Second Midterm Exam

Thursday, December 14, 2017	Math 473	Academic year 1438-39H
$1: 00-2: 30 \mathrm{pm}$	Introduction to Differential	
Geometry	First Semester	

Student's Name		
ID number		
Section No.		
Classroom No.	Dr Nasser Bin Turki	
Teacher's Name		
Roll Number		

Instructions:

- Your student identity card must be visible on your desk during the entire examination

1. Let $\alpha: I \mapsto \mathbb{R}^{3}$ be unit speed curve whose torsion $\tau(t)=c$, where c is constant. Show that the curve α is Bertrand curve.
2. Let $\alpha:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \mapsto \mathbb{R}^{2}$ be a curve given by $\alpha(t)=(2 t+\sin 2 t, 1+\cos 2 t)$, where $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Find the involute curve of α.
3.

Let $X(u, v)=\left(u+v, u-v, \frac{u^{2}+v^{2}}{2}\right)$.
(a) Show that X defines a regular surface patch.
(b) Calculate the coefficients E, F, G of the first fundamental form for this surface.
(c) Write down an integral which gives the length of the curve $\gamma_{1}(t)=X(t, 1)$ on this surface from $t=1$ to $t=2$. You do not need to evaluate this integral.
(d) Is X true map. Why.
(e) Calculate the coefficients e, f, g of the second fundamental form for this surface.
[10 marks]
4. For the surface $X: \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ given by $X(u, v)=\left(u, v, u^{2}+v^{2}\right)$. Let $\alpha(t)=X(\cos t, \sin t)$ be a curve on the surface X. Find a unit normal vector to the surface X at a point $X(u, v)$. Find the geodesic curvature κ_{g}, normal curvature κ_{n} and geodesic torsion κ_{t} ? Is $\alpha(t)$ principal curve? Why?

