First Midterm Exam

Thursday, November 2, 2017	Math 473	Academic year 1438-39H
$1: 00-2: 30 \mathrm{pm}$	Introduction to Differential Geometry	First Semester

Student's Name		
ID number		
Section No.		
Classroom No.	Dr Nasser Bin Turki	
Teacher's Name		
Roll Number		

Instructions:

- Your student identity card must be visible on your desk during the entire examination.

1. Let $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}$ be given by

$$
\alpha(t)=\left(\frac{\sqrt{2}}{3} t^{3}, t^{2}+2 t, t^{2}-2 t\right)
$$

(a) Compute the Velocity and the speed of α. Show that α is a regular space curve.
(b) Compute the unit tangent T.
(c) Compute the vector $\alpha^{\prime} \times \alpha^{\prime \prime}$.
(d) Compute the unit binormal B.
(e) Compute the curvature κ and the torsion τ of α. Show that the curvature κ and the torsion τ of the curve α coincide: $\kappa(t)=\tau(t)$ for all $t \in \mathbb{R}$.
(f) Find the Serret-Frenet basis (Frame) of α.
2. Let $\alpha: I \mapsto \mathbb{R}^{3}$ be given by

$$
\alpha(t)=\left(e^{t} \cos t, e^{t} \sin t, e^{t}\right)
$$

(a) Reparametrise the curve α by arc-length.
(b) Find the equation of the Normal plane of α at $\alpha(0)$.
3. Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a regular parametrised space curve with $\kappa(t) \neq 0$, for all $t \in I$. Show that α is a Helix if and only if $\frac{\tau(t)}{\kappa(t)}=c$, where c is constant.

