Second Semester 1435/1436

King Saud University College of Engineering Electrical Engineering Dept EE201 Fundamentals of Electric Circuits

TBA

Instructor:

Dr. Nacer A. Debbar, Office: 2C-24/1, <u>debbar@ksu.edu.sa</u> Phone: 467-7818 Dr. Abdulhameed A. Al-Ohaly, Office: 2C-124, <u>aohaly@ksu.edu.sa</u> Phone: 467-76253 Dr. Mamdooh S. Al-Saud, Office: 2C-43, <u>mamdooh@ksu.edu.sa</u> Phone: 467-0592 Dr. Ehab Awad, Office: 2C 91-2, <u>eawad@ksu.edu.sa</u>

Office hours:

Text Book:

"Introductory Circuit Analysis" By Robert L. Boylestad, 12th (or 11th or 10th) Edition, Published by Prentice Hall, 2001.

Course outline:

Торіс	Chapters
Definitions and Laws	1-4
Series/Parallel (DC)	5-8
circuits analysis	
Network Theorems	9
(DC) circuits	
Sinusoidal alternating	13-14
and phasors	
Series/Parallel (AC)	15-17
circuits analysis	
Network Theorems	18
(AC) circuits	
Power (AC)	19
Polyphase Systems	22

Grading Policy:

Mid-Term Exams:	20% + 20%
Home Works + Quizzes	20%
Final Exam	40%

Mid-term Exams:

First mid-term Exam:	Sunday,	5 April 2015
Second Mid-Term Exam:	Sunday,	3 May 2015

Notes:

- 1. All mid-term exams will be performed after Maghreb prayers
- 2. If you miss any mid-term exam, there will be no makeup test for any given reasons
- 3. The only allowed calculator during Mid-term and Final exams is "Casio FX-991ES" or

"Casio FX-991ES Plus".

Attendance Policy:

Attendance will be taken at every lecture. Students with less than 75% attendance will be forbidden from entering the final exam. In addition, all students who are late more than five minutes for the lectures will not be allowed to enter the classroom.

Cheating Policy:

Cheating and plagiarism of any kind will not be tolerated. This includes giving answers as well as taking them. This applies to any course work, tests, quizzes and homework. Each person's answers to an assignment should be his alone and should not be identical to another student's work. Cheating will result in a grade of "F" for all persons involved, if convicted.

Weekly Teaching Plan:

Subjects	Week
Chapter 2- Current and Voltage	2
2.2 Current	
2.3 Voltage	
2.4 Fixed dc supplies	
Chapter 4- Ohm's Law, Power and Energy	
4.1 Ohm's law	
4.3 Power	
Chapter 5- Series Circuit	
5.2 Series circuits	
5.3 Voltage sources in series	
5.4 Kirchhoff's voltage law	
5.5 Voltage divider rule	
5.6 Notation	
Chapter 6- Parallel Circuits	3
6.2 Parallel elements	
6.3 Total conductance and resistance	
6.4 Parallel networks	
6.5 Kirchhoff's current law	
6.6 Current divider rule	
6.7 Voltage sources in parallel	
6.8 Open and short circuits	
Chapter 7- Series- Parallel Networks	4
7.1 Series-Parallel networks	
7.2 Descriptive Examples	
7.3 Ladder networks	

Chapter 8- Methods of Analysis and Selected Topics (dc) 5	5
8.2 Current sources	
8.3 Source conversions	
8.4 Current sources in parallel	
8.5 Current sources in series	
8.7 Mesh analysis (general approach)	
8.8 Mesh analysis (formatted approach)	
Chapter 8- Methods of Analysis and Selected Topics (dc)	6
8.9 Nodal analysis (general approach)	
8.10 Nodal analysis (formatted approach)	
8.11 Bridge network	
8.12 Star- Delta conversions	
Chapter 9- Network Theorems	7
9.2 Superposition theorem	
9.3 Thevenin's theorem	
Chapter 9- Network Theorems	8.9
9 4 Norton's theorem	- ,-
9.5 Maximum power transfer Theorem	
Chapter 13- Sinusoidal Alternating Waveforms	
13.2 AC Voltage Definition	
13.4 General format for the sinusoidal V or I	
13.5 Phase relation	
13.7 Effective value	
Chapter 14- The basic Elements and Phasors	10
14.3 Response of basic R, L, and C elements to a sinusoidal V or I	
14.5 Average power and power factor	
14.6 Complex numbers	
Chapter 14- The basic Elements and Phasors	11
14.1 Rectangular form	
14.2 Polar form	
14.3 Conversion between forms	
14.4 Mathematical operations with complex numbers	
14.5 Phasors	
Chapter 15- Series and Parallel ac Circuits	
15.2 Impedance and the phasor diagram	
15.3 Series configuration	
Chapter 15 Series and Devellel as Circuits	10
Unapter 15- Series and Parallel ac Ulrcuits	12
15.4 voltage divider fule	
15.0 Admittance and susceptance	
15./ Basic elements in parallel ac networks	

15.8 Current divider rule	1
15.9 Equivalent circuits	1
Chapter 16- Series-Parallel ac Networks	1
16.1 Introduction	1
16.2 Illustrative example	1
16.3 Ladder networks	1
Chapter 17- Methods of Analysis and Selected Topics (ac)	13
17.3 Source conversions	l.
17.4 Mesh analysis (formatted approach)	l.
17.5 Nodal analysis (formatted approach)	1
17.6 Bridge networks (ac)	1
17.7 Star-Delta conversions	l.
Chapter 18- Network Theorems	1
Same theorems as in Chapter 9	
Chapter 19- Power (ac)	14
19-3 Apparent Power	1
19-4 Inductive circuit and reactive power (Q)	1
19-5 Capacitive circuit	l.
19-6 The power triangle	1
19-7 The total P, Q, and S	1
19-8 Power factor correction	1
Chapter 22- Polyphase Systems	15
22-2 The three-phase generator	1
22.3 The Y-connected generator	1
22.4 Phase sequence (Y-connected Generator)	1
22.6 The Y- Δ system	1
22.10 Three-phase POWER	