was originally described from Ruda nad Moravou, Czech Republic. Gemmy crystals up to 20 mm (¾ in) long occur in Brunado, Bahia, Brazil.

Diopside
PYROXENE GROUP
CaMgSi2O6
MONOCLINIC

Varieties: chrome diopside, fassaita, jeffersonite

Properties: C – light green, dark green (chrome diopside), colorless, white, gray, brown, rare blue; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.3; H – 5.5-6.5; CL – good; F – uneven to conchoidal; M – long to short prismatic crystals, granular.
associated with plagioclase, grossular and epidote. Well-formed crystals are relatively rare. Jeffersonite forms prismatic crystals up to 250 mm (9.8 in) long in Franklin, New Jersey, USA. Crystals in Corrego Setaiba, Minas Gerais, Brazil reach up to 30 cm (12 in). Other typical localities are Zillertal, Austria; Nordmarken, Sweden; Orford mine, Quebec, Canada. Fassaitie is known from Val di Fassa, Italy. Chrome diopside crystals reach up to 100 mm (4 in) in Oulankampa, Finland and gem rough recently found in Inagli, Yakutia, Russia.

Hedenbergite
PYROXENE GROUP
CaFeSiO₆

MONOCLINIC

Properties: C – dark green, brown-green, brown to black; S – white to gray; L – vitreous to dull; D – transparent to translucent; DE – 3.6; H – 6; CL – good; F – uneven to conchoidal; M – long to short prismatic crystals, granular.

Origin and occurrence: Metamorphic in Ca-rich rocks, like Fe-skarns and pyroxene gneisses; magmatic in some granites and syenites, associated with magnesite, grossular and epidote. Crystals are relatively rare, reaching up to 50 mm (2 in) from Dalnegorsk, Russia and Franklin, New Jersey, USA. Also occurs in Norway, Sweden. Large lamellar aggregates come from skarns in Rio Marina, Elba, Italy.

Augite
PYROXENE GROUP
(Ca,Mg,Fe,Al)(SiAl)O₆

MONOCLINIC

Properties: C – dark brown to black; S – gray-green; L – vitreous to dull; D – translucent to opaque; DE – 3.6; H – 6; CL – good; F – uneven to conchoidal; M – short prismatic crystals, granular.

Origin and occurrence: Magmatic in basic rocks (basalts, gabbros, diabases and their tuffs); rare metamorphic in skarns. It is a typical rock-forming mineral, known from many localities. Well-formed crystals up to 150 mm (6 in) across occur mainly in volcanic rocks, such as near Lake Clear, Ontario, Canada. Also known from Laacher See, Germany; Lukov and Pa_kapole, Czech Republic, in crystals, up to 50 mm (2 in) in size.
Omphacite
PYROXENE GROUP
(Ca,Na)(Mg₂,Fe²⁺,Fe³⁺,Al)(Si,Al)₂O₆

MONOCLINIC

Properties: C – green to dark green; S – gray-white; L – vitreous to dull; D – translucent to opaque; DE – 3.3; H – 5-6; CL – good; F – uneven to conchoidal; M – short prismatic crystals, acicular aggregates, granular.

Origin and occurrence: Metamorphic in ultrabasic and basic rocks, originated under high-temperature, usually associated with pyrope, diopside and kyanite. It occurs in eclogites and granulites in Rubinberg, Germany; Healdsburg, California, USA and elsewhere.
Jadeite

PYROXENE GROUP
NaAlSi₂O₆

MONOCLINIC

Varieties: nephrite

Properties: C – white, lavender to gray, in aggregates also light green (nephrite); S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 6; CL – good; F – uneven to conchoidal; M – prismatic crystals, acicular aggregates, granular.

Origin and occurrence: Exclusively metamorphic in strongly metamorphosed rocks; also in placers. Blocks, weighing several tons, are known from Ben Sur, California, USA. It also come from Tawnaw, Burma; New Zealand; Tibet and elsewhere.

Application: as a material for carvings and decorative purposes.

Aegirine

PYROXENE GROUP
NaFe₃Si₂O₆

MONOCLINIC

Properties: C – dark green to black-green; S – light yellow-gray; L – vitreous to dull; D – translucent to opaque; DE – 3.6; H – 6; CL – good; F – uneven to conchoidal; M – long prismatic to acicular crystals, acicular aggregates.

Origin and occurrence: Magmatic, mainly in alkalic magmatic rocks (syenites, carbonatites, alkalic granites and their pegmatites); rare hydrothermal in sediments. Well formed prismatic crystals up to 150 mm (6 in) long come from Mount Malosa, Malawi. Crystals up to 30 cm (12 in) occur in Langersundsfjord, Norway. Other localities are Mount Kasauat, Lovozero massif, Kola Peninsula, Russia and Mount St.-Hilaire, Quebec, Canada.

Aegirine, 77 mm, Mt. Malosa, Malawi
Spodumene, 52 mm x, Kunar, Afghanistan

Hiddenite, 35 mm, Adams Property, U.S.A.

Kunzite, 118 mm, Nuristan, Afghanistan

Spodumene
PYROXENE GROUP
LiAlSi2O6

MONOCLINIC

Varieties: kunzite, hiddenite, triphane

Properties: C – white, gray, yellowish (triphane), green (hiddenite), pink to purple (kunzite); S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 6.5-7.5; CL – good; F – uneven to conchoidal; M – long to short prismatic crystals, cleavable aggregates, granular; LU – orange.

Origin and occurrence: Magmatic in granite pegmatites; hydrothermal in pegmatite cavities. It is known from many localities. Its poorly developed crystals up to 6 m (20 ft) long occur in the Etta mine, Keystone, South Dakota and in Kings Mountain, North Carolina, USA. Transparent kunzite crystals up to 40 cm (15½ in) long come from Mawi, Laghman, Afghanistan. Kunzite crystals up to 280 mm (11 in) long found in the Pala Chief mine, Pala, California, USA. Cracked kunzite crystals, up to 1 m (39½ in) long known from Aracruz, Minas Gerais, Brazil. Hiddenite occurs in crystals up to 250 mm (9¾ in) long in Resplendor, Minas Gerais, Brazil. It also comes from the Adams property, North Carolina, USA.

Application: raw material for ceramics, kunzite and hiddenite are cut as gemstones.
cross-cutting greisens, associated with fluorite, quartz and cassiterite; also in metamorphic rocks. It was described from Horní Slavkov, Czech Republic, where it forms acicular crystals up to 10 mm (3/8 in) long and radial aggregates. It is also known from Meuville, Belgium and Wippra, Germany.

Lorenzenite

$Na_2Ti_3Si_2O_9$

ORTHORHOMBIC

Properties: C – brown to black; S – yellowish; L – vitreous to dull; D – translucent to opaque; DE – 3.4; H – 6; CL – good; F – uneven to conchoidal; M – prismatic crystals, columnar aggregates, granular.

Origin and occurrence: Magmatic in alkaline syenites and their pegmatites, associated with astrophyllite, nepheline and aegirine. Crystals up to 80 mm (3 3/8 in) long come from Mount Flora, Lovozero massif, Kola Peninsula, Russia. Other localities are Narsarsuaq, Greenland and Mont St.-Hilaire, Quebec, Canada.

Ajoite

$(K,Na)_3Cu_7Al_3Si_5O_24(OH)_6 \cdot 3 H_2O$

TRICLINIC

Properties: C – blue-green; S – light green; L – vitreous to dull; D – translucent to opaque; DE – 3.0; H – not determined; CL – not determined; F – uneven to conchoidal; M – prismatic crystals, massive.

Origin and occurrence: Secondary in Cu deposits, associated with shattuckite. It occurs rarely as small crystals in the New Cornelia mine, Ajo, Arizona, USA. It is also known as inclusions in quartz crystals in the Messina mine, Transvaal, South Africa.

Ajoite, 60 mm, Ajo, U.S.A.
Holinquistite, 60 mm, Lac Malartic, Canada

Antophyllite
AMPHIBOLE GROUP
Mg3Si2O5(OH,F)2

Orthorhombic

Properties: C - blue, purple, gray, black; S - white; L - vitreous to dull; D - transparent to translucent; DE - 3.4; H - 5.5-6; CL - good; F - uneven to conchoidal; M - acicular and prismatic crystals, fibrous aggregates, granular.

Origin and occurrence: Hydrothermal at the contacts between complex Li-bearing pegmatites and amphibolites, sometimes associated with biotite. It occurs in Greenbushes, Western Australia, Australia where its fibers reach up to 180 mm (7 1/2 in) in length. It is also known from Uâ, Sweden; Manono, Zaire and Brandbrücken, Austria.

Manganogedrite
AMPHIBOLE GROUP
Mn2Fe5Si2O20(OH)2

Monoclinic

Properties: C - gray, dark green, brown, greenish; S - white; L - vitreous to dull; D - translucent to opaque; DE - 3.5; H - 5-6; CL - good; F - uneven to conchoidal; M - columnar, acicular and radial aggregates, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed Mn-rich rocks, associated with chlorite and magnetite. It comes from Dunningmore, Sweden and elsewhere.

Manganogedrite, 70 mm, Franz Joseph Iceberg, New Zealand
Tremolite
AMPHIBOLE GROUP
Ca$_2$Mg$_5$Si$_8$O$_{26}$(OH)$_2$

MONOCLINIC

Properties: C – white, gray, greenish, green, brown, pink; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.9; H – 5-6; CL – good; F – uneven to conchoidal; M – columnar, acicular and radial aggregates, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed rocks, dolomites and ultrabasic rocks; hydrothermal in the Alpine-type veins, typically associated with diopside, talc, dolomite and calcite. It is a typical rock-forming mineral, known from many localities. Prismatic crystals up to 40 cm (15% in) long come from Brumado, Bahia, Brazil. It occurs also in Campo-lungo, Switzerland; Zillertal, Austria; Gouverneur, New York, USA and elsewhere.

Actinolite
AMPHIBOLE GROUP
Ca$_3$(Mg$_3$Fe$_2$)$_2$Si$_8$O$_{26}$(OH)$_2$

MONOCLINIC

Properties: C – light green to almost black; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 5-6; CL – good; F – uneven to conchoidal; M – columnar, acicular and radial aggregates, granular.

Origin and occurrence: Metamorphic in contact and regionally metamorphosed rocks, also in dolomites and some basic rocks (amphibolites, shales). It is a typical rock-forming mineral, associated with anthophylite, chlorite, talc, dolomite and calcite. It is known from many localities where it forms columnar aggregates up to 250 mm (9 7/8 in) long, as in Knuppenwand and Zillertal, Austria; Val Malenco, Italy; Brumado, Bahia, Brazil and Sobotín, Czech Republic.
Pargasite

AMPHIBOLE GROUP
\[\text{Na}_2\text{Ca}_2(\text{Mg,Fe})_2\text{Al}_2\text{Si}_3\text{O}_{10}(\text{OH,F})_2 \]

MONOCLINIC

Properties: C – light brown, green-blue, brown to black-brown; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.1; H – 5-6; CL – good; F – uneven to conchoidal; M – prismatic crystals, granular, massive.

Origin and occurrence: Metamorphic in regionally metamorphosed basic rocks, marbles and skarns; magmatic in diorites and gabbros; typical rock-forming mineral. Crystals up to 80 mm (3/4 in) across come from the Jensen quarry, Riverside, California, USA; Pargas, Finland; Hunza, Pakistan.

Common Amphibole

AMPHIBOLE GROUP
\[(\text{Ca}_2\text{Na})_2(\text{Mg,Fe,Al})_2(\text{Si,Al})_3\text{O}_{10}(\text{OH,F})_2 \]

MONOCLINIC

Properties: C – dark green, brown to black; S – gray; L – vitreous to dull; D – translucent to opaque; DE – 3.4; H – 5-6; CL – good; F – uneven to conchoidal; M – short prismatic crystals, columnar aggregates, granular.

Origin and occurrence: Metamorphic in basic rocks, as amphibolites and shales; magmatic in some igneous rocks, as syenites, diorites, andesites and basalts. Typical rock-forming mineral, known from many localities. Large crystals up to 1 m (39½ in) long come from Silver Crater, Ontario, Canada. It is also known from Zillertal, Austria; Lukov, Czech Republic and elsewhere.

Richterite

AMPHIBOLE GROUP
\[\text{Na}_2\text{Ca}(\text{Mg,Fe,Al})_2(\text{Si,Al})_3\text{O}_{10}(\text{OH,F})_2 \]

MONOCLINIC

Properties: C – brown, yellow, dark red, dark green; S – gray; L – vitreous to dull; D – transparent to translucent; DE – 3.1; H – 5-6; CL – good; F – uneven to conchoidal; M – long prismatic crystals, columnar aggregates, granular.

Origin and occurrence: Magmatic in alkali rocks, as trachytes and alkaline granites; rare metamorphic in some metamorphosed rocks, as skarns and marbles. Crystals up to 100 mm (4 in) long come from Wilberforce, Ontario, Canada and Langban, Sweden.
Riebeckite

AMPHIBOLE GROUP

\[Na(Fe^{2+},Mg)_{3}Fe^{3+}Si_{2}O_{22}(OH)_{2}\]

MONOCLINIC

Varieties: crocidolite (tiger's eye)

Properties: C — dark blue to black, crocdolitic — gray-blue; S — white; L — vitreous to dull; D — translucent to opaque; DE — 3.4; H — 5; CL — perfect; F — uneven to conchooidal; M — long prismatic crystals, acicular to fibrous aggregates.

Origin and occurrence: Magmatic in alkali rocks, as granites, syenites and rhyolites; metamorphic in regionally metamorphosed Fe-rich shales. Large crystals up to 150 mm (6 in.) long come from Khangay, Mongolia. Crocidolite is famous from Griqualand, South Africa.

Wollastonite, 44 mm, Crestmore, USA.

Aenigmatite

\[Na_{2}Fe_{5}Ti_{4}Si_{6}O_{20}\]

TRICLINIC

Properties: C — black; S — red-brown; L — submetallic to dull; D — almost opaque; DE — 3.8; H — 5.5; CL — perfect; F — uneven to conchooidal; M — long prismatic crystals, columnar aggregates, granular.

Origin and occurrence: Magmatic in alkaline syenites and volcanic rocks, associated with aegirine and arfvedsonite. It occurs in Julianehab, Greenland; Lipari Island, Italy and elsewhere.

Wollastonite

\[Ca_{3}Si_{2}O_{7}\]

TRICLINIC

Properties: C — white, gray, light greenish, pink; S — white; L — vitreous to dull; D — transparent to translucent; DE — 3.0; H — 4.5-5; CL — good; F — uneven to conchooidal; M — tabular to short prismatic crystals, columnar and radial aggregates, granular; L.U. — orange.

Origin and occurrence: Metamorphic mainly in contact metamorphosed rocks, as marbles, skarns, less common in pyroxene gneisses and quartzites, associated with grossular, diopside and vesuvianite. Columnar and acicular aggregates up to 180 mm (7\(\frac{1}{2}\) in.) long occur in the Strickland quarry, Connecticut, USA. It also comes from Crestmore, California, USA; Ciclova, Romania and Žulová, Czech Republic. Short prismatic crystals up to 30 cm (12 in.) across are known from the Santa Fe mine, Chiapas, Mexico.
Bustamite

\[(\text{Mn, Ca})_2\text{Si}_2\text{O}_9\]

TRICLINIC

Properties: C – pink to red-brown; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.4; H – 5.5-6.5; CL – good; F – uneven to conchoidal; M – tabular crystals, acicular aggregates, massive.

Origin and occurrence: Metamorphic or hydrothermal in Mn-rich metamorphic rocks or skarns. It is associated with rhodonite and other Mn silicates in Franklin, New Jersey, USA; Langbana, Sweden; Broken Hill, New South Wales, Australia.

Pectolite

\[\text{Ca}_2\text{NaSi}_3\text{O}_8(\text{OH})\]

TRICLINIC

Properties: C – white, pinkish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.9; H – 4.5-5.5; CL – good; F – uneven to conchoidal; M – acicular and radial aggregates; L – locally yellow to orange.

Origin and occurrence: Hydrothermal in basalt cavities, less frequently along the cracks in marbles, associated with zeolites. Classic localities are West Paterson, New Jersey, USA, where it forms acicular spherical aggregates up to 180 mm (7.1 in) across; also Monte Baldo, Italy; Želechovské údoli, Czech Republic. Prismatic crystals up to 50 mm (2 in) long come from Mont St.-Hilaire, Quebec, Canada.

Serandite

\[\text{Mn}_2\text{NaSi}_3\text{O}_8(\text{OH})\]

TRICLINIC

Properties: C – pink, red; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.9; H – 4.5-5.5; CL – good; F – uneven to conchoidal; M – tabular and prismatic crystals, granular.

Origin and occurrence: Hydrothermal in cavities of igneous rocks (alkaline syenite, carbonatite) together with aegirine and analcime. Perfect pink crystals up to 200 mm (7.9 in) long come from Mont St.-Hilaire, Quebec, Canada.

Bustamite, 20 mm, **Broken Hill**, **Australia**

Pectolite, 70 mm, **Želechovské údoli**, **Czech Republic**

Serandite, 25 mm, **Mont St.-Hilaire**, **Canada**
Charoite

\[(K,Sr,Ba)(Ca,Na)_{2}(Si,Al)_{4}O_{10}(OH,F)\]

TRICLINIC

Properties: C – purple; S – white; L – vitreous to dull; D – translucent to opaque; DE – 2.6; H – 5-6; CL – good; F – uneven; M – fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in alkaline igneous rocks, associated with aegirine and nepheline. Rich aggregates occur in Sireneyvi Kamen, Charn river basin, Murun massif, Yakutia, Russia.

Application: cut and polished as decorative stone.

Agrellite

NaCa2(Si4O10)F

TRICLINIC

Properties: C – gray-white to greenish; S – white; L – vitreous, dull to pearly; D – transparent to translucent; DE – 2.9; H – 5.5; CL – good; F – uneven; M – long prismatic crystals, granular.

Origin and occurrence: Metamorphic in alkaline gneisses. It occurs as prismatic crystals up to 100 mm (4 in) long in the Kipawa river basin, Quebec, Canada.

Okenite

CaSiO4(OH)2 · H2O

TRICLINIC

Properties: C – white, yellowish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.3; H – 4-5; CL – good; F – uneven to conchooidal; M B blade-shaped crystals, acicular crystals and their spherical aggregates.

Origin and occurrence: Hydrothermal in basalt cavities together with zoéolites. Rich acicular spherical aggregates up to 80 mm (3 1/4 in) in diameter come from basalt cavities in the vicinity of Poona, India; also known from Faeroe Islands.

Agrellite, 120 mm, Kipawa, Canada

Okenite, 125 mm, Mumbai, India
Xonolite, 20 mm vein, Staré Ransko, Czech Republic

Xonolite
Ca₆Si₆O₁₇(OH)₂

MONOCLINIC

Properties:
C - white, pinkish, gray; S - white; L - vitreous, dull to pearly; D - transparent to translucent; DE - 2.7; H - 6.5; CL - good; F - uneven to conchoidal; M - acicular to fibrous aggregates, massive.

Origin and occurrence: Hydrothermal in cavities of basic and ultrabasic rocks and in the Alpine-type veins, associated with calcite and zeolites; rare metamorphic in skarns and in contact metamorphosed marbles. It comes from Tetela de Xonota, Puebla, Mexico; Crestmore, California, USA; Mihara mine, Japan. It is was also found in Staré Ransko, Czech Republic.

Elpidite
Na₃ZrSi₄O₁₃ . 3 H₂O

ORTHORHOMBIC

Properties: B - colorless, yellowish, red; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.8; H - 5.5-6.5; CL - good; F - uneven to conchoidal; M - long prismatic crystals, fibrous aggregates.

Origin and occurrence: Hydrothermal in albited parts of alkaline pegmatites, associated with albite and aegirine. Perfect crystals up to 30 cm (12 in) long come from Tarbagatay, Kazakhstan. Crystals up to 200 mm (7.9 in) long found at Mont St. Hilaire, Quebec, Canada. Also known from Khan Bogdo, Gobi desert, Mongolia; Umboro mine on Mount Alluaud, Lowozero massif, Kola Peninsula, Russia.

Rhodonite
35 mm x, Broken Hill, Australia
Rodonite
CaMg₂Si₂O₇

TRICLINIC • • •

Properties: C – pink, red, brown, gray; S – white; L – vitreous to dull; D – transparent to translucent; DE – 3.7; H – 5.5–6.5; CL – good; F – uneven to conchoidal; M – tubular crystals, granular, massive.

Origin and occurrence: Metamorphic in Mn-rich rocks, hydrothermal in ore veins, associated with spessartine and Mn oxides. Perfect crystals up to 200 mm (7½ in) long come from Franklin, New Jersey, USA; also from Broken Hill, New South Wales, Australia. Granular and massive aggregates occur in Langban, Sweden and in Maloye Sadelnikovo, Ural mountains, Russia.

Application: cut and polished as a decorative stone.

Babingtonite
Ca₂Fe²⁺Fe³⁺Si₅O₁₄(OH)

TRICLINIC • •

Properties: C – green-black to black-brown; S – green-gray; L – vitreous to dull; D – translucent to opaque; DE – 3.3; H – 5.5–6.6; CL – good; F – uneven to conchoidal; M – short prismatic crystals, granular.

Origin and occurrence: Hydrothermal along the cracks in rocks, associated with prehnite, actinolite and epidote.

Well-formed crystals about 20 mm (¾ in) across are known from Arendal, Norway. Other localities are Westfield, Massachusetts, USA; Baveno, Italy.

Babingtonite, 5 mm x, Mumbai, India
Kinoite

\[\text{Ca}_2\text{Cu}_2\text{Si}_3\text{O}_8(\text{OH})_4 \]

MONOCLINIC

Properties: C – blue; S – light blue; L – vitreous to dull; D – transparent to translucent; DE – 3.2; H – 5; CL B perfect; F – uneven to conchoidal; M – prismatic crystals, granular.

Origin and occurrence: Hydrothermal along cracks in rocks, associated with apophyllite and copper. Small crystals were found in the Christmas mine, Santa Rita mountains, Arizona, also in the Kearns Salt, Keweenaw Peninsula, Michigan, USA.

Inesite

\[\text{Ca}_2\text{Mn}_2\text{Si}_10\text{O}_{28}(\text{OH})_2 - 5 \text{ H}_2\text{O} \]

TRICLINIC

Properties: C – pink, brown; S – white; L – vitreous to dull; D – translucent; DE – 3.0; H – 5.5; CL – good; F – uneven to conchoidal; M – short prismatic and tabular crystals, columnar and radial aggregates, granular.

Origin and occurrence: Hydrothermal in ore veins, associated with rhodochrosite, rhodonite and calcite. Rich aggregates and well-formed crystals about 10 mm (\(1/2\) in) across found in Langban, Sweden; also in Hale Creek, California, USA; Broken Hill, New South Wales, Australia. Its spherical aggregates up to 30 mm (\(1\frac{1}{2}\) in) in diameter are known from the Wessels mine, Kuruman, South Africa.

Neptunite

\[\text{KN}_2\text{LiFe}_2\text{Ti}_2\text{Si}_8\text{O}_{22} \]

MONOCLINIC

Properties: C – dark brown to black; S – red-brown; L – vitreous to submetallic; D – translucent to opaque; DE – 3.2; H – 5-6; CL – good; F – uneven to conchoidal; M – long prismatic crystals, granular.

Origin and occurrence: Hydrothermal in veins, associated with natrolite, bentonite and eudialyte. Well-formed prismatic crystals up to 80 mm (3\(\frac{1}{2}\) in) long come from the Benitoite Gem mine, San Benito Co., California, USA. It is also known from Mont St.-Hilaire, Quebec, Canada and Narsarsuk, Greenland.

Epididymite

\[\text{NaBe}_2\text{Si}_3\text{O}_7(\text{OH}) \]

ORTHORHOMBIC

Properties: C – white, gray, yellowish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.6; H – 6-7; CL – good; F – uneven to conchoidal.

Inesite, 59 mm, Kuruman, South Africa.
M - tabular crystals, lamellar aggregates, granular.

Origin and occurrence: Hydrothermal in cavities of alkaline pegmatites, associated with zeolites. Tubular crystals up to 60 mm (2 3/4 in) across come from Mount Malosa, Malawi. It is also known from Langesundsfjord, Norway; Mont St.-Hilaire, Quebec, Canada; Narsarssuk, Greenland.

Bavenite, 40 mm, Vermulayerskaja, Russia

Bavenite

Ca₄Al₂Be₂Si₂O₂₆(OH)₂

Orthorhombic

Properties: C - white, yellowish, pinkish; S - white; L - vitreous to dull; D - transparent to translucent; DE - 2.8; H - 5.5; CL - good; F - uneven to conchoidal; M - prismatic to tabular crystals, radial and lamellar aggregates. Origin and occurrence: Hydrothermal in pegmatic cavities with albite; typically produced by beryl replacement in pegmatites or helvite replacement in skarns. Found in Baveno, Italy with crystals up to 20 mm (7/8 in) across. Also known from Szczecin, Poland. Crystals up to 4 mm (7/32 in) across found in the Hewitt quarry, USA.

Epistidymite, 70 mm, Apatity, Kola, Russia

247
Prehnite
$\text{Ca}_2\text{Al}_2\text{Si}_3\text{O}_{10}(\text{OH})_2$

Orthorhombic

Properties: C — white, greenish to green, yellow, gray; S — white; L — vitreous; PS — transparent to translucent; DE — 2.9; H — 6-6.5; CL — good; F — uneven to conchoidal; M — tabular to prismatic crystals, usually forming botryoidal or spherical aggregates, granular.

Origin and occurrence: Hydrothermal in basalt cavities and in the Alpine-type veins, commonly associated with calcite, albite, epidote and zeolites. Rich aggregates are known from West Paterson, New Jersey, USA; Val di Fassa, Italy; Poona, India.

Astrophyllite
$(\text{K},\text{Na})_3(\text{Fe},\text{Mn})_7\text{Ti}_2\text{Si}_6\text{O}_{24}(\text{O},\text{OH})_7$

Triclinic

Properties: C — various hues of yellow; S — white; L — vitreous to dull; D — transparent to translucent; DE — 3.3; H — 3; CL — good; F — uneven to conchoidal; M — long prismatic crystals, bladed aggregates.

Origin and occurrence: Magmatic in alkaline pegmatites. Crystals and their radial aggregates reaching up to 160 mm (4 in) come from Mont Eveslogehor, Khibiny massif, Kola Peninsula, Russia. It is also known from Mont St.-Hilaire, Quebec, Canada.

Fluorapophyllite
$\text{KC}_4\text{Si}_6\text{O}_{20}(\text{F},\text{OH})_8\cdot \text{H}_2\text{O}$

Tetragonal

Properties: C — white, greenish yellowish, pinkish; S — white; L — greasy to pearly; D — transparent to translucent; DE — 2.4; H — 4.5-5; CL — perfect; F — uneven; M — prismatic and tabular crystals, lamellar aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, along the cracks in the Alpine-type veins, in ore veins and pegmatites. Well-formed crystals up to 100 mm (4 in) long are known from Jalgaon and Poona, India; Centreville and Fairfax,
Pyrophyllite
$\text{Al}_2\text{Si}_4\text{O}_{10}(\text{OH})_2$

MONOCLINIC

Varieties: agalmatolite

Properties: C - white, greenish, yellow, gray; S - white; L - greasy to pearly; D - translucent to transparent; DE - 2.8; H - 2; CL - perfect; F - uneven; M - tabular crystals, foliated aggregates, massive.

Origin and occurrence: Metamorphic in metamorphosed basic rocks and dolomites, together with actinolite, dolomite and chlorite; hydrothermal in veins. Tabular crystals up to 20 mm ($\frac{3}{8}$ in) across come from Brumado, Bahia, Brazil and Chester, Massachusetts, USA. Rich foliated aggregates are known from Zillertal, Austria. Pseudo-morphs after quartz crystals come from St. Gotthard, Switzerland. Large deposits of massive talc are mined in China.

Application: as a filling material in textile, paper and chemical industries, heat-resistant material.

Talc
$\text{Mg}_3\text{Si}_4\text{O}_{10}(\text{OH})_2$

MONOCLINIC

Properties: C - white, greenish, yellow, pinkish, gray; S - white; L - greasy to pearly; D - transparent to translucent; DE - 2.8; H - 1; CL - perfect; F - uneven; M - tabular crystals, foliated aggregates, massive.

Application: as a filling material in textile, paper and chemical industries, heat-resistant material.
Muscovite
MICA GROUP
KAl_3Si_5O_10(OH,F)_2

MONOCLINIC

Varieties: fuchsite
Properties: C – white, greenish, yellowish, pinkish, green (fuchsite), gray; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 2.8; H – 2.5-3; CL – perfect; F – uneven; M – tabular crystals, lamellar and scaly aggregates, massive.
Origin and occurrence: Metamorphic in various rock types, as mica schists, gneisses; magmatic in granites and pegmatites; hydrothermal in veins or next to ore veins (fuchsite). Important rock-forming mineral, usually associated with quartz, K-feldspar, albite and biotite. Its sheets, reached up to 5 x 3 m in size and weighed up to 85 tons in the Inikurti mine, Nellore, India. Large sheets are also known from Custer, South Dakota, USA. Well-formed crystals up to 100 mm (4 in) across come from Alabashka near Murzinka, Ural mountains, Russia. Other famous localities include Mamsk, Ural mountains, Russia and Cruzeiro mine, Minas Gerais, Brazil, where gemmy crystals were found.
Application: insulation material in electrical applications and construction.

Muscovite, 35 mm, Plumas, California, U.S.A.

Celadonite
MICA GROUP
KFe_3+(Mg,Fe_2+)AlSi_4O_10(OH)_2

MONOCLINIC

Properties: C – light green to blue-green; S – white; L – dull; D – translucent to almost opaque; DE – 3.0; H – 2; CL – perfect; F – uneven; M – earthy, sometime small scaly aggregates, massive.
Origin and occurrence: Hydrothermal as a product of mafic mineral replacement in volcanic rocks, associated with zeolites, prehnite and calcite. Famous localities are Val di Fassa and Monte Baldo, Italy; also known from Bisbee, Arizona, USA.

Boromuscovite
MICA GROUP
KA1_2Si_3O_10(OH)_2

MONOCLINIC

Properties: C – yellowish; S – white; L – dull; D – transparent to translucent; DE – 2.8; H – 2.5; CL – perfect; F – uneven; M – small scaly aggregates, massive.
Origin and occurrence: Hydrothermal in cavities in

Fuchsite, 4 mm, xz, Pamir, Tajikistan
complex pegmatites, associated with albite, elbaite and lepidolite. Fine-grained scaly aggregates were described from the Little Three mine, Ramona, California, USA; also in Řečice, Czech Republic.

Paragonite

MICA GROUP

\[
Na_2Al_5Si_3O_{10}(OH)_2
\]

MONOCLINIC

Properties: C – white, greenish, yellowish, pinkish; S – white; L – vitreous to pearly; D – transparent to translucent; DE = 2.8; H = 2.5; CL B perfect; F – uneven; M – tabular crystals, scaly aggregates, massive.

Origin and occurrence: Metamorphic in various rock types, as mica schists and greisses. Fine-grained scaly aggregates are known from Pizzo Forno, Switzerland and elsewhere.

Boroammonite, 40 mm, Ramona, U.S.A.

Glaucophane

MICA GROUP

\[
K_{0.8}(Al,Fe^{2+},Fe^{3+},Mg)(Si,Al)_4O_10(OH)_2
\]

MONOCLINIC

Properties: C – light green, yellow-green to blue-green; S – light green; L – dull; PS – translucent to opaque; DE = 2.9; H = 2.6; CL B perfect; F – uneven; M B earthy and platy aggregates, massive.

Origin and occurrence: Hydrothermal in sedimentary and volcanic sedimentary rocks, also as a product of replacement of mafic minerals in volcanic rocks. Common in sandstones and limestones, locally associated also with phosphorites. It occurs in many localities in the Karpathians, Poland; in Polabi region, Czech Republic. Massive aggregates are known from the N'Chwaning No. 2 mine, Kuruman, South Africa.

Glaucophane, 80 mm, Maloměřice, Czech Republic.
Annite

MICA GROUP

KFe₂AlSi₅O₁₀(OH,F)₂

MONOCLINIC

Properties: C – black, locally with reddish or greenish tint; S – colorless; L – vitreous to pearly; D – transparent to translucent, locally opaque; DE – 2.8; H – 2.5-3; CL – perfect; F – uneven; M – tabular crystals, lamellar aggregates, massive.

Origin and occurrence: Metamorphic in skarns; magmatic in some pegmatites and granites. Its lamellar aggregates are known from Langban, Sweden, and Cape Ann, Massachusetts, USA. Crystals up to 150 mm (6 in) across come from Mont St.-Hilaire, Quebec, Canada.

Phlogopite

MICA GROUP

KMg₃AlSi₅O₁₀(OH,F)₂

MONOCLINIC

Properties: C – light brown, greenish, yellowish, colorless, gray; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 2.8; H – 2.5-3; CL – perfect; F – uneven; M – tabular crystals, platy and scaly aggregates, massive.

Origin and occurrence: Metamorphic in various rock types, as marbles and some ultrabasic rocks, at the contacts of pegmatites and serpentinites, magnesium in some ultrabasic rocks and pegmatites, associated with dolomite, diopside, anthophyllite. Rich scaly aggregates come from many localities, as Pargas, Finland and elsewhere. Crystals up to 5 m (16 ft) across found in Studyanka, Siberia, Russia. Crystals up to 50 cm (20 in) across occurred in the Gardiner complex, Greenland. The largest crystals, 10 x 5 m (33 x 16 ft) across, weighing up to 90 tons, come from the Lacy mine, Ontario, Canada.

Application: as insulation material in electrical applications.

Biotite

MICA GROUP

K(Fe,Mg)₃AlSi₅O₁₀(OH,F)₂

MONOCLINIC

Properties: C – brown to black, commonly with red or green tint; S – colorless; L – vitreous to pearly; D – transparent to translucent, locally opaque; DE – 2.8; H – 2.5-3; CL – perfect; F – uneven; M – tabular crystals, scaly aggregates, massive.

Origin and occurrence: Metamorphic in various rock types, as mica schists, gneisses, migmatites and different types of metamorphosed shales; magmatic in pegmatites, granites, syenites and diorites, rare in basalts and ultrabasic rocks. Typical rock-forming mineral, usually associated with quartz, feldspars and muscovite. Rich scaly aggregates are known from a pegmatite in Byle, Norway, where its crystals reach up to several meters across. Other famous localities are Bessées, France; Uluguru mountains, Tanzania; Silver Crater mine, Ontario, Canada and Laacher See, Germany.

Poly lithionite

MICA GROUP

K₂(Fe,Mg₁₋₂)Si₅O₁₀(FO,OH)₂

MONOCLINIC

Properties: C – gray, colorless, yellowish, purple; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 2.8; H – 2.5-3; CL – perfect; F – uneven; M B tabular crystals, scaly aggregates, massive.

Origin and occurrence: Magmatic and locally also hydrothermal in alkaline pegmatites, granite and carbonatites, rare in Li-bearing granitic pegmatites. Well-formed crystals up to 40 mm (1 1/2 in) across are known from cavities in alkaline pegmatites from Mont St.-Hilaire, Quebec, Canada. It comes also from Illimaussaq, Greenland and from cavities in granitic pegmatites in Řečice, Czech Republic and
elsewhere. Large industrial deposits known in Blatchford Lake, Northwest Territories, Canada.
Application: Li and Cs ore.

Trilithionite

MICA GROUP

KLi_{1.5}Al_{2.5}Si_{3}O_{10} (F,OH)_{2}

MONOCLINIC

Properties: C – gray, colorless, brown; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 2.8; H – 2.5-3; CL – perfect; F – uneven; M – tabular crystals, scaly aggregates, massive.

Origin and occurrence: Magmatic in Li-bearing pegmatites and granites, commonly associated with elbaite, spodumene, pelite, quartz and albite; sometimes hydrothermal in quartz veins and pegmatites. Well-formed crystals from pegmatite cavities are known from Virgem da Lapa, Minas Gerais, Brazil. Massive aggregates come from the Stewart Lithia mine, Pala, California and the Brown Derby No. 1 mine, Colorado, USA; Varutåsk, Sweden; Rožňák, Czech Republic; Meldon Quarry, Devon, UK.

Application: Li and Cs ore.

Zinnwaldite

MICA GROUP

KLiFeAl_{2.5}Si_{3}O_{10} (F,OH)_{2}

MONOCLINIC

Properties: C – gray, colorless, brown; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 3.7; H – 2.5-3; CL – perfect; F – uneven; M – tabular crystals, scaly aggregates, massive.

Origin and occurrence: Hydrothermal in quartz veins and greisens; magmatic in pegmatites and granites, associated with fluorite, cassiterite and wolframite. Rich aggregates with scales up to 100 mm (4 in) across are known from quartz veins in Cínovec, Czech Republic. Crystals up to 150 mm (6 in) across come from pegmatite cavities in Virgem da Lapa, Minas Gerais, Brazil. It also occurs in the Pikes Peak batholith, Colorado, USA; Baveno, Italy.

Application: Li ore.
Margarite
\[\text{CaAl}_4\text{Si}_2\text{O}_{16}(\text{OH})_2 \]

MONOCLINIC

Properties: C – pinkish, colorless, yellowish; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 3.1; H – 3.5-4.5; CL B perfect; F – uneven; M – tabular crystals, platy and sealy aggregates, massive.

Origin and occurrence: Metamorphic, associated with corundum, diaspore, boarmaline and staurolite in various types of metamorphosed shales. Coarse platy aggregates come from Chester, Massachusetts and Sterling Hill, New Jersey, USA.

Clintonite
\[\text{Ca(Mg,Al)}_3\text{(Al}_2\text{Si)}\text{O}_{18}(\text{OH})_2 \]

MONOCLINIC

Properties: C – colorless, yellowish, pinkish, greenish; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 3.1; H – 3.5; CL – perfect; F – uneven; M – tabular crystals, lamellar aggregates, massive.

Origin and occurrence: Metamorphic in contact metamorphosed marbles, associated with vesuvianite, grossular, diopside and spinel. Rich aggregates with lamellae up to 20 mm (1/8 in) across occur in Green Monster mountain, Alaska and Crestmore, California, USA and Monzoni, Italy.

Stilpnomelane, 100 mm, Horni Úslaví, Czech Republic
Stilpnomelane

\[K(\text{Fe}^{2+},\text{Mg,Fe}^{3+})_3(\text{Si,Al})_2(\text{O,OH})_7 \]

MONOCLINIC

Properties: C – black, black-brown, black-green, yellow-brown; S – colorless; L – vitreous to dull; D – translucent to opaque; DE – 2.8; H – 2; CL – perfect; F – uneven; M – tabular crystals, foliated, lath-like and acicular aggregates.

Origin and occurrence: Metamorphic in Fe-rich shales, usually associated with chlorite, magnetite and albite. Crystals up to 20 mm (0.8 in) across come from Jim Pond township, Maine, USA. Foliated aggregates are known from Horni Udoli near Zláté Hory, Czech Republic; Mesabi Range, Minnesota, USA.

Montmorillonite

\[(\text{Ca,Na})_0.33(\text{Al,Fe}^{3+})_2\text{Si}_4\text{O}_{10}(\text{OH})_2 \cdot \text{n H}_2\text{O} \]

MONOCLINIC

Properties: C – white, yellowish, greenish, bluish; S – white; L – greasy; D – translucent to opaque; DE – 2.3; H – 1-2; CL – perfect, wet massive aggregates are plastic; F – uneven; M – earthy aggregates, massive.

Origin and occurrence: Hydrothermal as a product of replacement of other minerals in volcanic rocks, granitic pegmatites and sediments. It is abundant in many localities. Montmorillonite deposits are known from Antrim, Northern Ireland, UK; in Hungary; Slovakia and many places in the USA.

Application: Ceramics and chemical industry.

Saponite

\[(\text{Ca,Na})_1.3(\text{Fe,Al})_3\text{Si}_4\text{O}_{10}(\text{OH})_2 \cdot 4 \text{H}_2\text{O} \]

MONOCLINIC

Properties: C – white, yellowish, gray-green, bluish; S – white; L – greasy; D – translucent to opaque; DE – 2.1; H – 1-2; CL – perfect, massive aggregates are plastic under wet conditions; F – uneven; M – earthy, nodular, massive.

Origin and occurrence: Hydrothermal as a product of replacement of other minerals in volcanic rocks and serpentinites. It occurs together with copper in many places in Keweenaw Peninsula, Michigan, USA. Scales up to 10 mm (0.4 in) across described from Mont St.-Hilaire, Quebec, Canada.

Vermiculite

\[(\text{Fe,Mg,Al})_3(\text{Si,Al})_4\text{O}_{10}(\text{OH})_2 \cdot 4 \text{H}_2\text{O} \]

MONOCLINIC

Properties: C – yellow-brown, gray-green, green-brown; S – white; L – greasy; D – translucent to opaque; DE – 2.5; H – 1.5; CL B perfect; F – uneven; M – scaly aggregates, massive; R – it expands when heated.

Origin and occurrence: Hydrothermal as a product of replacement of phlogopite and other mafic minerals in various rock types. It occurs in Palabora, South Africa; Milbury, Massachusetts, USA; Kovanor massif, Kola Peninsula, Russia.

Application: Electrical applications and paper industry.

Montmorillonite, Kishaan, Syria

Saponite, 2 mm crust, Eszterházy, Hungary

Vermiculite, 50 mm, Dr hormone, Czech Republic
Cookeite
CHLORITE GROUP
LiAl₂Si₃O₁₀(OH)₈

MONOCLINIC • •

Properties: C – white, yellowish, pinkish, brown; S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 2.6; H – 2.5-3.5; CL – perfect; F – uneven; M B scaly, locally radial aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in Li-bearing pegmatites, associated with elbaite, lepidolite, fluorapatite and albite, it also replaces spodumene; metamorphic in Al-rich shales, together with diaspore and pyrophyllite. Massive aggregates, replacing spodumene, occur in the Tanco mine, Bernie Lake, Manitoba, Canada. It also comes from cavities in pegmatites in the Little Three mine.

Kämmererite, 11 mm xx, Kop Daglari, Turkey

Clinochlore
CHLORITE GROUP
(Mg,Fe)₂Al₂Si₃O₁₀(OH)₈

MONOCLINIC • • • •

Varities: kämmererite

Properties: C – greenish, gray, white, yellowish, brown, red-purple (kämmererite); S – colorless; L – vitreous to pearly; D – transparent to translucent; DE – 2.7; H – 2-2.5; CL – perfect; F – uneven; M B poorly-developed tabular crystals, foliated and radial aggregates, massive.

Ramona and the Himalaya mine, Mesa Grande, California. It is also known from the Pulsifer quarry, Maine, USA and Muiane, Mozambique.
Origin and occurrence: Metamorphic in various types of shales and marbles; hydrothermal in quartz veins and Alpine-type veins, occasionally replaces certain minerals as biotite. Crystals up to 50 mm (2 in) across, associated with chondrodite and magnetite, are known from the Tilly Foster mine, Brewster, New York and Chester, Pennsylvania, USA. It also occurs in Val d’Aosta, Italy and Zillertal, Austria. Scales up to 40 cm (15¾ in) across come from Berany, Madagascar. Kämmereite crystals up to 20 mm (¾ in) across found in Kop Dağları, Erzerum, Turkey.

Chamosite
CHLORITE GROUP
(Fe,Mg)₂Al₂Si₃O₁₀(OH)₈

MONOCLINIC

Properties: C – green; S – gray-green; L – vitreous to dull; D – translucent to opaque; DE – 3.2; H – 2.5–2.5; CL – perfect; F – uneven; M – scaly and oolitic aggregates, massive.

Origin and occurrence: Metamorphic in various types of Fe-rich sediments, typically associated with siderite and magnetite. It is common in Chamoson, Switzerland; Nucice, Czech Republic. Spherical aggregates up to 15 mm (¾ in) in diameter found in Mont St.-Hilaire, Quebec, Canada.

Kaolinite
Al₂Si₂O₅(OH)₄

TRICLINIC

Properties: C – white, yellowish; S – colorless; L – earthy to pearly; D – translucent to opaque; DE – 2.6; H – 1; CL – perfect; F – uneven; M – earthy and exceptionally scaly aggregates, massive.

Origin and occurrence: Hydrothermal, as a result of feldspar replacement in various rock types, as granites and arcoses. It forms large deposits in China, France, UK and Czech Republic.

Application: raw material for ceramics.

Dickite
Al₂Si₂O₅(OH)₄

MONOCLINIC

Properties: C – white, yellowish; S – colorless; L – earthy to pearly; D – translucent to opaque; DE – 2.6; H – 1; CL – perfect; F – uneven; M – earthy and platy aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in hydrothermal veins, together with quartz, carbonates and sulfides. It occurs in Essen, Germany; Anglesey, Wales, UK; Kladno, Czech Republic. Microscopic crystals come from Mass d’Alary, France.

Kaolinite, 50 mm, St.-Austell, UK
Nacrite
$\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$

MONOCLINIC

Properties: C - white, yellowish, gray-white; S - colorless; L - earthy to pearly; D - translucent to opaque; DE - 2.6; H - 1.5; CL - perfect; F - uneven; M - earthy and scaly aggregates, massive.

Origin and occurrence: Hydrothermal in cavities of hydrothermal veins, associated with quartz, fluorite and topaz. It occurs in Horni Slavkov, Czech Republic; Freiberg, Germany. Pseudo-morphs after topaz come from Ouro Preto, Minas Gerais, Brazil.

Antigorite
$\text{Mg}_2\text{Si}_2\text{O}_5(\text{OH})_4$

MONOCLINIC

Properties: C - white, yellowish, greenish, gray; S - colorless to gray; L - vitreous, pearly, silky.

Origin and occurrence: Hydrothermal in Mg-rich rocks, associated with diaspore, magnetite and chromite. It comes from Chestor, Massachusetts, USA. Crystals up to 40 mm (1.57 in) across found in Sarany, Ural mountains, Russia.

Amesite
$\text{Mg}_2\text{Al}(\text{SiAl})_2\text{O}_5(\text{OH})_4$

TRICLINIC

Properties: C - greenish, gray; S - colorless; L - vitreous to pearly; D - translucent; DE - 2.8; H - 2.5-3.5; CL - perfect; F - uneven; M - B foliated to radial aggregates, massive.

Origin and occurrence: Metamorphic in serpentinites, marbles and other Mg-rich rocks; hydrothermal in veins cross-cutting these rocks. It is important rock-forming mineral. It occurs in Kraibach, Austria; Hrubosice, Czech Republic; Antigorio, Italy and elsewhere.

Cronstedtite
$\text{Fe}^{2+}_2\text{Fe}^{3+}_2\text{Si}_2\text{O}_5(\text{OH})_4$

MONOCLINIC

Properties: C - black, black-brown, black-green; S - dark olive-green; L - vitreous to submetallic; D - translucent to opaque; DE - 3.3-6; H - 3.5; CL - perfect; F - uneven; M - prismatic crystals, columnar aggregates.

Origin and occurrence: Hydrothermal in ore veins. Fan-shaped aggregates of crystals come from Přibram and Krušná Hora, Czech Republic; Ouro Preto, Minas Gerais, Brazil; Salisague mine, Auge, France.

Amesite, 40 mm, Sarany, Ural Mts., Russia
Chrysocolla
\((\text{Cu,Al})_2\text{H}_2\text{Si}_2\text{O}_5(\text{OH})_4 \cdot n\ H_2\text{O}\)

Monoclinic

Properties: C – different hues of blue-green; S – white; L – vitreous, greasy to earthy; D – translucent to almost opaque; DB – 2.0-2.4; H – 2-4; CL – none; F – conchoidal to uneven; M – microscopic acicular crystals, botryoidal, stalactitic and earthy aggregates.

Origin and occurrence: Secondary in Cu deposits, associated with malachite and other secondary Cu minerals. Rich aggregates come from many places in Arizona, USA, like Bisbee and Morenci. It is also known from Mednorudnyansk, Ural mountains, Russia and Broken Hill, New South Wales, Australia.

Aliophane

approximately \(\text{Al}_2\text{SiO}_5 \cdot n\ H_2\text{O}\)

Amorphous

Properties: C – white, gray, bluish, greenish, brown; S – white; L – vitreous, greasy and earthy; D – transparent, translucent to opaque; DB – 1.9; H – 2-3; CL – none; F – conchoidal to uneven; M – botryoidal, stalactitic and earthy aggregates.

Origin and occurrence: Hydrothermal product of alteration along the cracks of sedimentary rocks in coal deposits and in the oxidation zone of ore deposits, associated with other secondary minerals. Rich botryoidal aggregates occur in Dehr, Germany; Moldova Nuova, Romania; New Cornelia mine, Arizona, USA; El Dragon mine, Potosí, Bolivia.
Palygorskite
(Mg,Al)₂Si₄O₁₀(OH)₄·4H₂O
MONOCLINIC

Properties: C – white, gray; S – white; L – dull; D – translucent to almost opaque; DE – 2.2; H – 1; CL – good; F – uneven, aggregates plastic under wet conditions; M – acicular crystals, fibrous aggregates, massive.

Origin and occurrence: Hydrothermal as a product of alteration of different rock types, such as serpentinites, granites, marbles and graywackes, also in ore veins and the Alpine-type veins. Rich aggregates resembling leather occur along the cracks in marbles in Hejna near Horádek, Czech Republic; in the Mammoth mine, Tiger, Arizona, USA and in Palygorskaya, Russia.

Sepiolite
70 mm, Eskisehir, Turkey

Sepiolite
Mg₆Si₅O₁₅(OH)₂·6H₂O
ORTHORHOMBIC

Properties: C – white, yellowish, gray; S – white; L – dull; D – opaque; DE – 2.0; H – 2.5; CL – not determined; F – uneven; M – earthy aggregates, massive.

Origin and occurrence: Hydrothermal as a product of serpentine alteration, typically associated with magnesite. Classic locality is Eskisehir, Turkey; also known from Biskoupek, Czech Republic.

Zeophyilithe
Ca₄Si₄O₁₀(OH,F)₄·2H₂O
TRICLINIC

Properties: C – white; S – white; L – pearly; D – transparent to translucent; DE – 2.6; H – 3; CL – perfect; F – uneven; M – platy crystals, commonly with radial structure.

Origin and occurrence: Hydrothermal in cavities of volcanic rocks, associated with zeolites. Its most important locality is Radegstein, Czech Republic, where it forms spherical aggregates up to 10 mm (¾ in) in diameter. Also known from Schellkopf, Germany and Monte Somma, Italy.

Cavansite
Ca₅V₂O₄Cl·4H₂O
ORTHORHOMBIC

Properties: C – green-blue, blue; S – light blue; L – vitreous; D – transparent; DE – 2.2; H – 3-4; CL – good; F – uneven; M – long prismatic to acicular crystals, radial aggregates.

Origin and occurrence: Hydrothermal in cavities of volcanic rocks, associated with calcite, apophyllite and zeolites. Rich radial aggregates up to 30 mm.
(1½ in) in diameter come from the Wagholi Quarry, Poona, India.

Nepheline

(K,Na)AlSiO₄

HEXAGONAL

Properties: C - colorless, white, greenish, yellowish, gray, green, brown; S - white; L - vitreous to greasy; D - transparent to translucent; DE - 2.7; H - 5.5-6; CL - none; F - uneven to conchoidal; M - prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in many alkaline rocks, as alkaline syenites and their pegmatites, also in some basalts; rare metamorphic in gneisses. It is a typical rock-forming mineral, associated with leucite, augite and apatite. Well-formed crystals found in Mount Vesuvius, Italy. Rich aggregates are known from many localities in Khibiny massif, Kola Peninsula, Russia. Crystals up to 70 cm (27½ in) long occur in Davis Hill, Bancroft, Ontario. Perfect crystals up to 35 mm (1½ in) long, come from Mont St-Hilaire, Quebec, Canada.

Application: locally as Al ore and in ceramic industry.
Petalite
LIAiS14O10
MONOCLINIC

Properties: C – colorless, white, greenish, yellowish; S – white; L – vitreous; D – transparent to translucent; DE – 2.5; H – 6-6.5; CL – good; F – uneven to conchohedral; M – prismatic crystals, granular. Origin and occurrence: Magmatic in Li-bearing pegmatites, associated with lepidolite, elbaite, amblygonite and locally replaced by a mixture of quartz and spodumene. Gigantic crystals several meters long, come from Bikita, Zimbabwe; and Varutrask, Sweden. Clear gemmy crystals up to 230 mm (9 3/3 in) across found in pegmaitic cavities in Páprok, Afghanistan and also in San Pietro in Campo, Elba, Italy. Crystals up to 100 mm (4 in) across occur in Araquã, Minas Gerais, Brazil. Application: ceramic industry.

Chkalovite
Na2BeSi2O6
ORTHORHOMBIC

Properties: C – colorless, white; S – white; L – vitreous; D – transparent to translucent; DE – 2.7; H – 6; CL – imperfect; F – conchohedral; M – prismatic crystals, granular, massive. Origin and occurrence: Hydrothermal in alkaline pegmatites, usually associated with natrolite, sodalite and eudialyte. Crystals up to 200 mm (7 7/10 in) across come from the Umbozero mine, Mount Alluaix, Lovozero massif, Kola Peninsula, Russia; also at Julianehab, Greenland and Mont St.-Hilaire, Quebec, Canada.

Sanidine, 30 mm x, Drachenfels, Germany
Sanidine
FELDSPAR GROUP
KAlSi3O8

MONOCLINIC

Properties: C – colorless, white, yellowish, pinkish, gray; S – white; L – vitreous; D – transparent to translucent; DE – 2.6; H – 6-6.5; CL – good; F – uneven to conchoidal; M – prismatic and tabular crystals and their combinations, granular, massive.

Origin and occurrence: Magmatic in rhyolitic rocks; a typical rock-forming mineral. Well-formed crystals and their combinations up to 100 mm (4 in) in size occur in rhyolites and trachytes in Drachenfels and Laacher See, Germany. It also comes from Roche de Courlande, France; Beaverden, British Columbia, Canada; Kyustendil, Bulgaria.

Orthoclase
FELDSPAR GROUP
KAlSi3O8

MONOCLINIC

Varieties: adularia, moonstone (greenish variety with chatoyancy)

Orthoclase, 32 mm, Oro Grande, USA

Properties: C – colorless, white, yellowish, pinkish, gray; brown, yellow; S – white; L – vitreous to pearly (adularia); D – transparent to translucent; DE – 2.5; H – 6-6.5; CL – good; F – uneven to conchoidal; M – prismatic and tabular crystals and their combinations, granular, massive.

Origin and occurrence: Magmatic in rhyolites, trachytes, granites, syenites and pegmatites; metamorphic in various rock types, as orthogneisses and migmatites; hydrothermal in the Alpine-type veins, ore veins and some sediments, also in placers, a typical rock-forming mineral. Well-formed crystals and twins up to 200 mm (7¼ in) across come from granites in Twenty-nine Palms, California, USA; Marina di Campo, Elba, Italy; Loket and Karlovy Vary, Czech Republic; in pegmatite cavities in Szczecin, Poland; San Piero in Campo, Elba, Italy. Yellow gemmy crystals up to 70 mm (2½ in) across are found in Trongaya, Madagascar. Gigantic feldspar crystals up to tens of meters long known from several pegmatite localities in Black Hills, South Dakota, USA; also Hagenendorf, Germany. Adularia is known from Alpine-type veins in St. Gotthard, Switzerland; pebbles of moonstone occur in gem-bearing gravels in Ratnapura, Sri Lanka.

Application: ceramic and glass industry, moonstone as a gemstone.
Microcline
FELDSPAR GROUP
KAlSi₃O₈

TRICLINIC

Varieties: amazonite

Properties: C – colorless, white, yellowish, pinkish, gray, light to dark green (amazonite); S – white; L – vitreous; D – transparent to translucent; DE – 2.6; H – 6-6.5; CL – good; F – uneven to conchoidal; M – prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in granites, syenites and pegmatites; metamorphic in various rock types, as orthogneisses and migmatites; hydrothermal in the Alpine-type veins and ore veins; a typical rock-forming mineral. Well-formed amazonite crystals up to 40 cm (15½ in) across occur in pegmatite cavities in Crystal Peak, Colorado, USA; Keivy, Kola Peninsula, Russia; Monreal mine, Virginin, USA. Gigantic microcline crystals up to 12 m (39 ft) across come from pegmatites in Black Hills, South Dakota, USA; Kaatiala, Finland.

Application: ceramic industry, amazonite as a decorative stone.

Hyalophane
FELDSPAR GROUP
(K,Ba)Al(Si,Al)₄O₈

MONOCLINIC

Properties: C – colorless, white, yellowish; S – white; L – vitreous; D – transparent to translucent; DE – 2.9; H – 6-6.5; CL – good; F – uneven to conchoidal; M – prismatic crystals, granular, massive.

Amazonite, 60 mm, Keivy, Kola, Russia
Origin and occurrence: Magmatic in phonolites; metamorphic in various rock types, as marbles, gneisses and Mn-rich rocks; hydrothermal in the Alpine-type and ore veins. Crystals up to 100 mm (4 in) across found in Alpine-type veins near Busovaca, Bosnia-Hercegovina.

Albite
FELDSPAR GROUP

NaAlSi3O8

TRICLINIC

Varieties: pericline, clevelandite

Properties: C – colorless, white, yellowish, pinkish, gray, greenish, bluish; S – white; L – vitreous; D – transparent to translucent; DE – 2.6; H – 6.6.5; CL – good; F – uneven to conchoidal; M – tabular crystals and their twiros, platy aggregates, granular, massive.

Origin and occurrence: Magmatic in granites, syenites and their pegmatites; metamorphic in various rock types, as orthogneisses, migmatites, phyllites and metamorphosed shales; hydrothermal in the Alpine-type veins and ore veins, a typical rock-forming mineral. Well-formed tabular to platy cleavelandite crystals up to 150 mm (6 in) across occur in pegmatite cavities in the Amelia district, Virginia and the Pala district, California, USA. Albite crystals also come from Strzezom, Poland; San Piero in Campo, Elba, Italy; Murzinka, Ural mountains, Russia; many localities in Minas Gerais, Brazil. Pericline crystals are known from the cracks along Alpine-type veins in Grossgreiner, Austria; St. Gotthard, Switzerland; also from ore veins in Rovžava, Slovakia.

Oligoclase
FELDSPAR GROUP

NaAlSi2AlO8

TRICLINIC

Varieties: peristerite, sanstone

Properties: C – white, yellowish, pinkish, greenish, iridescent (peristerite); S – white; L – vitreous; D – transparent to translucent; DE – 2.6; H – 6.6.5; CL – good; F – uneven to conchoidal; M – tabular crystals, platy aggregates, granular, massive.

Origin and occurrence: Magmatic in granites, syenites, andesites and pegmatites; metamorphic in gneisses and migmatites; hydrothermal in the Alpine-type veins; typical rock-forming mineral. Large crystals, several dm long, are known mainly from pegmatites. Peristerite comes from Arenal, Norway; Miss, Ural mountains, Russia; Quadeville, Ontario, Canada; Tvedestrand, Norway. It also occurs in Veľký , Czech Republic. Sanstone is mined in the Ponderosa mine near Lakeview, Oregon, USA.

Application: peristerite and sanstone are used as gemstones.
Andesine

FELDSPAR GROUP

\[\text{Na}_0.7-0.8 \text{Ca}_{0.3-0.5} \text{Al}_{1.3-1.5} \text{Si}_{2.7-2.8} \text{O}_8 \]

TRICLINIC

Properties: C – yellowish, pinkish, gray, light green; S – white; L – vitreous; D – transparent to translucent; DE – 2.7; H – 6-6.5; CL – good; F – uneven to conchoidal; M – platy aggregates, granular, massive.

Labradorite

FELDSPAR GROUP

\[\text{CaAl}_2 \text{Si}_2 \text{O}_8 \]

TRICLINIC

Properties: Magmatic in andesites, diorites; metamorphic in gneisses and migmatites; typical rock-forming mineral. Large grains are known from migmatites in Bodennais, Germany and Adamello, Italy. **Origin and occurrence:** Magmatic in gabbros, basalts, anorthosites; metamorphic in amphibolites. Large iridescent aggregates up to 1 m (39½ in) across, come from Nain, Labrador, Quebec, Canada and also occur in Korostenskiy massif, Ukraine and Yllamaa, Finland. **Application:** as a decorative stone.

Anorthite

FELDSPAR GROUP

\[\text{CaAl}_2 \text{Si}_2 \text{O}_8 \]

TRICLINIC

Properties: C – gray, greenish, pinkish; S – white; L – vitreous, dull; D – transparent to translucent; DE – 2.8; H – 6-6.5; CL – good; F – uneven to conchoidal; M B granular, massive.

Origin and occurrence: Magmatic in gabbros, basalts, anorthosites; metamorphic in contact metamorphosed rocks. Pinkish grains and poorly-developed crystals come from Val di Fassa, Italy. Crystals up to 50 mm (2 in) across are known from Miyake-Jima Island, Japan. It was also found in Mount Erebus, Antarctica and Monte Somma, Italy.
Danburite
\(\text{CaB}_2\text{Si}_2\text{O}_8 \)

Orthorhombic

Properties: C – colorless, white, gray, greenish, pinkish, yellow, brown, red-brown; S – white; L – vitreous, dull; D – transparent to translucent; DE – 3.0; H – 7; CL – imperfect; F – uneven to conchoidal; M – prismatic crystals, columnar aggregates, granular, massive.

Origin and occurrence: Hydrothermal in pegmatite cavities, ore veins, and the Alpine-type veins; metamorphic in schists and contact metamorphosed rocks.

Well-formed prismatic crystals up to 250 mm (9½ in) long come from Russell, New York, USA; Toroko, Japan; Dalnegorsk, Russia; and Charcas, San Luis Potosí, Mexico.

Cancrinite
\(\text{Na}_6\text{CaAl}_2\text{Si}_5\text{O}_{24}(\text{CO}_3) \cdot 2\text{H}_2\text{O} \)

Hexagonal

Properties: C – colorless, white, yellow, orange, bluish; S – white; L – vitreous; D – transparent to translucent; DE – 2.4; H – 5.5; CL – good; F – uneven to conchoidal; M – prismatic crystals, granular, massive.

Origin and occurrence: Magmatic in alkaline syenites; hydrothermal as a product of replacement of volcanic rocks, associated with nepheline and sodalite.

Crystals up to 20 mm (¾ in) across come from Mont St.-Hilaire, Quebec, Canada. It was also found in Litchfield, Maine, USA; Cancrinite Hill, Bancroft, Ontario, Canada and elsewhere.

Leifite
\(\text{Na}_2\text{Si}(\text{Al},\text{Be})_7(\text{O},\text{OH},\text{F})_{14} \)

Trigonal

Properties: C – colorless; S – white; L – vitreous; D – translucent; DE – 2.5; H – 6; CL – good; F – uneven; M – acicular crystals.

Origin and occurrence: Hydrothermal in cavities of alkaline pegmatites, associated with microcline and zinnwaldite. Crystals up to 20 mm (¾ in) across occur in Narssarsuaq, Greenland. Fine crystals are also known from Mont St.-Hilaire, Quebec, Canada, associated with scandite.
Sodalite
Na₈Al₆Si₆O₂₄Cl₂
CUBIC

Varieties: hackmanite

Properties: C – colorless, white, blue, yellow, pink (hackmanite); S – white; L – vitreous; D – transparent to translucent; DE – 2.3; H – 5-5.5; CL – imperfect; F – uneven to conchoidal; M – isometric crystals, granular, massive; LU – orange-red.

Origin and occurrence: Magmatic in alkaline syenites and phonolites, associated with nepheline, zircon and titanite; hydrothermal in marbles. Granular aggregates are known from the Princess Sodalite mine, Bancroft, Ontario, Canada and Ditrau, Romania. Crystals up to 100 mm (4 in) across come from Kangerdluarsuk, Greenland.

Application: cut as a gemstone.

Noseane
Na₈Al₆Si₆O₂₄(SO₄)

CUBIC

Properties: C – colorless, white, blue, gray, black; S – white; L – vitreous; D – transparent to translucent; DE – 2.3; H – 5-5.6; CL – good; F – uneven to conchoidal; M – isometric crystals, granular, massive.

Origin and occurrence: Magmatic in alkaline basalts and similar effusive rocks, associated with nepheline and halite. Granular aggregates are known from Lascher See, Germany and Monte Soruma, Italy.

Lazurite
(Na₂Ca₈)₈Al₆Si₆O₂₄(5,5SO₄)

CUBIC

Properties: C – dark blue; S – light blue; L – vitreous; D – transparent to translucent; DE – 2.4; H – 5-5.5; CL – imperfect; F – uneven to conchoidal; M – isometric crystals, granular, massive.

Origin and occurrence: Metamorphic in contact metamorphosed marbles, associated with pyrite. Crystals up to 50 mm (2 in) across come from Sar-e-Sang, Badakhshan province, Afghanistan. Granular aggregates are known from many localities, such as Malobystrinskoye deposit near Lake Buikov, Russia or Monte Soruma, Italy.

Application: decorative stone and gemstone.
Tugtupite

\[\text{Na}_8\text{Be}_2\text{Al}_5\text{Si}_9\text{O}_{24}\text{Cl}_2 \]

TETRAGONAL

Properties: C – white, pink, red; L – vitreous; D – transparent to translucent; DE – 2.3; H – 5; CL – good; F – uneven to conchoidal; M – small crystals, granular, massive.

Origin and occurrence: Hydrothermal in alkaline syenites and their pegmatites, also as a product of chalcolite alteration. Aggregates up to 60 mm (2 1/2 in) across come from the Umbazero mine, Mount Alluay, Lovozero massif, Kola Peninsula, Russia.

Danalite

\[\text{Fe}_4\text{Be}_3\text{Si}_2\text{O}_{12}\text{S} \]

CUBIC

Properties: C – gray, yellow, pink, red, brown; S – white; L – vitreous; D – transparent to translucent; DE – 3.4; H – 5.5-6; CL – imperfect; F – uneven to conchoidal; M – isometric crystals, granular, massive.

Origin and occurrence: Magmatic in granitic pegmatites, hydrothermal in greisens, skarns and ore veins. It occurs in Cape Ann, Massachusetts, USA; Hauksgollen, Norway and Coolgardie, Western Australia, Australia.
Helvite
Mn$_4$Be$_3$Si$_3$O$_{15}$S

Cubic

Properties: C – brown, gray, yellow, yellow-green; S – white; L – vitreous; D – transparent to translucent; DE – 3.4; H – 6; CL – good; F – uneven to conchoidal; M – isometric crystals, granular, massive.

Origin and occurrence: Magmatic in granite pegmatites and alkaline syenites; hydrothermal in greisens, skarns and ore deposits. Cubic crystals up to 25 mm (1 in) across known from the Sawtooth Batholith, Idaho, USA. Crystals also come from Schwarzenberg, Germany; Cavnic, Romania; and Osulquard, Norway.

Application: Be ore.

Scapolite, 44 mm x, Leslie Lake, Québec, Canada

Marialite
SCAPOLITE GROUP
Na$_8$(AlSi$_3$O$_9$)$_6$ (Cl$_2$SO$_4$)

Tetragonal

Properties: C – colorless, white, gray, purplish, yellow; S – white; L – vitreous, locally pearly; D – transparent to translucent; DE – 2.5; H – 5-6; CL – good; F – uneven to conchoidal; M – prismatic crystals, columnar aggregates, granular, massive; LU – yellow to orange.

Origin and occurrence: Hydrothermal in veins, cross-cutting alkaline metamorphic rocks and in pegmatites, cross-cutting ultrabasic rocks; metamorphic in marbles and meta-evaporites. It comes from Ankazobe, Madagascar; Umba, Tanzania and Crestmore, California, USA.

Meionite
SCAPOLITE GROUP
Ca$_9$(Al$_2$Si$_2$O$_9$)$_6$ (CO$_3$SO$_4$)

Tetragonal

Properties: C – colorless, white, gray, purplish, green, blue; S – white; L – vitreous; D – transparent to translucent; DE – 2.8; H – 5-6; CL – good; F – uneven to conchoidal; M – long prismatic crystals, columnar aggregates, granular, massive; LU – yellow to orange.

Leucite, 30 mm, Mt Vesuvius, Italy
Analcite

ZEOlITE GROUP
NaAlSi₂O₆·H₂O

CUBIC

Properties: C – colorless, white, pinkish, yellowish; S – white; L – vitreous; D – transparent to translucent; DE – 2.3; H – 5.5-5.5; CL – imperfect; F – uneven to conchoidal; M – isometric crystals, granular, massive.

Origin and occurrence: Mainly hydrothermal as a product of nepheline or sodalite replacement; rare magmatic in effusive rocks; also in sediments, associated with calcite and zeolites. Well-formed crystals up to 30 cm (12 in) across come from Nidym, Siberia, Russia; Lago Maggiore, Italy; Mont St.-Hilaire, Quebec, Canada; West Paterson, New Jersey, USA and elsewhere.

Pollucite

ZEOlITE GROUP
(Ca,Na)AlSi₂O₆·H₂O

CUBIC

Properties: C – colorless, white, gray; S – white; L – vitreous; D – transparent to translucent; DE – 2.9; H – 6.5-7; CL – none; F – uneven to conchoidal; M – isometric crystals, granular, massive.

Origin and occurrence: Magmatic and rarely also hydrothermal in Li-bearing pegmulates, associated with lepidolite, albite, quartz and petalite. Almost monomineral layer of pollucite several meters thick occurs in the Tanco mine, Bernic Lake, Manitoba, Canada. White and colorless crystals from pegmatite cavities up to 60 cm (24 in) across come from Puprook, Afghanistan. Also known from San Piero in Campo, Elba, Italy and Gilgit, Pakistan.

Application: ceramic industry, Cs ore.

Leucite

ZEOlITE GROUP
KAlSi₂O₆

TETRAGONAL

Properties: C – colorless, white, gray; S – white; L – vitreous; D – transparent to translucent; DE – 2.5; H – 5.5-6; CL – imperfect; F – uneven to conchoidal; M – isometric crystals, granular, massive.

Origin and occurrence: Magmatic in effusive K-rich basalts, associated with nepheline and sanidine. Well-formed crystals, several cm in size, come from Mount Vesuvius, Italy and Laacher See, Germany.

Application: ceramic industry.
Scolecite, 165 mm, Nasik, India

Natrolite

ZEOLITE GROUP

\[\text{Na}_2\text{Al}_2\text{Si}_5\text{O}_{10} \cdot 2\text{H}_2\text{O} \]

ORTHORHOMBIC

Properties:

- **C** – colorless, white, yellowish, pinkish;
- **S** – white;
- **V** – vitreous to silky;
- **D** – transparent to translucent;
- **G** – 2.2;
- **H** – 5-5.5;
- **C.I.** – perfect;
- **F** – uneven to conchoidal;
- **M** – long prismatic to acicular crystals, fibrous and radial aggregates, granular, massive.

Origin and occurrence:

Hydrothermal in cavities in volcanic rocks, alkaline pegmatites, along the Alpine-type fissures, also as a product of plagioclase replacement, commonly associated with calcite and zeolites. Colorless and white acicular crystals up to 30 cm (12 in) long come from cavities of alkaline pegmatites in Mount Putelichor, Khibiny massif, Kola Peninsula, Russia. Crystals were also found in Narsarsuuk, Greenland and Mont St.-Hilaire, Quebec, Canada. Crystals also occur in cavities of basaltic rocks in Teigarhorn, Iceland; Zalczy and Soutisky, Czech Republic and in Faeroe Islands.
Skolecite

ZEOLITE GROUP

\[CaAl_2Si_3O_{16} \cdot 3H_2O\]

MONOCLINIC

Properties: C – colorless, white; S – white; L – vitreous to silky; D – transparent to translucent; DE – 2.3; H – 5; CL – good; F – uneven; M – long prismatic to acicular crystals, fibrous and radial aggregates.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks and along the Alpine-type fissures, associated with calcite and zeolites. Clear prismatic crystals up to 200 mm (7.9 in) long come from basalt cavities near Nasik, India. Crystals come also from Teigarhorn, Iceland and Suderoy, Faeroe Islands.

Mesolite

ZEOLITE GROUP

\[Na_{16}Ca_{16}Al_{16}Si_{72}O_{240} \cdot 64H_2O\]

ORTHORHOMBIC

Properties: C – colorless, white; S – white; L – vitreous to silky; D – transparent to translucent; DE – 2.3; H – 5; CL – good; F – uneven; M – acicular crystals, fibrous and radial aggregates, granular, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, associated with other zeolites. Colorless needles up to 150 mm (6 in) long come from the basalt cavities in Berufjord and Teigarhorn, Iceland. Radial aggregates up to 200 mm (7.9 in) in diameter known from the vicinity of Poona, India. Prismatic crystals up to 100 mm (4 in) long found in Skoekumchuck Dam, Washington, USA.

Thomsonite

ZEOLITE GROUP

\[Ca_{2}NaAl_{4}Al_{4}Si_{3}O_{20} \cdot 6H_2O\]

ORTHORHOMBIC

Properties: C – colorless, white, yellowish, brown-red; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 2.2; H – 5-5.5; CL – good; F – uneven to conchoidal; M – prismatic crystals in clusters with radial structure, botryoidal aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, also as a product of hydrothermal feldspar replacement. Colorless and white acicular crystals, forming radial aggregates up to 50 mm (2 in) in diameter come from Old Kilpatrick, Scotland, UK and West Paterson, New Jersey, USA. Hemispherical aggregates up to 30 mm (1.2 in) across known from Viniceká hora near Kladno, Czech Republic.
Gonnardite

ZEOLITE GROUP

\[(Na_4Ca)_4.8 (Al,Si)_{10}Si_{46}O_{120} \cdot 12H_2O \]

TETRAGONAL

Properties: C – colorless, white, yellowish; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 2.3; H – 4.5-5; CL – good; F – uneven to conchooidal; M – prismatic crystals, fibrous and radial aggregates.

Origin and occurrence: Hydrothermal in cavities and along the cracks in volcanic rocks, associated with calcite and harmotome. Colorless and white prismatic crystals up to 40 mm (1.5 in) across come from Old Kilpatrick, Scotland, UK; Staré Ransko, Staré Ransko, 190 mm, Staré Ransko, Czech Republic.

Edingtonite

ZEOLITE GROUP

\[BaAl_4Si_3O_{10} \cdot 3H_2O \]

TETRAGONAL

Properties: C – white, gray, pinkish; S – white; L – vitreous; D – transparent to translucent; DE – 2.8; H – 4; CL – good; F – uneven to conchooidal; M – prismatic crystals, granular, massive.

Origin and occurrence: Hydrothermal in cavities and along the cracks in volcanic rocks, associated with calcite and harmotome. Colorless and white prismatic crystals up to 40 mm (1.5 in) across come from Old Kilpatrick, Scotland, UK; Staré Ransko, Staré Ransko, 190 mm, Staré Ransko, Czech Republic.
Dachiardite-Ca
ZEOLITE GROUP
(Ca0.5Na,K)Al5Si13O48 . 13 H2O

MONOCLINIC

Properties: C – colorless, white, yellowish; S – white; L – vitreous to pearly; D – transparent to translucent; DE – 2.1; H – 4-4.5; CL – good; F – uneven to conchoidal; M – prismatic crystals and complex interpenetration twins.

Origin and occurrence: Hydrothermal in cavities in granite pegmatites, associated with albite, petalite and elbaite, also as pseudo-morphs after petalite. It occurs in San Piero in Campo, Elba, Italy and in the Opal Hill quarry, Riverside, California, USA.

Ferriellite-Ca
ZEOLITE GROUP
(Ca9Na4K3Mg)Al6Si12O72 . 18 H2O

ORTHORHOMBIC

Properties: C – colorless, white, greenish, pink, brownish; S – white; L – vitreous; D – transparent to translucent; DE – 2.1; H – 3-3.5; CL – good; F – uneven to conchoidal; M – tabular crystals, platy and columnar aggregates, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, along the cracks of the Alpine-type veins and in volcanic tuffs, associated with calcite and other zeolites. Flaty aggregates occur in Svinjaca, Czech Republic; Albero Bosso and Monastir, Sardinia, Italy; Kumploos Lake, British Columbia, Canada.

Laumontite
ZEOLITE GROUP
Ca4Al6Si12O48 . 18 H2O

MONOCLINIC

Properties: C – colorless, white, yellowish, pinkish; S – white; L – vitreous; D – transparent to translucent, weathered almost opaque; DE – 2.4; H – 3-4; CL – good; F – uneven to conchoidal; M – prismatic crystals, fibrous and radial aggregates.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, along the cracks in the Alpine-type veins, in ore veins and sediments, associated with calcite and other zeolites. Colorless and white acicular crystals up to 38 cm (14.2 in) long come from the Pandulena Hill Quarries, India. Crystals up to 150 mm (6 in) long known from Pine Creek, Bishop, California, USA. It was also found in Dillenburg, Germany.

Laumontite, 120 mm, Markowice, Czech Republic
Heulandite-Ca
ZEOLITE GROUP
\((\text{Ca}_{9.5}\text{Sr}_{0.5}\text{Na,K})_{14.5}\text{Al}_2\text{Si}_{27}\text{O}_{72} \cdot 24\text{H}_2\text{O}\)

MONOCLINIC

Properties: C – colorless, white, yellowish, pinkish, red, brown; S – white; L B vitreous to pearly; D – transparent to translucent; DE – 2.1; H – 3.5-4; CL – perfect; F – uneven to conchoidal; M – prismatic to tabular crystals, granular, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, in the Alpine-type fissures, ore veins and sedimentary rocks, usually associated with calcite and other zeolites. Colorless and white tabular crystals up to 100 mm (4 in) across come from Nasik, India; West Paterson, New Jersey, USA; Teigarthorn, Iceland. Red heulandite found in Val di Fassa, Italy.
Clinoptilolite-Ca
ZEOLITE GROUP
(Ca$_{0.5}$Na$_{0.5}$)Al$_5$Si$_{27}$O$_{72}$.24H$_2$O

MONOCLINIC

Properties: C – colorless, white, yellowish, pinkish, red, greenish; S – white; L – vitreous; D – transparent to translucent; DE – 2.2; H – 3.5-4; CL – perfect; F – uneven to conchoidal; M – platy crystals, massive.

Origin and occurrence: Hydrothermal in volcanic-sedimentary rocks. Large industrial deposits occur in New Zealand, Japan and Australia. Crystals come from Agate Beach, Oregon, USA.

Application: construction, chemical industry and agriculture.

Epistilbite
ZEOLITE GROUP
(Ca$_{0.3}$Na$_{0.7}$)Al$_5$Si$_{12}$O$_{42}$.4H$_2$O

MONOCLINIC

Properties: C – colorless, white, yellowish, pinkish, light brown; S – white; L – vitreous; D – transparent to translucent; DE – 2.2; H – 4; CL – good; F – uneven to conchoidal; M – prismatic crystals, radial aggregates.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks; associated with other zeolites. Clear and white tabular crystals and their twigs up to 30 mm (1 1/8 in) across come from Jhalgan, India; also in Teigarhorn, Iceland and Faeroe Islands.

Stilbite-Ca
ZEOLITE GROUP
(Ca$_{0.5}$Na$_{0.5}$)Al$_5$Si$_{27}$O$_{72}$.28H$_2$O

MONOCLINIC

Properties: C – colorless, white, yellowish, pinkish, brown; S – white; L – vitreous, locally pearly; D – transparent to translucent; DE – 2.2; H – 3.5-4; CL – good; F – uneven to conchoidal; M – prismatic and tabular crystals, commonly complicated interpenetration twins and sheet-like aggregates, granular, massive.

Origin and occurrence: Hydrothermal in cavities of volcanic rocks, alongside K-feldspar in ore veins, also in sedimentary rocks and hot springs, typically associated with cultrite and other zeolites. Colorless and white tabular crystals and their combinations up to 200 mm (7 in) across come from the Pandulena Hill Quarries, India. Crystals are also known from Teigarhorn, Iceland; Faeroe Islands; West Paterson, New Jersey, USA and elsewhere.
Gismondine
ZEOlITE GROUP
CaAl₂Si₂O₈ · 4·₃ H₂O

MONOCLINIC

Properties: C — colorless, white, bluish, pinkish; S — white; L — vitreous; D — transparent to translucent; DH — 2·5; H — 4·5; CL — good; F — uneven; M — complex twins of crystals, platy aggregates.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, in hydrothermally altered rocks. It comes from Capo di Bove, Italy; Schiffenbergen, Germany and Dobran, Czech Republic.

Phillipsite-K
ZEOlITE GROUP
(K₉Na₃Ca₀·₅Al₄Si₁₁O₃₂ · 12 H₂O

MONOCLINIC

Properties: C — colorless, white, reddish; S — white; L — vitreous; D — transparent to translucent; DH — 2·2; H — 4·5; CL — good; F — uneven; M — prismatic crystals and complex interpenetration twins, granular, massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, sedimentary rocks and hot springs; associated with calcite and other zeolites. Colorless and white interpenetration twins up to 20 mm (⅜ in) across come from Capo di Bove, Italy; Doughboys, Tasmania, Australia; Soverne near Litomice, Czech Republic and elsewhere.

Harmotome
ZEOlITE GROUP
(B₉₀·₅Ca₉·₅K₉Na₃Al₄Si₁₁O₃₂ · 12 H₂O

MONOCLINIC

Properties: C — colorless, white, gray, reddish, yellow, brown; S — white; L — vitreous; D — transparent to translucent; DH — 2·4; H — 4·5; CL — good; F — uneven; M — prismatic crystals, commonly complex interpenetration twins, granular massive.

Origin and occurrence: Hydrothermal in cavities in volcanic rocks, in the Alpine-type veins, ore veins and in pegmatites. Prismatic crystals and their twins up to 20 mm (⅜ in) across are known from Strontian, Scotland, UK. Crystals also come from St. Andrewsberg and Oberstein, Germany; Kozákov, Czech Republic and Kongsberg, Norway.
Goosecreekite
ZEOLITE GROUP
CaAl₂Si₂O₁₀·5H₂O

MONOCLINIC •

Properties: C – white, colorless; S – white; L – vitreous; D – transparent to translucent; DE – 2.2; H – 4.5; Cl. B perfect; F – uneven to conchoidal; M – prismatic crystals, granular.
Origin and occurrence: Hydrothermal in cavities in volcanic rocks. It is known from Goose Creek, Virginia, USA. Crystals up to 30 mm (1¼ in) across found in the Pandulena Hill quarries, India.

Chabasite-Ca
ZEOLITE GROUP
(Ca₆.₅Na₅K)Al₄Si₅O₂₄·12H₂O

TRIGONAL • • •

Properties: C – colorless, white, yellowish, pinkish, greenish; S – white; L – vitreous to dull; D – transparent to translucent; DE – 2.2; H – 4.5; Cl. – imperfect; F – uneven to conchoidal; M – rhombohedral crystals and their twins, granular, massive.
Origin and occurrence: Hydrothermal in cavities in volcanic rocks and pegmatites, along Alpine-type fissures and in hot springs, usually associated with calcite and other zeolites. Colorless and white interpenetration twins up to 60 mm (24 in) across, come from Faeroe Islands. Crystals are also known from Repice, Czech Republic; Berufjord, Iceland; Panvil, India; Maglovce, Slovakia and elsewhere.

Chabasite-Ca, Passboro, Nova Scotia, Canada
10. Organic compounds

Wheevellite

\[\text{CaC}_2\text{O}_4 \cdot \text{H}_2\text{O} \]

MONOCLINIC

*Properties: C – colorless, white, grayish; S – colorless; L – vitreous; D – transparent to translucent; DE \(-2.2;\ H \sim 2.5;\ CL \sim \text{good}; F \sim\ \text{conchoidal}; M \sim\ \text{prismatic crystals, commonly twinned.}

Origin and occurrence: Rare hydrothermal, mainly sedimentary in coal basins, associated with barite, ankerite and other minerals. Hydrothermal crystals up to 70 mm (2.75 in) long, come from U-bearing veins in PrRban, Czech Republic. Similar crystals, up to 70 mm (2.75 in) long, occurred in Covnic, Romania. Heart-shaped and butterfly twins, up to 100 mm (4 in) found in concretions near Kladno, Czech Republic. Similar specimens are known from Burgk near Dresden, Germany. Interesting flat radial aggregates found along cracks in clays in the vicinity of Most, Czech Republic.

*Amber, 40 mm, Baltic Sea, Latvia
Wheevellite, 27 mm x, Burgk, Germany*
Mellite
\(\text{Al}_2[\text{C}_6(\text{COO})_4] \cdot 18 \text{H}_2\text{O} \)

TETRAGONAL

Properties: C — honey-yellow; S — white; L — resinous to vitreous; D — transparent to translucent; DE — 1.7; H — 2; CL — imperfect; F — conchoidal; M — dipyramidal crystals, granular; LU — blue.

Origin and occurrence: Secondary in the cracks in brown coal and lignite. The best specimens with crystals up to 40 mm (1 1/2 in) in size, come from Csordas-kút near Tatabánya, Hungary. Crystals, up to 10 mm (3/8 in) across, were found in Artern, Germany. Granular aggregates are known from Valáchov, Czech Republic.

Fichtelite
\(\text{C}_{10}\text{H}_{14} \)

MONOCLINIC

Properties: C — colorless to yellowish; S — colorless; L — vitreous; PS — transparent to translucent; DE — 1; H — 1; M — thin tabular crystals, scales, crystalline crusts.

Evenkite
\(\text{C}_{24}\text{H}_{50} \)

MONOCLINIC

Properties: C — colorless to light yellow; S — colorless; L — waxy; D — translucent; DE — 0.9; H — 1; CL — good; M — pseudo-hexagonal tabular crystals; R — melts at 50EC (122°F).

Origin and occurrence: Probably secondary. It occurs within geodes near Evenkii, Siberia, Russia. Also known from the cracks in altered andesite in Dubnik, Slovakia.
Origin and occurrence: Secondary, typical mineral of peat-bogs. Its crystals are known from Borkovice near Sobeslav, Czech Republic; also known from Marktredwitz, Germany.

Amber
a mixture of hydrocarbons

AMORPHOUS ● ● ●

Properties: C – honey-yellow, yellow-brown, brown, red-brown, blue, green, black; S – white; L – resinous, dull; D – transparent to translucent, rare opaque; DE – 1,0-1,1; H – 2-2,5; CL – none; F – conchooidal; M – massive irregular or drop-shaped aggregates, nodules and fragments; LU – light blue, yellow.

Origin and occurrence: Amber is a petrified resin from Tertiary and Mesozoic conifers, occurring rarely in sediments. Plant or insect remnants are sometimes found trapped in amber. The most famous localities are located along the southern coast of the Baltic Sea in Poland, Germany, Lithuania, Estonia, Latvia and Russia. The largest masses found weighed up to 10 kg (22 lb). Blue amber is known from the Dominican Republic. Other amber localities are found in Syria, Lebanon, Thailand, Vietnam, Canada and the USA.

Application: as a gemstone.
11. Rocks, meteorites and tektites

Rocks consist of minerals and often of fragments of other rocks and organic matter. Since rocks are mixtures, we cannot determine certain physical / chemical data (chemical formula, crystal system, hardness, etc.). Unlike minerals, some rocks form huge bodies which may cover several thousand km² so no single localities are shown in this book. Rocks are mainly used for building, in agriculture, and as raw materials for chemicals, ceramics and metals. Rocks are generally divided into three principal groups according to their origin:
1. Igneous rocks
2. Sedimentary rocks
3. Metamorphic rocks.

1. Igneous rocks

Properties: C – light gray, gray, white, brown, black, gray-green, pinkish, red-brown; D – opaque, rare transparent to translucent; L – dull, rare vitreous; DE – varies from 2.6 up to about 3.8; F – uneven, rare conchoidal; M – course to fine grained, commonly massive aggregates, consisting of microscopic or larger grains or crystals of various minerals, up to several decimeters across, glass is also present rarely. Minerals in rocks usually have characteristic texture features, like graphic granite and others.

Origin and classification: Igneous rocks form at high temperature and commonly at high pressure in solidification of mainly silicate magma of variable composition. The mineral composition reflects a chemical composition of magma. Typical rock-forming minerals are quartz, orthoclase, microcline, plagioclase, biotite, muscovite, amphiboles, pyroxenes, olivine and nepheline. Rocks may solidify at various depths, according to which they are either intrusive, dyke or effusive. They can be grouped according to chemical composition (SiO₂ content):
- felsic – granite, syenite, pegmatite, rhyolite, obsidian
- intermediate – diorite, andesite
- basic – gabbro, basalt
- ultrabasic – peridotite, varies from 1.0 up to about 2.8;
- F – uneven, sometimes conchoidal; M – course to fine grained and massive aggregates, consisting of grains or crystals, from microscopic to several dm in size, also of rock fragments and organic matter, banded textures are typical and some rocks are fossiliferous.

Orbicular granite, 150 mm, Sweden
Pegmatite, 65 mm, Dokui Bory, Czech Republic
Granite, 65 mm, Norway
Diabase, 65 mm, Rus‘any, Czech Republic

285
2. Sedimentary rocks

Properties: C – grey, brown, red-brown, black, green-grey, pinkish, white, yellow, often variable even within one rock; banding is typical; D – opaque, rare translucent; L – dull, sometimes vitreous, greasy or earthy; DE - varies from 1.0 up to about 2.8; F - uneven, sometimes conchoidal; M – coarse to fine grained and massive aggregates, consisting of grains or crystals, ranging from microscopic to several dm in size, also of rock fragments and organic matter, banded textures are typical and some rocks are fossiliferous.

Origin and classification: Sedimentary rocks originate under surface temperatures and pressures.

as a result of sedimentation of mineral and rock fragments and organic matter of different size through the water and wind activity, or by precipitation from water solutions. Typical rock-forming minerals are quartz, calcite, dolomite, halite, clay minerals and others. According to their origins we can distinguish several groups of sedimentary rocks: clastic (consisting of rock fragments) – sandstone, conglomerate, quartzite, siltstone, organic (consisting mainly of organic matter) – limestone, coal, chemical (originating by precipitation from water solutions) – evaporites, travertine.
3. Metamorphic rocks

Properties: C – light gray, gray, brown, green, red-brown, black, green-gray, pinkish, white, sometimes variable within one rock, banding is relatively common; D – opaque; L – dull, rare vitreous; DE – varies from 2.5 to 4.8; F – uneven, rare conchoidal; M – coarse to fine-grained, platy, acicular and sometimes massive aggregates, consisting of grains and crystals, ranging from microscopic to several decimeters across. Typical are planar textures and foliation of some minerals.

Origin and classification: Metamorphic rocks originate under higher temperature and pressure during metamorphism of originally igneous or sedimentary rocks. The source of thermal energy could be magma, then this type is called contact metamorphism, or the thermal source lies in the depth of the earth's crust and effects large areas, then this type is called regional metamorphism. During a process of metamorphism new minerals originate. Typical rock-forming metamorphic minerals are quartz, orthoclase, plagioclase, biotite, muscovite, amphiboles, pyroxenes, calcite, dolomite, sillimanite, kyanite, almandine, staurolite and serpentine.

Regionally metamorphosed rocks: serpentine, mica schist, gneiss, marble.

Contact metamorphosed rocks: contact chert (porcelainite), skarn.
Iron meteorite, 50 mm, Sikhote-Alin, Russia

Iron meteorite, 40 mm detail, Gibeon, Namibia

Meteorites

Properties: C - light gray, gray, gray-green, black; D - opaque; L - dull, metallic, rare vitreous; DE - varies from 3.0 to 7.3; E - uneven; M - coarse to fine-grained, sometimes massive aggregates, consisting of irregular grains of different minerals, ranging from microscopic to several cm across.

Origin and classification: Meteorites are igneous rocks formed in space. Most originate in the asteroid belt between Mars and Jupiter. They consist of various minerals and their chemical composition differs greatly. Typical rock-forming minerals in meteorites are olivine, pyroxenes, plagioclases, Fe and Ni alloys and sulfides, rarely also organic matter. Meteorites fall into four main groups, according to metallic iron and silicate component:

- iron meteorite;
- siderolite;
- chondrite;
- achondrite;

Occurrence: Meteorite falls are known throughout the world. The largest known iron meteorite, weighing approximately 60 tons, is located near the Habu farm, Namibia. The largest known chondrite, weighing about 1 ton, fell in 1948 in Norton County, Nebraska, USA. Most meteorites that have been found recently come from large glaciers such as those of Antarctica and from desert in Namibia.
Tekites

Properties: C – light to dark green, yellow-green, brown-green, brown, green-gray, black; D – transparent, translucent to opaque; L – vitreous; DE – varies from 2.3 to 2.6; H – 6-7; F – conchoidal to uneven; M – massive irregular, drop-shaped or disc-shaped aggregates, irregular fragments, sometimes with typical sculptured surface.

Origin, classification and occurrence: Natural glasses, rich in SiO2, which formed as a result of rapid melting of surface rocks during impacts of large meteorites or comets. They are classified according to their age and occurrence (following sequence from the oldest to the youngest):
Redisites and georganites – the USA, Mexico, Barbados, Cuba;
Urengites – Noyyi Urengoi, Russia;
Moldavites – southern Bohemia and western Moravia, Czech Republic;
Ivorites – Ivory Coast;
Irgizites – Zhamanshin, Russia;
Indochinites, philippinites, javanites, billonites – southeastern Asia;
Australites – Australia.
Application: some tektites, mainly moldavites, as gemstones.
Recommended literature

Porceľantie, 85 mm, Komáře, Czech Republic
Agate, 50 mm, Železnice, Czech Republic
Rejstfílk

A
Acantite 23
Actinolite 239
Adamite 154, 161
Adularia 263
Aegirine 235
Aegyptinite 241
Aeoliumite-(Ce) 107
Agalactite 249
Agate 88, 94, 95
Agrellite 243
Aguilarite 24
Akivite 227
Akkinite 36
Ajoite 237
Akermanite 211
Alabandite 34
Albaster 147
Albit 265
Alexandrite 80
Agenderite 19
Albanite-(Ce) 215
Allargemantum 19
Alphahane 259
Almandine 196
Alunite 36
Aluninite 148
Alunohydrocalcite 128
Alunite 140
Alunogen 144
Amazonite 264
Amber 280, 283
Amblygonite 158
Amesite 258
Amethyst 74, 88, 91
Amethyste 271
Amphacite 176
Amphaste 104
Amphibole-(Ce) 128
Andalusite 201
Andersonite 129
Andersonite 266
Andordite 57
Andradite 198
Anglesite 137
Angleite 137
Anhydrite 137
Akenite 117
Amberberite 178
Amnitite 232
Amorite 266
Anhydritll 238
Antigorite 258
Antimonite 14
Antonite 139
Appinite 145
Aquamarine 220
Aragonite 119
Argentite 23
Argyrodite 32
Argyrolite 25
Arsenodolerite 166
Arsenic 14
Arseniosiderite 188
Arsenopyrinite 15
Arsenolite 81
Arsenopyrite 48
Arsenianite 169
Artinite 127
Astrophyllite 248
Atacamite 68
Audestitic 174
Augelite 164
Augite 233
Aurichalcite 123
Aurivillitite 44
Austinite 190
Aventurine 88, 95
Azeite 122

B
Babingtonite 245
Balios 16
Bartie 136, 138
Barytocalcite 121
Bastnastite-(Ce) 124
Bauhinite 89
Bavenite 247
Bayalite 168
Beazite 224
Beaumontite 218
Bevanite 181
Berthierite 52
Bertrandite 212
Beryl 220
Berylloite 155
Berzelianite 21
Berzelite 156
Benjaminite 87
Betekhtinite 57
Bepaladite 153
Bezostite 141
Bifaine 146
Bindheimite 86
Biolite 252
Bismuth 15
Bismuthinite 40
Bismuthite 126
Bixbyte 220, 223
Bixbyte 82
Bolite 69
Boracite 135
Borax 133
Barnite 22
Baromuscovite 250
Bari 16
Batyrogen 148
Bauxite 62
Beaumontite 56
Braunite 206
Brazilianite 167
Breithauptite 53
Brockmanite 129
Brookite 104
Brose 109
Brochantite 179
Buergerite 225
Bukovskytite 185
Butantanite 242

C
cabernet 178
ceufiruit 167
cutavert 42
caledonit 142
carnallit 68
carnotite 191
carron 38
cavanaull 260
celcstina 138
cerussit 120
cind自豪 37
cezula 88
clooskaltli 35
clevelandit 265
clothonite 254
colemait 123
coloradiot 27
cockelt 256
copiapiot 149
croapnou 144
corduroit 224
cornetit 164
cornett 164
cornudallit 192
cosatit 62
covélia 38
crédit 68
cristabulita 96
cromitadl 258
cubanit 31
cuonengit 70
curit 111
cylindrát 37
cyrilovit 187

á
Aurora 243
Arklovit 262
pyrop 196
pyrostitnit 51
pyrrhotin 32

R
rammondsbergit 47
rathita 59
rutil 64
rhodonit 134
riebeckit 241
richeberti 240
rockbridgeit 162
rodezhinit 115
rodovit 245
rosarit 123
roxovit 230
rub 11
rubelit 227, 228
rubin 83
rutul 106
říčentín 88, 90

S
sádovec 147
safflorit 47
safr 82
safrin 204
salbíuk 72
sandakka 119
sansénit 32
sarsavin 263
saposnit 255
sardulys 88
sartovit 59
schorzilí 162
sedimentní horniny 286
schneitnit 224
selafonit 250
selen 17
selenit 147
sensényt 62
senarmontit 81
septilí 256
sevandit 242
serpetinit 114
sferokohaliit 114
scheelit 151
skånerit 114
stilumnit 201
stíra 46
skolesit 273
skorndit 175
skoryl 226
skutnerdít 48
sloníkům kámen 265
smaragd 220
smírk 82
smithsonit 113
sodait 268
sokáliho 88
sperryřít 44
spessartín 197
spinel 76
spodumén 236
starnín 28
strunoví 264
stefanit 54
stimmannit 35
strenbergit 32
stibarsen 14
stibiconit 86
stibiotantalit 167
stolzlí 128
střítna-Ca 277
střítnomelín 255
stříha 152
strungat 174
stromejervit 29
stromčanit 120
strunčit 180
stříbrno 8, 10
strunovit 150
sugilí 231
sylvinít 41
sylvenín 72
symplesite 178

T
tanazit 236
turnovitridit 119
tufrit 195
tukity 289
tullar 37
tufflovit 104
tennanit 28
tenerit 76
terbaránit 41
terzadit 29
thammites 200
thomsonit 273
thulít 216
tilzoniit 219
tirolit 184
tilenit 206
titánovodígnit 106
titulíit 102
topaz 192, 202
torbernit 189
tremolit 239
trikzyt 96
trifilin 155
trilithonit 253
tripilit 160
trocařit 197
tschermágyit 146
tugstapit 289
štampálnit 195
tyfgulí oko 88, 95
tyfuk 182
učnití 133
ulmanit 46
uramant 22
uraniit 168
uramöcnit 190
uramofit 211
svarovit 199
urtit 228

V
valentinit 81
vanádinit 173
variscit 174
vaugnit 189
verdelit 227, 228
vermiculit 255
végnežit 168
vendaváam 217
vendelya 185
vígáš 217
villauerit 79
virkón 201
vivianit 176
václavovc 119

W
wagnerit 159
waždá 187
wavelit 182
wekoganit 126
wekowit 281
whitetalnd (CaFeMg) 186
whitlockit 156
willemit 193
wüsterit 120
wüstenit 153
wüstenkornit 241
wulfenit 153
wurzit 30

X
xantokom 51
xenotém (Y) 157
xenolith 244

Z
zelená 88
žurati 127
zepřit 260
znermit 191
žíkenit 61
žítkit 75
želenová 253
zipsit 150
zirom 199
zolit 11
zolín 236
zwažit 160

i
i leukéz (kvíte) 119
i leczco 12
The Complete Encyclopedia of Minerals is a book for all the people, who are interested in the beautiful world of minerals. They can find here hundreds of photographs of beautiful crystals and crystal aggregates, together with a list of classic and new occurrences for each mineral species. Minerals are arranged into chapters according to the mineral system:

- Elements
- Sulfides
- Halides
- Oxides
- Carbonates
- Borates
- Sulphates
- Phosphates
- Silicates
- Organic compounds
- Rocks, meteorites and tektites