11. ESTIMATION AND CONFIDENCE INTERVALS(Page 33-39)

هذا الجدول سيعطى بالامتحان

Values of Z	
$Z_{0.90}$	$\mathbf{1 . 2 8 5}$
$Z_{0.95}$	$\mathbf{1 . 6 4 5}$
$Z_{0.97}$	$\mathbf{1 . 8 8 5}$
$Z_{0.975}$	$\mathbf{1 . 9 6}$
$Z_{0.98}$	$\mathbf{2 . 0 5 5}$
$Z_{0.99}$	$\mathbf{2 . 3 2 5}$
$Z_{0.995}$	$\mathbf{2 . 5 7 5}$

11.1. Single Mean:

Q1. An electrical firm manufacturing light bulbs that have a length of life that is normally distributed with a standard deviation of 30 hours. A sample of 50 bulbs were selected randomly and found to have an average of 750 hours. Let μ be the population mean of life lengths of all bulbs manufactured by this firm.
(1) Find a point estimate for μ.
(2) Construct a 94% confidence interval for μ.

Solution:

$$
\bar{X}=750, \sigma=30, n=50
$$

(1) Find a point estimate for μ. $=\bar{X}=750$
(2) Construct a 94% confidence interval for μ.

94\% C. I

1) $\alpha=\frac{6}{100}=0.06$
2) $1-\frac{\alpha}{2}=1-\frac{0.06}{2}=0.97$
3) $Z_{1-\frac{\alpha}{2}}=Z_{0.97}=1.885$
4) $\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \quad------\quad 750 \pm 1.885 \frac{30}{\sqrt{50}} \quad$------ 750 ± 7.997

$$
(750-7.997,750+7.997)=(752,757.997)
$$

Q2. Suppose that we are interested in making some statistical inferences about the mean, μ, of a normal population with standard deviation $\sigma=2.0$. Suppose that a random sample of size $n=49$ from this population gave a sample mean $\bar{X}=4.5$.
(1) The distribution of \bar{X} is = Normal(mean , standard deviation)
(A) $\quad \mathrm{N}(0,1)$
(B) $\mathrm{t}(48)$
(C) $\quad \mathrm{N}(\mu, 0.2857)$
(D) $\mathrm{N}(\mu, 2.0)$
(E) $\quad \mathrm{N}(\mu, 0.3333)$
(2) A good point estimate of μ is $=\bar{X}=4.5$
(A) $\quad \underline{4.50}$
(B) 2.00
(C) 2.50
(D) 7.00
(E) 1.125
(3) The standard error of \bar{X} is $=\frac{\sigma}{\sqrt{n}} \quad=\frac{2}{\sqrt{49}}=0.2875$
(A) 0.0816
(B) 2.0
(C) 0.0408
(D) 0.5714
(E) $\quad 0.2857$
(4) A 95% confidence interval for μ is 95\% C.I

1) $\alpha=\frac{5}{100}=0.05$
2) $1-\frac{\alpha}{2}=1-\frac{0.05}{2}=0.975$
3) $Z_{1-\frac{\alpha}{2}}=Z_{0.975}=1.96$
4) $\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ \qquad $4.5 \pm 1.96 \frac{2}{\sqrt{49}}$
------ 4.5 ± 0.56 (error=e=0.56)
(4.5-0.56,
$4.5+0.56)=(3.94,5.06)$
$\begin{array}{llll}\text { (A) }(3.44,5.56) & \text { (B) }(3.34,5.66) & \text { (C) }(3.54,5.46) & \text { (D) }(3.94,5.06)\end{array}$ (E) $(3.04,5.96)$
(5) If the upper confidence limit of a confidence interval is 5.2, then the lower confidence limit is

$$
\begin{aligned}
& \bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}=5.2----4.5+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}=5.2---Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}=5.2-4.5=0.7 \\
& \bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}=4.5-0.7=3.8
\end{aligned}
$$

(A) 3.6
(B) 3.8
(C) 4.0
(D) 3.5
(E) 4.1
(6) The confidence level of the confidence interval ($3.88,5.12$) is
(A) 90.74%
(B) 95.74%
(C) 97.74%
(D) 94.74%
(E) 92.74%
(7) If we use \bar{X} to estimate μ, then we are 95% confident that our estimation error will not exceed
(A) $\mathrm{e}=0.50$
(B) $\mathrm{E}=0.59$
(C) $\mathrm{e}=0.58$
(D) $\mathrm{e}=0.56$
(E) $\mathrm{e}=0.51$
(8) If we want to be 95% confident that the estimation error will not exceed $\mathrm{e}=0.1$ when we use \bar{X} to estimate μ, then the sample size n must be equal to

$$
n=\left(\frac{Z_{1-\frac{\alpha}{2}} \cdot \sigma}{e}\right)^{2}=\left(\frac{1.96 x 2}{0.1}\right)^{2}=1536.6=1537
$$

(A) 1529
(B) 1531
(C) $\underline{1537}$
(D) 1534
(E) 1530

Q3. The following measurements were recorded for lifetime, in years, of certain type of machine: $3.4,4.8,3.6,3.3,5.6,3.7,4.4,5.2$, and 4.8 . Assuming that the measurements represent a random sample from a normal population, then a 99% confidence interval for the mean life time of the machine is
$99 \% C . I, \bar{X}=4.31, S=0.842$ (σ unknown),$d f=n-1=8$

1) $\alpha=\frac{1}{100}=0.01$
2) $\left.1-\frac{\alpha}{2}=1-\frac{0.01}{2}=0.995 \quad 3\right) t_{1-\frac{\alpha}{2}}=t_{0.995}=3.355$
3) $\bar{X} \pm t_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}----4.31 \pm 3.355 \frac{0.842}{\sqrt{9}}$ $4.31 \pm 0.942 \quad($ error $=\mathrm{e}=0.942)$
$(4.31-0.942, \quad 4.31+0.942)=(3.37,5.25)$
(A) $-5.37 \leq \mu \leq 3.25$
(B) $\quad 4.72 \leq \mu \leq 9.1$
(C) $\quad 4.01 \leq \mu \leq 5.99$
(D) $\quad 3.37 \leq \mu \leq 5.25$
(H.W)Q4. A researcher wants to estimate the mean lifespan of a certain light bulbs. Suppose that the distribution is normal with standard deviation of 5 hours.
1. Determine the sample size needed on order that the researcher will be 90% confident that the error will not exceed 2 hours when he uses the sample mean as a point estimate for the true mean.
2. Suppose that the researcher selected a random sample of 49 bulbs and found that the sample mean is 390 hours.
(i) Find a good point estimate for the true mean μ.
(ii) Find a 95% confidence interval for the true mean μ.

Q5. The amount of time that customers using ATM (Automatic Teller Machine) is a random variable with a standard deviation of 1.4 minutes. If we wish to estimate the population mean μ by the sample mean \bar{X}, and if we want to be 96% confident that the sample mean will be within 0.3 minutes of the population mean, then the sample size needed is

$$
\begin{aligned}
& \alpha=\mathbf{0 . 0 4}, Z_{1-\frac{\alpha}{2}}=Z_{0.98=} \mathbf{2 . 0 5 5}, n=\left(\frac{Z_{1-\frac{\alpha}{2}} \sigma}{e}\right)^{2}=\left(\frac{2.055 x 1.4}{0.1}\right)^{2}=91.96=92 \\
& \begin{array}{llll}
\text { (A) } 98 & \text { (B) } 100 & \text { (C) } \underline{92} & \text { (D) } 85
\end{array}
\end{aligned}
$$

(H.W)Q6: A random sample of size $\mathrm{n}=36$ from a normal quantitative population produced a mean $\bar{X}=15.2$ and a variance $S^{2}=9$.
(a) Give a point estimate for the population mean μ.([Answer :($\overline{\boldsymbol{X}}=15.2]$
(b) Find $\mathrm{a} 95 \%$ confidence interval for the population mean μ.[Answer:(14.22,16.18)]

Q7. A group of 10 college students were asked to report the number of hours that they spent doing their homework during the previous weekend and the following results were obtained:

$$
7.25,8.5,5.0,6.75,8.0,5.25,10.5,8.5,6.75,9.25
$$

It is assumed that this sample is a random sample from a normal distribution with unknown variance σ^{2}. Let μ be the mean of the number of hours that the college student spend doing his/her homework during the weekend.
(a) Find the sample mean and the sample variance.
, $\bar{X}=7.575, S=1.724$ (σ unknown)
(b) Find a point estimate for μ $\bar{X}=7.575$
(c) Construct a 80% confidence interval for μ.

80\% C.I , $\bar{X}=7.575, S=1.724$ (σ unknown),$d f=n-1=9$
$\begin{array}{ll}\text { 1) } \alpha=\frac{20}{100}=0.20 & \text { 2) } 1-\frac{\alpha}{2}=1-\frac{0.20}{2}=0.90 \\ \text { 3) } t_{1-\frac{\alpha}{2}}=t_{0.90}=1.383\end{array}$
4) $\bar{X} \pm t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \quad----\quad 7.575 \pm 1.383 \frac{1.724}{\sqrt{10}} \quad-----\quad 7.575 \pm 0.754$ (error=e=0.754)

$$
(7.575-0.754, \quad 7.575+0.754)=(6.821,8.329)
$$

(H.W)Q8. An electronics company wanted to estimate its monthly operating expenses in thousands riyals (μ). It is assumed that the monthly operating expenses (in thousands riyals) are distributed according to a normal distribution with variance $\sigma^{2}=0.584$.
(I) Suppose that a random sample of 49 months produced a sample mean $\bar{X}=5.47$.
(a) Find a point estimate for $\mu_{0}[$ Answer : $\bar{X}=5.47]$
(b) Find the standard error of $\overline{\mathrm{X}} .[$ Answer : 0.109]
(c) Find a 90% confidence interval for μ.[Answer :(5.29,5.649)
(II) Suppose that they want to estimate μ by $\overline{\mathrm{X}}$. Find the sample size (n) required if they want their estimate to be within 0.15 of the actual mean with probability equals to 0.95. [Answer :($\mathbf{n}=71$)]

Q9. The tensile strength of a certain type of thread is approximately normally distributed with standard deviation of 6.8 kilograms. A sample of 20 pieces of the thread has an average tensile strength of 72.8 kilograms. Then,
(a) A point estimate of the population mean of the tensile strength (μ) is: $\bar{X}=72.8$
(A) 72.8
(B) 20
(C) 6.8
(D) 46.24
(E) None of these
(b) Suppose that we want to estimate the population mean (μ) by the sample mean (\bar{X}). To be 95% confident that the error of our estimate of the mean of tensile strength will be less than 3.4 kilograms, the minimum sample size should be at least:
$\alpha=0.05, Z_{1-\frac{\alpha}{2}}=Z_{0.975=1.96}, n=\left(\frac{Z_{1-\frac{\alpha}{2} \cdot} \sigma}{e}\right)^{2}=\left(\frac{1.96 x 6.8}{3.4}\right)^{2}=15.367=16$
(A) 4
(B) 16
(C) 20
(D) 18
(E) None of these
(c) For a 98% confidence interval for the mean of tensile strength, we have the lower bound equal to:
$\begin{array}{ll}\text { 1) } \alpha=\frac{2}{100}=0.02 & \text { 2) } 1-\frac{\alpha}{2}=1-\frac{0.02}{2}=0.99 \\ \text { 3) } Z_{1-\frac{\alpha}{2}}=Z_{0.99}=2.325\end{array}$ 4) $\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}-----72.8 \pm 2.325 \frac{6.8}{\sqrt{20}} \quad------72.8 \pm 3.535 \quad$ (error $=\mathrm{e}=3.535$) $(72.8-3.535,72.8+3.535)=(69.264,76.335)$
(A) 68.45
(B) 69.26
(C) 71.44
(D) 69.68
(E) None of these
(d) For a 98% confidence interval for the mean of tensile strength, we have the upper bound equal to:
(A) 74.16
(B) 77.15
(C) 75.92
(D) 76.34
(E) None of these
(H.W)9.2 An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours. If a sample of 30 bulbs has an average life of 780 hours, find a 96% confidence interval for the population mean of all bulbs produced by this firm .(Answer.(764.99,795.01)]
(H.W)9.6 How large a sample is needed in Exercise 9.2 if we wish to be 96% confident that our sample mean will be within 10 hours of the true mean? (Answer : $\mathrm{n}=68$)
(H.W) 9.4 The heights of a random sample of 50 college students showed a mean of 174.5 centimeters and a standard deviation of 6.9 centimeters.
(a) Construct a 95% confidence interval for the mean height of all college students. : Answer:($145.587,149.413)$
(b) What can we assert with 95% confidence about the possible size of our error to be 0.15 if we estimate the mean height of all college students to be 174.5 centimeters?

Answer : $\mathrm{n}=8129$)

11.2. Two Means:

Q1.(I) The tensile strength of type I thread is approximately normally distributed with standard deviation of 6.8 kilograms. A sample of 20 pieces of the thread has an average tensile strength of 72.8 kilograms. Then,(As Q9-Page34)

1) To be 95% confident that the error of estimating the mean of tensile strength by the sample mean will be less than 3.4 kilograms, the minimum sample size should be:
(A) 4
(B) 16
(C) 20
(D) 18
(E) None of these
2) The lower limit of a 98% confidence interval for the mean of tensile strength is
(A) 68.45
(B) 69.26
(C) 71.44
(D) 69.68
(E) None of these
3) The upper limit of a 98% confidence interval for the mean of tensile strength is
(A) 74.16
(B) 77.15
(C) 75.92
(D) 76.34
(E) None of these

Q1.(II). The tensile strength of type II thread is approximately normally distributed with standard deviation of 6.8 kilograms. A sample of 25 pieces of the thread has an average tensile strength of 64.4 kilograms. Then for the 98% confidence interval of the difference in tensile strength means between type I and type II, we have:
1)the lower bound equals to:
$\begin{array}{ll}\text { 1) } \alpha=\frac{2}{100}=0.02 & \text { 2) } 1-\frac{\alpha}{2}=1-\frac{0.02}{2}=0.99 \\ \text { 3) } Z_{1-\frac{\alpha}{2}}=Z_{0.99}=2.325\end{array}$
4) $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}-\cdots-(72.8-64.4) \pm 2.325 \sqrt{\frac{6.8^{2}}{20}+\frac{6.8^{2}}{25}} \quad-$
$8.4 \pm 4.743 \quad$ (error $=\mathrm{e}=4.743$)

$$
(8.4-4.743,8.4+4.743)=(3.657,13.143)
$$

(A) 2.90
(B) 4.21
(C) 3.65
(D) 6.58
(E) None of these
2) the upper bound equals to:
(A) 13.90
(B) 13.15
(C) 12.59
(D) 10.22
(E) None of these

Q2. Two random samples were independently selected from two normal populations with equal variances. The results are summarized as follows.

	First Sample	Second Sample
sample size (n)	12	14
sample mean $(\overline{\mathrm{X}})$	10.5	10.0
sample variance $\left(\mathrm{S}^{2}\right)$	4	5

Let μ_{1} and μ_{2} be the true means of the first and second populations, respectively.

1. Find a point estimate for $\mu_{1}-\mu_{2}$..

$$
\bar{X}_{1}-\dot{\bar{X}}_{2}=10.5-10=0.5
$$

2. Find 95% confidence interval for $\mu_{1}-\mu_{2}$.
1) $\alpha=\frac{5}{100}=0.05$

$$
\begin{aligned}
& 5 \quad \text { 2) } 1-\frac{\alpha}{2}=1-\frac{0.05}{2}=0.975 \quad \text { 3) } t_{1-\frac{\alpha}{2}}=t_{0.975}=2.064 \\
& d f=n_{1}+n_{12}-2=12+14-2=24
\end{aligned}
$$

Pooled variance : $S_{P}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{12}-2}=\frac{11 x 4+13 x 5}{12+14-2}=4.5417$
4) $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{1-\frac{\alpha}{2}} S_{P} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}-(10.5-10) \pm 2.064 . \sqrt{4.5417} \cdot \sqrt{\frac{1}{12}+\frac{1}{14}} \quad-$

$$
0.5 \pm \mathbf{1 . 7 3 0 4} \quad(\text { error }=\mathbf{e}=\mathbf{1 . 7 3 0 4})
$$

$$
(0.5-\mathbf{1} .7304,0.5+\mathbf{1} .7304)=(-1.2304,2.2304)
$$

Q3. A researcher was interested in comparing the mean score of female students, μ_{f}, with the mean score of male students, μ_{m}, in a certain test. Two independent samples gave the following results:

Sample	Observations				mean	Variance			
Scores of Females	89.2	81.6	79.6	80.0	82.8			82.63	15.05
Scores of Males	83.2	83.2	84.8	81.4	78.6	71.5	77.6	80.04	20.79

Assume the populations are normal with equal variances.
(1) The pooled estimate of the variance S_{p}^{2} is

$$
S_{P}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{12}-2}=\frac{4 \times 15.05+6 \times 20.79}{5+7-2}=18.494
$$

(A) 17.994
(B) 17.794
(C) 18.094
(D) 18.294
(E) $\quad \underline{18.494}$
(2) A point estimate of $\mu_{f}-\mu_{m}$ is $\bar{X}_{1}-\bar{X}_{2}=82.63-80.04=2.59$
(A) 2.63
(B) -2.59
(C) $\quad \underline{2.59}$
(D) 0.00
(E) 0.59
(3) The lower limit of a 90% confidence interval for $\mu_{f}-\mu_{m}$ is

$$
\begin{gathered}
\text { 1) } \alpha=\frac{10}{100}=0.10 \\
\text { 2) } \left.1-\frac{\alpha}{2}=1-\frac{0.10}{2}=0.95 \quad 3\right) t_{1-\frac{\alpha}{2}}=t_{0.95}=1.812 \\
d f=n_{1}+n_{12}-2=5+7-2=10
\end{gathered}
$$

4) $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{1-\frac{\alpha}{2}} . S_{P} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}--(82.63-80.04) \pm 1.812 . \sqrt{18.494} \cdot \sqrt{\frac{1}{5}+\frac{1}{7}}$

$$
2.59 \pm 4.563 \quad(\text { error }=e=4.563)
$$

$$
(2.59-4.563,2.59+4.563)=(1.973,7.153)
$$

(A) $\quad-1.97$
(B) -1.67
(C) $\quad \underline{1.97}$
(D) 1.67
(E) $\quad-1.57$
(4) The upper limit of a 90% confidence interval for $\mu_{f}-\mu_{m}$ is
(A) 6.95
(B) 7.45
(C) $\quad-7.55$
(D) 7.15
(E) 7.55
(H.W)Q4. A study was conducted to compare to brands of tires A and B. 10 tires of brand A and 12 tires of brand B were selected randomly. The tires were run until they wear out. The results are:

$$
\begin{array}{lll}
\text { Brand A: } & \bar{X}_{\mathrm{A}}=37000 \text { kilometers } & \mathrm{S}_{\mathrm{A}}=5100 \\
\text { Brand B: } & \bar{X}_{\mathrm{B}}=38000 \text { kilometers } & \mathrm{S}_{\mathrm{B}}=6000
\end{array}
$$

Assuming the populations are normally distributed with equal variances,
(1) Find a point estimate for $\mu_{\mathrm{A}}-\mu_{\mathrm{B}}$. (Answer $=-1000$)
(2)Construct a 90% confidence interval for $\mu_{\mathrm{A}}-\mu_{\mathrm{B}}$. (Answer : $\boldsymbol{S}_{P}^{2}=\mathbf{3 2 8 0 5 0 0 0}$, $t_{0.95}=1.725(\mathbf{d f}=20)$)
(H.W) Q5. The following data show the number of defects of code of particular type of software program made in two different countries (assuming normal populations with unknown equal variances)

Country	observations						mean	standard dev.	
A	48	39	42	52	40	48	54	46.143	5.900
B	50	40	43	45	50	38	36	43.143	5.551

(a) A point estimate of $\mu_{A}-\mu_{B}$ is
(A) 3.0
(B) -3.0
(C) 2.0
(D) -2.0
(E) None of these
(b) A 90% confidence interval for the difference between the two population mean
$\mu_{A}-\mu_{B}$ is $\quad\left(\right.$ Answer : $\left.S_{P}^{2}=32.811, t_{0.95}=1.782(\mathrm{df}=12)\right)$
(A) $-2.46 \leq \mu_{A}-\mu_{B} \leq 8.46$
(B) $1.42 \leq \mu_{A}-\mu_{B} \leq 6.42$
(C) $-1.42 \leq \mu_{A}-\mu_{B} \leq-0.42$
(D) $2.42 \leq \mu_{A}-\mu_{B} \leq 10.42$
(H.W) Q6. A study was made by a taxi company to decide whether the use of new tires (A) instead of the present tires (B) improves fuel economy. Six cars were equipped with tires (A) and driven over a prescribed test course. Without changing drivers and cares, test course was made with tires (B). The gasoline consumption, in kilometers per liter (km / L), was recorded as follows: (assume the populations are normal with equal unknown variances)

Car	1	2	3	4	5	6
Type (A)	4.5	4.8	6.6	7.0	6.7	4.6
Type (B)	3.9	4.9	6.2	6.5	6.8	4.1

A 95\% confidence interval for the true mean gasoline consumption for brand A
(a) is:
(A) $4.462 \leq \mu_{A} \leq 6.938$
(B) $2.642 \leq \mu_{A} \leq 4.930$
(C) $5.2 \leq \mu_{A} \leq 9.7$
(D) $6.154 \leq \mu_{A} \leq 6.938$

A 99% confidence interval for the difference between the true means
(b) consumption of type (A) and type (B) ($\left.\mu_{A}-\mu_{B}\right)$ is:
(A) $-1.939 \leq \mu_{A}-\mu_{B} \leq 2.539$
(B) $-2.939 \leq \mu_{A}-\mu_{B} \leq 1.539$
(C) $0.939 \leq \mu_{A}-\mu_{B} \leq 1.539$
(D) $-1.939 \leq \mu_{A}-\mu_{B} \leq 0.539$
(H.W) Q7. A geologist collected 20 different ore samples, all of the same weight, and randomly divided them into two groups. The titanium contents of the samples, found using two different methods, are listed in the table:

Method (A)				Method (B)				
1.1	1.3	1.3	1.5	1.4	1.1	1.6	1.3	1.2
1.5								
1.3	1.0	1.3	1.1	1.2	1.2	1.7	1.3	1.4
\bar{X}_{1}	1.5	\bar{X}_{1}	$S_{1}=0.1509$	$\bar{X}_{2}=1.38$,	$S_{2}=0.1932$			

(a) Find a point estimate of $\mu_{A}-\mu_{B}$ is
(b) Find a 90% confidence interval for the difference between the two population means $\mu_{A}-\mu_{B}$. (Assume two normal populations with equal variances).

From book:

9.35 A random sample of size $n_{1}=25$, taken from a normal population with a standard deviation $\sigma_{1}=5$, has a mean $\overline{X_{1}}=80$. A second random sample of size $n_{2}=36$, taken from a different normal population with a standard deviation $\sigma_{2}=3$, has a mean $\overline{X_{2}}=75$. Find a 95% confidence interval for $\mu_{1}-\mu_{2}$.
$\begin{array}{lll}\text { 1) } \alpha=\frac{5}{100}=0.05 & \text { 2) } 1-\frac{\alpha}{2}=1-\frac{0.05}{2}=0.975 & \text { 3) } Z_{1-\frac{\alpha}{2}}=Z_{0.975}=1.96\end{array}$
4) $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}-\cdots-(80-75) \pm 1.96 \sqrt{\frac{25}{25}+\frac{9}{36}} \quad-$
$5 \pm 2.1913 \quad$ (error= $\mathrm{e}=2.1913$

$$
(5-2.1913,5+2.1913)=(2.8087,7.1913)
$$

(H.W) 9.41 The following data represent the length of time, in days, to recovery for patients randomly treated with one of two medications to clear up severe bladder infections:

Medication1	Medication2
$. \mathbf{n}_{1}=14$	$. \mathbf{n}_{2}=16$
$\bar{X}_{1}=17$	$\bar{X}_{2}=19$
$S_{1}^{2}=1.5$	$S_{2}^{2}=1.8$

Find a 99% confidence interval for the difference $\mu_{2}-\mu_{1}$ in the mean recovery times for the two medications, assuming normal populations with equal variances.
(Answer : $S_{P}^{2}=1.661, t_{0.995}=2.763(\mathrm{df}=28)$)
99% confident interval is ($-3.303,-0.6968$)

H.W: 9.36, 9.43

11.3. Single Proportion:

Q1. A random sample of 200 students from a certain school showed that 15 students smoke. Let p be the proportion of smokers in the school.
$. \mathrm{n}=200, \widehat{P}=\frac{15}{200}=0.075, \widehat{q}=1-p=0.925$

1. Find a point Estimate for p. $\widehat{\boldsymbol{P}}=\frac{15}{200}=\mathbf{0 . 0 7 5}$
2. Find 95% confidence interval for p .
95\% C.I
1) $\alpha=\frac{5}{100}=0.05$
2) $1-\frac{\alpha}{2}=1-\frac{0.05}{2}=0.975 \quad$ 3) $Z_{1-\frac{\alpha}{2}}=Z_{0.975}=1.96$
3) $\widehat{P} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p} \hat{q}}{n}}$ -------
$0.075 \pm 1.96 \sqrt{\frac{0.075 \times 0.925}{200}}$
0.075 ± 0.0365

$$
(0.075-0.0365,0.075+0.0365)=(0.0385,0.1115)
$$

Q2. A researcher was interested in making some statistical inferences about the proportion of females (p) among the students of a certain university. A random sample of 500 students showed that 150 students are female.
(1) A good point estimate for p is $=\widehat{\boldsymbol{P}}=\frac{\mathbf{1 5 0}}{\mathbf{5 0 0}}=\mathbf{0} .3$
(A) 0.31
(B) $\quad 0.30$
(C) 0.29
(D) 0.25
(E) 0.27
(2) The lower limit of a 90% confidence interval for p is
90\% C.I

1) $\alpha=\frac{10}{100}=0.05$
2) $\left.1-\frac{\alpha}{2}=1-\frac{0.10}{2}=0.95 \quad 3\right) Z_{1-\frac{\alpha}{2}}=Z_{0.95}=1.645$
3) $\widehat{P} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p} \widehat{q}}{n}}$

$0.3 \pm 1.645 \sqrt{\frac{0.3 \times 0.7}{500}}$ -----0.3 ± 0.0337

$$
(0.3-0.0337,0.3+0.0337)=(0.2663,0.3337)
$$

(A) 0.2363
(B) 0.2463
(C) 0.2963
(D) 0.2063
(E) $\quad \underline{0.2663}$
(3) The upper limit of a 90% confidence interval for p is
(A) $\quad \underline{0.3337}$
(B) 0.3137
(C) 0.3637
(D) 0.2937
(E) 0.3537
(H.W)Q3. In a random sample of 500 homes in a certain city, it is found that 114 are heated by oil. Let p be the proportion of homes in this city that are heated by oil.

1) Find a point estimate for p.(Answer: $\widehat{\boldsymbol{P}}=\frac{\mathbf{1 1 4}}{500}=\mathbf{0 . 2 2 8}$)
2) Construct a 98% confidence interval for p.(Answer ($0.1656, \mathbf{0 . 2 9 0 4}$)
(H.W)Q4. In a study involved 1200 car drivers, it was found that 50 car drivers do not use seat belt.
(1) A point estimate for the proportion of car drivers who do not use seat belt is:
(A) $50 \quad$ (B) 0.0417
(C) 0.9583
(D) 1150
(E) None of these
(2) The lower limit of a 95% confidence interval of the proportion of car drivers not using seat belt is
(A) 0.0322
(B) 0.0416
(C) 0.0304
(D) -0.3500
(E) None of these
(3) The upper limit of a 95% confidence interval of the proportion of car drivers not using seat belt is
(A) 0.0417
(B) 0.0530
(C) 0.0512
(D) 0.4333
(E) None of these
(H.W)Q5. A study was conducted to make some inferences about the proportion of female employees (p) in a certain hospital. A random sample gave the following data:

Sample size	250
Number of females	120

(a) Calculate a point estimate ($\hat{\mathrm{p}}$) for the proportion of female employees (p).

Answer: $\widehat{\boldsymbol{P}}=\frac{\mathbf{1 2 0}}{\mathbf{2 5 0}}=\mathbf{0 . 4 8}$
(b) Construct a 90% confidence interval for p . Answer: (0.4280,0.53197)

مكرر/ ملغي Q6. In a certain city, the traffic police was interested in knowing the proportion of car drivers who do not use seat built. In a study involved 1200 car drivers it was found that 50 car drivers do not use seat belt.

From book :

(H.W)9.51 In a random sample of 1000 homes in a certain city, it is found that 228 are heated by oil. Find 99% confidence intervals for the proportion of homes in this city that are heated by oil using both methods presented on page 297.
(Answer: $\widehat{P} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p} \widehat{q}}{n}}=0.228 \pm 2.575 \sqrt{\frac{0.228 \times 0.772}{1000}}=(\mathbf{0 . 1 9 3 8}, \mathbf{0 . 2 6 2 2})$
(H.W)9.56 A geneticist is interested in the proportion of African males who have a certain minor blood disorder. In a random sample of 100 African males, 24 are found to be afflicted.
(a) Compute a 99% confidence interval for the proportion of African males who have this blood disorder.
(Answer: $\widehat{P} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p} \widehat{q}}{n}}=0.24 \pm 2.575 \sqrt{\frac{0.24 \times 0.76}{100}}=(\mathbf{0 . 1 3 0}, 0.3499)$
(b) What can we assert with 99% confidence about the possible size of our error if we estimate the proportion of African males with this blood disorder to be 0.24
(Answer: error $=e=Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\widehat{p} \widehat{q}}{n}}=2.575 \sqrt{\frac{0.24 \times 0.76}{100}}=0.10997$

H.W: 9.58, 9.59

