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[Definition 

 

Information is the reduction of uncertainty. Imagine your friend invites you to dinner 

for the first time. When you arrive at the building where he lives you find that you 

have misplaced his apartment number. He lives in a building with 4 floors and 8 

apartments on each floor. If a neighbour passing by tells you that your friend lives on 

the top floor, your uncertainty about where he lives reduces from 32 choices to 8. By 

reducing your uncertainty, the neighbour has conveyed information to you. How can 

we quantify the amount of information? 

 

Information theory is the branch of mathematics that describes how uncertainty 

should be quantified, manipulated and represented. Ever since the fundamental 

premises of information theory were laid down by Claude Shannon in 1949, it has had 

far reaching implications for almost every field of science and technology. 

Information theory has also had an important role in shaping theories of perception, 

cognition, and neural computation. In this article we will cover some of the basic 

concepts in information theory and how they relate to cognitive science and 

neuroscience.
1
 

 

Entropy and Mutual Information 

 

The most fundamental quantity in information theory is entropy (Shannon and 

Weaver, 1949). Shannon borrowed the concept of entropy from thermodynamics 

where it describes the amount of disorder of a system. In information theory, entropy 

                                                
1
 For more advanced textbooks on information theory see Cover and Thomas (1991) 

and MacKay (2001).  

 



Encyclopedia of Cognitive Science—Author Stylesheet 

©Copyright Macmillan Reference Ltd 16 February 2007 Page 2

measures the amount of uncertainty of an unknown or random quantity. The entropy 

of  a random variable X is defined to be: 

)( log )()(
 all

2 xpxpXH
x

= , 

 

where the sum is over all values x that the variable X can take, and p(x) is the 

probability of each of these values occurring. Entropy is measured in bits and can be 

generalised to continuous variables as well, although care must be taken to specify the 

precision level at which we would like to represent the continuous variable. Returning 

to our example, if X is the random variable which describes which apartment your 

friend lives in, initially it can take on 32 values with equal probability p(x)=1/32. 

Since 2log (1/32) = -5, the entropy of X is 5 bits. After the neighbour tells you that he 

lives on the top floor, the probability of X drops to 0 for 24 of the 32 values and 

becomes 1/8 for the other 8 equally probable values. The entropy of X thus drops to 3 

bits (using 00log0 = ). The neighbour has therefore conveyed 2 bits of information to 

you.  

This fundamental definition of entropy as a measure of uncertainty can be derived 

from a small set of axioms. Entropy is the average amount of “surprise” associated 

with set of events. The amount of “surprise” of a particular event x is a function of the 

probability of that event - the less probable an event (e.g. a moose walking down Wall 

Street), the more surprising it is. The amount of surprise of two independent events 

(e.g. the Moose, and a solar eclipse) should be the sum of the amount of surprise of 

each event. These two constraints imply that the surprise of an event is proportional to 

)(log xp= , with the proportionality constant determining what base logarithms are 

taken in (i.e. base 2 for bits). Averaging over all events according to their respective 

probabilities, we get the expression for H(X).  

Entropy in information theory has deep ties to the thermodynamic concept of entropy 

and, as we’ll see, it can be related to the least number of bits it would take on average 

to communicate X from a one location (the sender) to another (the receiver). On the 

one hand, the concepts of entropy and information are universal, in the sense that a bit 

of information can refer to the answer to any Yes/No question where the two options 

are equally probable. A megabyte is a megabyte (the answer to about a million 

Yes/No  questions which can potentially distinguish between 
10000002  possibilities!) 

regardless of whether it is used to encode a picture, music, or large quantities of text. 

On the other hand, entropy is always measured relative to a probability distribution, 

)(xp , and for many situations, it is not possible to consider the “true” probability of 

an event. For example, I may have high uncertainty about the weather tomorrow, but 

the meteorologist might not. This results in different entropies for the same set of 

events, defined relative to the subjective beliefs of the entity whose uncertainty we are 

measuring. This subjective or Bayesian view of probabilities is useful in considering 

how information communicated between different (biological or artificial) agents 

changes their beliefs. 

While entropy is useful in determining the uncertainty in a single variable, it does not 

tell us how much uncertainty we have in one variable given knowledge of another. 

For this we need to define the conditional entropy of X given Y:  
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where )|( yxp  denotes the probability of x given that we have observed y. Building 

on this definition, the mutual information between two variables is the reduction in 

uncertainty in one variable given another variable. Mutual information can be written 

in three different ways: 

),()()()|()()|()();( YXHYHXHXYHYHYXHXHYXI =+=====  

where we see that the mutual information between two variables is symmetric: 

).;();( XYIYXI =  If the random variables X and Y are independent, that is, if the 

probability of their taking on values x and y is )()(),( ypxpyxp = , then they have 

zero mutual information. Similarly, if one can determine X exactly from Y and vice-

versa, the mutual information is equal to the entropy of  either of the two variables. 

Source Coding 

 

Consider the problem of transmitting a sequence of symbols across a communication 

line using a binary representation. We assume that the symbols come from a finite 

alphabet (e.g. letters and punctuation marks of  text, or levels from 0-255 of grey scale 

image patches) and that the communication line is noise-free. We further assume that 

the symbols are produced by a source which emits each symbol x randomly with 

some known probability p(x). How many  bits do we need to transmit per symbol so 

that the receiver can perfectly decode the sequence of symbols?  

If there are N symbols in the alphabet then we could assign a distinct binary string 

(called codeword) of length L to each symbol as long as NL
>2 , suggesting that we 

would need at most 1log2 +N  bits. But we can do much better than this by assigning 

shorter codewords to more probable symbols and longer codewords to less probable 

ones. Shannon’s noiseless source coding theorem states that if the source has 

entropy )(XH  then there exists a decodable prefix code having an average length L 

per symbol such that  

1)()( +<= XHLXH  

Moreover, no uniquely decodable code exists having a smaller average length. In a 

prefix code, no codeword starts with another codeword, so the message can be 

decoded unambiguously as it comes in. This result places a lower bound on how 

many bits are required to compress a sequence of symbols losslessly. A closely 

related concept is  the Kolmogorov complexity of a finite string, defined as the length 

in bits of the shortest program which when run on a universal computer will cause the 

string to be output.  
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Huffman Codes 

 

We can achieve the code length described by Shannon’s noiseless coding theorem 

using a very simple algorithm. The idea is to create a prefix code which uses shorter 

codewords for more frequent symbols and longer codewords for less frequent ones. 

First we combine the two least frequent symbols, summing their frequencies, into a 

new symbol. We do this repeatedly until we only have one symbol. The result is a 

variable depth tree with the original symbols at the leaves. We’ve illustrated this using 

an alphabet of 7 symbols },,,,,,{ koedcba with differing probabilities (Figure 1). The 

codeword for each symbol is the sequences of left (0) and right (1) moves required to 

reach that symbol from the top of the tree. 

Notice that in this example we have 7 symbols, so the naive fixed-length code would 

require 3 bits per symbol ( 7823
== ). The Huffman code (which is variable-length) 

requires on average 2.48 bits; while the entropy gives a lower bound of 2.41 bits. The 

fact that it is a prefix code makes it easy to decode a string symbol by symbol by 

starting from the top of the tree and moving down left or right every time a new bit 

arrives. For example, try decoding: 1010011010010100. 

 

Figure 1: Huffman coding 

If we want to improve on this to get closer to the entropy bound, we can code blocks 

of several symbols at a time. Many practical coding schemes are based on forming 

blocks of symbols and coding each block separately. Using blocks also makes it 

possible to correct for errors introduced by noise in the communication channel.  
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Information Transmission along a Noisy Channel 

 

In the real world, communication channels suffer from noise. When transmitting data 

onto a mobile phone, listening to a person in a crowded room, or playing a DVD 

movie, there are random fluctuations in signal quality, background noise, or disk 

rotation speed, which we cannot control. A channel can be simply characterised by 

the conditional probability of the received symbols given the transmitted symbol: 

)|( trP . This noise limits the information capacity of the channel, which is defined to 

be the maximum over all possible distributions over the transmitted symbols T of the 

mutual information between the transmitted and received symbol, R : 

);(max
)(

RTIC
Tp

= . 

For example, if the symbols are binary and the channel has no noise, then the channel 

capacity is 1 bit per symbol (corresponding to transmitting 0 and 1 with equal 

probability). However, if 10% of the time, a 0 transmitted is received as a 1, and  10% 

of the time a 1 transmitted is received as a 0, then the channel capacity is only 0.53 

bits/symbol.  

This probability of error couldn’t be tolerated in most real applications. Does this 

mean that this channel is unusable? Not if one uses the trick of building redundancy 

into the transmitted signal in the form of an error-correcting code so that the receiver 

can then decode the intended message (Figure 2). One simple scheme is a repetition 

code. For example, encode the symbols by transmitting three repetitions of each; 

decode them my taking blocks of three and outputting the majority vote. This reduces 

the error probability from 10% to 2.7%, at the cost of reducing the rate at which the 

original symbols are transmitted to 1/3. If we want to achieve an error probability 

approaching zero, do we need to transmit at a rate approaching zero? The remarkable 

answer is No,  proven by Shannon in the channel coding theorem. It states that all 

rates below channel capacity are achievable, i.e. that there are codes which transmit at 

that rate and have a maximum probability of error approaching zero. Conversely, if a 

code has probability of error approaching zero, it must have rate less than or channel 

capacity. Unfortunately Shannon’s channel coding theorem does not say how to 

design codes that approach zero error probability near the channel capacity. Of 

course, codes with this property are more sophisticated than the repetition code, and 

finding good error correcting codes that can be decoded in reasonable time is an 

active area of research. Shannon’s result is of immense practical significance since it 

shows us that we can have essentially perfect communication over a noisy channel. 

 

 

Figure 2: A noisy communication channel. 
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Information Theory and Learning Systems 

  

Information theory has played an important role in the study of learning systems. Just 

as information theory deals with quantifying information regardless of its physical 

medium of transmission, learning theory deals with understanding systems that learn 

irrespective of whether they are biological or artificial. Learning systems can be 

broadly categorised by the amount of information they receive from the environment 

in their supervision signal. In unsupervised learning, the goal of the system is to learn 

from sensory data with no supervision. This can be achieved by casting the 

unsupervised learning problem as one of discovering a code for the system’s sensory 

data which is as efficient as possible.  Thus the family of concepts – entropy, 

Kolmogorov complexity, and the general notion of description length – can be used to 

formalise unsupervised learning problems. We know from the source coding theorem 

that the most efficient code for a data source is one that uses )(log2 xp= bits per 

symbol x. Therefore, discovering the optimal coding scheme for a set of sensory data 

is equivalent to the problem of learning what the true probability distribution p(x) of 

the data is. If  at some stage we have an estimate q(x) of this distribution we can use 

this estimate instead of the true probabilities to code the data. However, we incur a 

loss in efficiency measured by the relative entropy between the two probability 

distributions p and q:  

( )=
x xq

xp
xpqpD

 all

2
)(

)(
log)( , 

which is also known as the Kullback-Leibler divergence. This measure is the 

inefficiency in bits of coding messages with respect to a probability distribution q 

instead of the true probability distribution p, and is zero if and only if qp = . Many 

unsupervised learning systems can be designed from the principle of minimising this 

relative entropy. 

Information Theory in Cognitive Science and Neuroscience 

 

The term “information processing system” has often been used to describe the brain. 

Indeed, information theory can be used to understand a variety of functions of the 

brain. We mention a few examples here.  

• In neurophysiological experiments where a sensory stimulus is varied and the 

spiking activity of  a neuron is recorded, mutual information can be used to infer 

what the neuron is coding for. Furthermore, the mutual information for different 

coding schemes can be compared, for example, to test whether the exact spike 

timing is used for information transmission (Rieke, et al. 1999).  

• Information theory has been used to study  both perceptual phenomena (Attneave, 

1954) and the neural substrate of early visual processing (Barlow, 1961). It has 

been argue that the representations found in visual cortex arise from principles of 

redundancy reduction and optimal coding (Olshausen and Field, 1996).  
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• Communication via natural language occurs over a channel with limited capacity.  

Estimates of the entropy of natural language can be used to determine how much 

ambiguity/surprise there is in the next word following a stream of previous words 

giraffe and learning methods based on entropy can be used to model language 

(Berger et al., 1996). 

• Redundant information arrives from multiple sensory sources (e.g. vision and 

audition) and over time (e.g. a series of frames of a movie). Decoding theory can 

be used to determine how this information should be combined optimally and 

whether the human system does so (Ghahramani, 1995).  

• The human movement control system must cope with noise in motor neurons and 

in the muscles. Different ways of coding the motor command result in more or 

less variability in the movement (Harris and Wolpert, 1998).  

Information theory lies at the core of our understanding of computing, 

communication,  knowledge representation, and action. Like in many other fields of 

science, the basic concepts of information theory have played, and will continue to 

play, an important role in cognitive science and neuroscience.  
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