

Second Midterm Exam

Thursday, December 14, 2017	Math 473	Academic year 1438-39H
1:00 - 2:30 pm	Introduction to Differential Geometry	First Semester

Student's Name		
ID number		
Section No.		
Classroom No.		
Teacher's Name	Dr Nasser Bin Turki	
Roll Number		

25

Instructions:

- Your student identity card must be visible on your desk during the entire examination
- 1. Let $\alpha: I \mapsto \mathbb{R}^3$ be unit speed curve whose torsion $\tau(t) = c$, where c is constant. Show that the curve α is Bertrand curve. [3 marks]
- 2. Let $\alpha: (-\frac{\pi}{2}, \frac{\pi}{2}) \mapsto \mathbb{R}^2$ be a curve given by $\alpha(t) = (2t + \sin 2t, 1 + \cos 2t)$, where $t \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Find the involute curve of α .
 - 3. Let $X(u, v) = \left(u + v, u v, \frac{u^2 + v^2}{2}\right)$.
- (a) Show that X defines a regular surface patch.
- (b) Calculate the coefficients E, F, G of the first fundamental form for this surface.
- (c) Write down an integral which gives the length of the curve $\gamma_1(t) = X(t, 1)$ on this surface from t = 1 to t = 2. You do not need to evaluate this integral.
- (d) Is X true map. Why.
- (e) Calculate the coefficients e, f, g of the second fundamental form for this surface.

[10 marks]

4. For the surface $X : \mathbb{R}^2 \to \mathbb{R}^3$ given by $X(u,v) = (u,v,u^2+v^2)$. Let $\alpha(t) = X(\cos t,\sin t)$ be a curve on the surface X. Find a unit normal vector to the surface X at a point X(u,v). Find the geodesic curvature κ_g , normal curvature κ_n and geodesic torsion κ_t ? Is $\alpha(t)$ principal curve? **Why**?

[9 marks]