King Saud University College of Engineering Electrical Engineering Dept.

First Semester 1441/1442

EE201 Fundamentals of Electric Circuits

Instructor:

Dr. Nacer A. Debbar, Office: 2C-24/1, debbar@ksu.edu.sa

Phone: 467-7818

Dr. Omar Aldayel, Office: 2C16, omaldayel@ksu.edu.sa

Dr. Anmar Arif, anarif@ksu.edu.sa

Dr. Ali Albishi, Office 2C9, <u>aalbishi@ksu.edu.sa</u> Dr. Tariq Alshawi, Office 2C15, <u>talshawi@ksu.edu.sa</u>

Office hours: TBA

Text Book:

"Introductory Circuit Analysis" By Robert L. Boylestad, 12th (or 11th or 10th) Edition, Published by Prentice Hall, 2001.

Course outline:

Topic	Chapters
Definitions and Laws	1-4
Series/Parallel (DC)	5-8
circuits analysis	
Network Theorems	9
(DC) circuits	
Sinusoidal alternating	13-14
and phasors	
Series/Parallel (AC)	15-17
circuits analysis	
Network Theorems	18
(AC) circuits	
Power (AC)	19

Grading Policy:

Mid-Term Exams: 20% + 20%

Home Works + Quizzes 20% Final Exam 40%

Mid-term Exams:

First mid-term Exam: Sunday, 20 October 2019 Second Mid-Term Exam: Monday, 25 November 2019

Notes:

- 1. All mid-term exams will be performed after Maghreb prayers
- 2. If you miss any mid-term exam, there will be no makeup test for any given reasons

3. The only allowed calculator during Mid-term and Final exams is "Casio FX-991ES" or "Casio FX-991ES Plus".

Attendance Policy:

Attendance will be taken at every lecture. Students with less than 75% attendance will be forbidden from entering the final exam. In addition, all students who are late more than five minutes for the lectures will not be allowed to enter the classroom.

Cheating Policy:

Cheating and plagiarism of any kind will not be tolerated. This includes giving answers as well as taking them. This applies to any course work, tests, quizzes and homework. Each person's answers to an assignment should be his alone and should not be identical to another student's work. Cheating will result in a grade of "F" for all persons involved, if convicted.

Weekly Teaching Plan:

Weekly Teaching Plan:	
Subjects	Week
Chapter 2- Current and Voltage	1
2.2 Current	
2.3 Voltage	
2.4 Fixed dc supplies	
Chapter 4- Ohm's Law, Power and Energy	
4.1 Ohm's law	
4.3 Power	
Chapter 5- Series Circuit	2
5.2 Series circuits	
5.3 Voltage sources in series	
5.4 Kirchhoff's voltage law	
5.5 Voltage divider rule	
5.6 Notation	
Chapter 6- Parallel Circuits	
6.2 Parallel elements	
6.3 Total conductance and resistance	
6.4 Parallel networks	
6.5 Kirchhoff's current law	
6.6 Current divider rule	
6.7 Voltage sources in parallel	
6.8 Open and short circuits	
Chapter 7- Series- Parallel Networks	3
7.1 Series-Parallel networks	
7.2 Descriptive Examples	
7.3 Ladder networks	
Chapter 8- Methods of Analysis and Selected Topics (dc)	4
8.2 Current sources	

0.2.0	
8.3 Source conversions	
8.4 Current sources in parallel	
8.5 Current sources in series	
8.7 Mesh analysis (general approach)	
8.8 Mesh analysis (formatted approach)	
Chapter 8- Methods of Analysis and Selected Topics (dc)	5
8.9 Nodal analysis (general approach)	
8.10 Nodal analysis (formatted approach)	
8.11 Bridge network	
8.12 Star- Delta conversions	
Chapter 9- Network Theorems	6,7
9.2 Superposition theorem	,
9.3 Theyenin's theorem	
9.4 Norton's theorem	
9.5 Maximum power transfer Theorem	
7.5 Waximum power transfer Theorem	
Chapter 13- Sinusoidal Alternating Waveforms	8,9
13.2 AC Voltage Definition	
13.4 General format for the sinusoidal V or I	
13.5 Phase relation	
13.7 Effective value	
Chapter 14- The basic Elements and Phasors	
14.3 Response of basic R, L, and C elements to a sinusoidal V or I	
14.5 Average power and power factor	
14.6 Complex numbers	
14.7 Rectangular form	
14.8 Polar form	
14.9 Conversion between forms	
14.10 Mathematical operations with complex numbers	
14.12 Phasors	
Chapter 15- Series and Parallel ac Circuits	10
15.2 Impedance and the phasor diagram	
15.3 Series configuration	
15.4 Voltage divider rule	
15.6 Admittance and susceptance	
15.7 Basic elements in parallel ac networks	
15.8 Current divider rule	
15.9 Equivalent circuits	
Chapter 16- Series-Parallel ac Networks	
16.1 Introduction	
16.2 Illustrative example	
16.3 Ladder networks	

Chapter 17- Methods of Analysis and Selected Topics (ac)	11,12
17.2 Independent Versus Dependent (Controlled) Sources	
17.3 Source conversions	
17.4 Mesh analysis (formatted approach)	
17.5 Nodal analysis (formatted approach)	
17.6 Bridge networks (ac)	
17.7 Star-Delta conversions	
Chapter 18- Network Theorems	13
Same theorems as in Chapter 9	
Chapter 19- Power (ac)	14,15
19.2 Resistive Circuits	
19.3 Apparent Power	
19.4 Inductive circuit and reactive power (Q)	
19.5 Capacitive circuit	
19.6 The power triangle	
19.7 The total P, Q, and S	
19.8 Power factor correction	