

First Midterm Exam

Thursday, November 2, 2017	Math 473	Academic year 1438-39H
1:00 - 2:30 pm	Introduction to Differential Geometry	First Semester

Student's Name		
ID number		
Section No.		
Classroom No.		
Teacher's Name	Dr Nasser Bin Turki	
Roll Number		

25

Instructions:

- Your student identity card must be visible on your desk during the entire examination.
- 1. Let $\alpha : \mathbb{R} \to \mathbb{R}^3$ be given by

$$\alpha(t) = \left(\frac{\sqrt{2}}{3}t^3, t^2 + 2t, t^2 - 2t\right).$$

[14 marks]

- (a) Compute the Velocity and the speed of α . Show that α is a regular space curve.
- (b) Compute the unit tangent T.
- (c) Compute the vector $\alpha' \times \alpha''$.
- (d) Compute the unit binormal B.
- (e) Compute the curvature κ and the torsion τ of α . Show that the curvature κ and the torsion τ of the curve α coincide: $\kappa(t) = \tau(t)$ for all $t \in \mathbb{R}$.
- (f) Find the Serret-Frenet basis (Frame) of α .
 - **2**. Let $\alpha: I \mapsto \mathbb{R}^3$ be given by

$$\alpha(t) = (e^t \cos t, e^t \sin t, e^t).$$

[5 marks]

- (a) Reparametrise the curve α by arc-length.
- (b) Find the equation of the Normal plane of α at $\alpha(0)$.
- 3. Let $\alpha: I \to \mathbb{R}^3$ be a regular parametrised space curve with $\kappa(t) \neq 0$, for all $t \in I$. Show that α is a Helix if and only if $\frac{\tau(t)}{\kappa(t)} = c$, where c is constant. [6 marks]