Ch 10

## Example (1)

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE \& NASDAQ? You collect the following data:

NYSE: $\quad n_{1}=21, \quad \bar{X}_{1}=3.27, \quad S_{1}=1.30$
NASDAQ: $\quad n_{2}=25, \quad \bar{X}_{2}=2.53, \quad S_{2}=1.16$
Assuming both populations are approximately normal with equal variances, is there a difference in mean
yield $(\alpha=0.05)$ ?

## Solution:

$\left(\sigma_{1} \& \sigma_{2}\right.$ unknown) $\left(\sigma_{1}=\sigma_{2}\right) \quad \mathrm{t}$
Step 1: state the hypothesis:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Test is two-tailed test (key word is difference between 2 samples)
Step 2- Select the level of significance and critical value.
$\alpha=0.05$ as stated in the problem

$$
\pm t_{\left(\frac{\alpha}{2}, n_{1}+n_{2}-2\right)}= \pm t_{\left(\frac{0.05}{2}, 21+25-2\right)} \pm t_{(0.025,44)= \pm 2.0154}
$$



Step 3: Select the test statistic.

Use Z-distribution since the assumptions are met

$$
\begin{gathered}
\begin{array}{r}
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}=\frac{(21-1) \times 1.3^{2}+(25-1) \times 1.16^{2}}{(21-1)+(25-1)} \\
=\frac{33.8+32.2944}{44}=\frac{66.0944}{44}=1.5021
\end{array} \\
\mathrm{t}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
\end{gathered}
$$

## Step 4: Formulate the decision rule. (Critical value)

Reject $H_{0}$ if $\quad t_{c}>2.0154$ Or $t_{c}<-2.0154$

## Step 5: Make a decision and interpret the result.



Reject $\mathrm{H}_{0}$ at $\mathbf{a}=0.05$
There is evidence of a difference in means.
Since we rejected $\mathrm{H}_{0}$ can we be $95 \%$ confident that $\mu_{\text {NYSE }}>\mu_{\text {NASDAQ }}$ ?

95\% Confidence Interval for $\mu_{\text {NYSE }}-\mu_{\text {NASDAQ }}$

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{\alpha / 2} \sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=0.74 \pm 2.0154 \times 0.3628=(0.009,1.471)
$$

Since 0 is less than the entire interval, we can be $95 \%$ confident that $\mu_{\text {NYSE }}>$ $\mu_{\text {NASDAQ }}$

## Example (2)

Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints (at the 0.01 level)? You collect the following data:

| $\underline{\text { Salesperson }}$ | Number of Complaints Before | Number of Complaints After |
| :---: | :---: | :---: |
| C.B. | 6 | 4 |
| T.F. | 20 | 6 |
| M.H. | 3 | 2 |
| R.K. | 0 | 0 |
| M.O. | 4 | 0 |

Solution:
Step 1: state the hypothesis:
$H_{0}: \mu_{\mathrm{D}}=0$
$H_{1}: \mu_{\mathrm{D}} \neq 0$


Step2: Select the level of significance and critical value.
$t_{0.005}= \pm 4.604$
d.f. $=\mathbf{n - 1}=\mathbf{4}$

Step 3: Find the appropriate test statistic.

| Salesperso <br> $\underline{\mathbf{n}}$ | Number of <br> Complaints <br> Before | Number of <br> Complaints <br> After | $D$ <br> $(\mathbf{X 2 - X 1 )}$ | $\left(D_{i}-\bar{D}\right)$ | $\left(D_{i}-\bar{D}\right)^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C.B. | 6 | 4 | -2 | $-2-(-4.2)=2.2$ | 4.84 |
| T.F. | 20 | 6 | -14 | $-14-(-4.2)=-9.8$ | 96.04 |
| M.H. | 3 | 2 | -1 | $-1-(-4.2)=3.2$ | 10.24 |
| R.K. | 0 | 0 | 0 | $0-(-4.2)=4.2$ | 17.64 |
| M.O. | 4 | 0 | -4 | $4-(-4.2)=0.2$ | 0.04 |
| Total |  |  | -21 |  | 128.8 |

$$
\begin{gathered}
\bar{D}=\frac{\sum D_{i}}{n}=\frac{-21}{5}=-4.2 \\
\mathrm{~S}_{\mathrm{D}}=\sqrt{\frac{\sum\left(D_{i}-\overline{\mathrm{D}}\right)^{2}}{\mathrm{n}-1}}=\sqrt{\frac{128.8}{4}}=5.6745 \\
t_{c}=\frac{\bar{D}}{S_{D} / \sqrt{n}}=\frac{-4.2}{5.6745 / 2.2361}=\frac{-4.2}{2.5377}=-1.66
\end{gathered}
$$

Step 4: State the decision rule
Reject $H_{0}$ if

$$
\begin{aligned}
& t_{c}>4.604 \\
& \text { or } \\
& t_{c}<-4.604
\end{aligned}
$$

## Step 5: Decision Reject $\mathbf{H}_{\mathbf{0}}$

Do not reject $H_{0}$ ( $\mathrm{t}_{\text {stat }}$ is not in the rejection region)
There is insufficient of a change in the number of complaints.
Since this interval contains 0 you are $99 \%$ confident that $\mu_{D}=0$
Do not reject $H_{0}$
-The Paired Difference Confidence Interval $\mu_{\mathrm{D}}$ is:
$\hat{\mu}_{D}=\bar{D} \pm t_{\alpha / 2} \frac{S_{D}}{\sqrt{n}}$
$=-4.2 \pm 4.604 \frac{5.6745}{\sqrt{5}}$
$=-4.2 \pm 11.6836$
$-15.87<\hat{\mu}_{D}<7.48$

## Example (3)

Is there a significant difference between the proportion of men and the proportion of women who will vote Yes on Proposition A?

In a random sample, 36 of 72 men and 35 of 50 women indicated they would vote Yes

Test at the .05 level of significance

## Solution:

## Step 1: State the null and alternate hypotheses.

$\mathrm{H} 0: \pi 1-\pi 2=0$ (the two proportions are equal)
$\mathrm{H} 1: \pi 1-\pi 2 \neq 0$ (there is a significant difference between proportions)
Step 2: State the level of significance and critical value.
The .05 significance level is stated in the problem.

$$
\pm Z_{\frac{\alpha}{2}}= \pm Z_{\frac{0.05}{2}}= \pm Z_{0.025}
$$

$$
\pm Z_{0.025}= \pm 1.96
$$



## Step 3: Find the appropriate test statistic.

The sample proportions are:

Men: $\quad \mathrm{p}_{1}=36 / 72=0.50$
Women: $\quad \mathrm{p}_{2}=35 / 50=0.70$
The pooled estimate for the overall proportion is:

$$
\begin{aligned}
& \bar{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}=\frac{36+35}{72+50}=\frac{71}{122}=.582 \\
& z_{\text {STAT }}=\frac{\left(p_{1}-p_{2}\right)-\left(\pi_{1}-\pi_{2}\right)}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \\
& =\frac{(.50-.70)-(0)}{\sqrt{.582(1-.582)\left(\frac{1}{72}+\frac{1}{50}\right)}}=-2.20
\end{aligned}
$$

Step 4: State the decision rule

Reject $\mathrm{H}_{0}$ if $\begin{array}{llll}Z_{c}>Z_{\frac{\alpha}{2}} & \text { Or } & Z_{c}<-Z_{\frac{\alpha}{2}} \\ & Z_{c}>1.96 & \text { Or } & Z_{c}<-1.96\end{array}$


Step 5:Decision Reject $\mathbf{H}_{\mathbf{0}}$
There is evidence of a significant difference in the proportion of men and women who will vote yes.

The confidence interval for
$\pi_{1}-\pi_{2}$ is:

$$
\left(p_{1}-p_{2}\right) \pm Z_{\alpha / 2} \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

The $95 \%$ confidence interval for $\pi_{1}-\pi_{2}$ is:

$$
\begin{aligned}
& (0.50-0.70) \pm 1.96 \sqrt{\frac{0.50(0.50)}{72}+\frac{0.70(0.30)}{50}} \\
& =(-0.37,-0.03)
\end{aligned}
$$

Since this interval does not contain 0 can be $95 \%$ confident the two proportions are different.

## Example (4)

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE \& NASDAQ? You collect the following data:

NYSE: $\quad n_{1}=21, \quad S_{1}=1.30$
NASDAQ: $\quad n_{2}=25, \quad S_{2}=1.16$
Is there a difference in the variances between the NYSE \& NASDAQ at the $\alpha=0.05$ level?

Step 1: state the hypothesis:
$\mathrm{H}_{0}: \sigma^{2}{ }_{1}=\sigma^{2}{ }_{2}$ (there is no difference between variances)
$\mathrm{H}_{1}: \sigma^{2}{ }_{1} \neq \sigma^{2}{ }_{2}$ (there is a difference between variances)


Step2: Select the level of significance and critical value.
Find the F critical value for $\alpha=0.05$ :
Numerator d.f. $=\mathrm{n}_{1}-1=21-1=20$
Denominator d.f. $=\mathrm{n}_{2}-1=25-1=24$
$\mathrm{F}_{\alpha / 2}=\mathrm{F}_{.025,20,24}=2.33$

Step 3: Find the appropriate test statistic.
The test statistic is:

$$
F_{S T A T}=\frac{S_{1}^{2}}{S_{2}^{2}}=\frac{1.30^{2}}{1.16^{2}}=1.256
$$



Step 4: State the decision rule
Reject $\mathbf{H}_{\mathbf{0}}$ if $\mathrm{F}_{\text {STAT }}>\mathbf{F}_{\boldsymbol{\alpha} / 2}=\mathbf{2 . 3 3}$
$\mathrm{F}_{\text {STAT }}=1.256$ is not in the rejection region, so we do not reject $\mathrm{H}_{0}$

## Step 5: Decision Reject $\mathbf{H}_{\mathbf{0}}$

There is not sufficient evidence of a difference in variances at $\alpha=.05$
Do not reject $\mathbf{H}_{0}$, there is insufficient evidence that the population variances are different at $\alpha=.05$
$\sqrt{ } \quad \mathrm{H}_{0}: \sigma^{2}{ }_{1}=\sigma^{2}{ }_{2}$ (there is no difference between variances)
$\times \quad \mathrm{H}_{1}: \sigma^{2}{ }_{1} \neq \sigma^{2}{ }_{2}$ (there is a difference between variances)

| Cumulative Probabilities $=0.975$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Upper-Tail Areas $=0.025$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  | Numerator, $d f_{1}$ |  |  |  |  |  |  |  |
| Denominator, $d f_{2}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 |
| 1 | 647.80 | 799.50 | 864.20 | 899.60 | 921.80 | 937.10 | 948.20 | 956.70 | 963.30 | 968.60 | 976.70 | 984.90 | 993.10 |
| 2 | 38.51 | 39.00 | 39.17 | 39.25 | 39.30 | 39.33 | 39.36 | 39.39 | 39.39 | 39.40 | 39.41 | 39.43 | 39.45 |
| 3 | 17.44 | 16.04 | 15.44 | 15.10 | 14.88 | 14.73 | 14.62 | 14.54 | 14.47 | 14.42 | 14.34 | 14.25 | 14.17 |
| 4 | 12.22 | 10.65 | 9.98 | 9.60 | 9.36 | 9.20 | 9.07 | 8.98 | 8.90 | 8.84 | 8.75 | 8.66 | 8.56 |
| 5 | 10.01 | 8.43 | 7.76 | 7.39 | 7.15 | 6.98 | 6.85 | 6.76 | 6.68 | 6.62 | 6.52 | 6.43 | 6.33 |
| 6 | 8.81 | 7.26 | 6.60 | 6.23 | 5.99 | 5.82 | 5.70 | 5.60 | 5.52 | 5.46 | 5.37 | 5.27 | 5.17 |
| 7 | 8.07 | 6.54 | 5.89 | 5.52 | 5.29 | 5.12 | 4.99 | 4.90 | 4.82 | 4.76 | 4.67 | 4.57 | 4.47 |
| 8 | 7.57 | 6.06 | 5.42 | 5.05 | 4.82 | 4.65 | 4.53 | 4.43 | 4.36 | 4.30 | 4.20 | 4.10 | 4.00 |
| 9 | 7.21 | 5.71 | 5.08 | 4.72 | 4.48 | 4.32 | 4.20 | 4.10 | 4.03 | 3.96 | 3.87 | 3.77 | 3.67 |
| 10 | 6.94 | 5.46 | 4.83 | 4.47 | 4.24 | 4.07 | 3.95 | 3.85 | 3.78 | 3.72 | 3.62 | 3.52 | 3.42 |
| 11 | 6.72 | 5.26 | 4.63 | 4.28 | 4.04 | 3.88 | 3.76 | 3.66 | 3.59 | 3.53 | 3.43 | 3.33 | 3.23 |
| 12 | 6.55 | 5.10 | 4.47 | 4.12 | 3.89 | 3.73 | 3.61 | 3.51 | 3.44 | 3.37 | 3.28 | 3.18 | 3.07 |
| 13 | 6.41 | 4.97 | 4.35 | 4.00 | 3.77 | 3.60 | 3.48 | 3.39 | 3.31 | 3.25 | 3.15 | 3.05 | 2.95 |
| 14 | 6.30 | 4.86 | 4.24 | 3.89 | 3.66 | 3.50 | 3.38 | 3.29 | 3.21 | 3.15 | 3.05 | 2.95 | 2.84 |
| 15 | 6.20 | 4.77 | 4.15 | 3.80 | 3.58 | 3.41 | 3.29 | 3.20 | 3.12 | 3.06 | 2.96 | 2.86 | 2.76 |
| 16 | 6.12 | 4.69 | 4.08 | 3.73 | 3.50 | 3.34 | 3.22 | 3.12 | 3.05 | 2.99 | 2.89 | 2.79 | 2.68 |
| 17 | 6.04 | 4.62 | 4.01 | 3.66 | 3.44 | 3.28 | 3.16 | 3.06 | 2.98 | 2.92 | 2.82 | 2.72 | 2.62 |
| 18 | 5.98 | 4.56 | 3.95 | 3.61 | 3.38 | 3.22 | 3.10 | 3.01 | 2.93 | 2.87 | 2.77 | 2.67 | 2.56 |
| 19 | 5.92 | 4.51 | 3.90 | 3.56 | 3.33 | 3.17 | 3.05 | 2.96 | 2.88 | 2.82 | 2.72 | 2.62 | 2.51 |
| 20 | 5.87 | 4.46 | 3.86 | 3.51 | 3.29 | 3.13 | 3.01 | 2.91 | 2.84 | 2.77 | 2.68 | 2.57 | 2.46 |
| 21 | 5.83 | 4.42 | 3.82 | 3.48 | 3.25 | 3.09 | 2.97 | 2.87 | 2.80 | 2.73 | 2.64 | 2.53 | 2.42 |
| 22 | 5.79 | 4.38 | 3.78 | 3.44 | 3.22 | 3.05 | 2.93 | 2.84 | 2.76 | 2.70 | 2.60 | 2.50 | 2.39 |
| 23 | 575 | 435 | 3.75 | 3.41 | 3.18 | 3.02 | 290 | 281 | 273 | 2.67 | 2.57 | 2.47 | 2.36 |
| 24 | 5.72 | 4.32 | 3.72 | 3.38 | 3.15 | 2.99 | 2.87 | 2.78 | 2.70 | 2.64 | 2.54 | 2.44 | (2.33) |
| -- | -- | . -- | - -- | -.- | -.. | - -- | --- | - -- | - .- | -.. | - -. | -.. | -- |

## Example (5)page $372 \boldsymbol{\&} 373$

Waiting time is a critical issue at fast-food chains, which not only want to minimize the mean service time but also want to minimize the variation in the service time from customer to customer .One fast-food chain carried out a study to measure the variability in the waiting time (defined as the time in minutes from when an order was completed to when it was delivered to the customer ) at lunch and breakfast at one of the chain's stores. The results were as follows:
Lunch: $n_{1}=25 \quad, \quad S_{1}^{2}=4.4$
Breakfast: $n_{2}=21, S_{2}^{2}=1.9$
At the 0.05 level of significance, is there evidence that there is more variability in the service time at lunch than at breakfast? Assume that the population service times are normally distributed
Solution
1)
$H_{0}: \sigma_{1}^{2} \leq \sigma_{2}^{2}$
$H_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}$

2)
$F_{\alpha, n_{1-1}, n_{2}-1}=F_{0.05,25-1,21-1}=F_{0.05,24,20}=2.08$
3)
$F_{\text {stat }}=\frac{S_{1}^{2}}{S_{2}^{2}}=\frac{4.4}{1.9}=2.3158$
4)

Reject $H_{0}$ if $F_{\text {stat }}>2.08$
5) because $F_{\text {stat }}=2.3158>2.08$,you reject $H_{0}$. using a 0.05 level of significance, you conclude that there is evidence that there is more variability in the service time at lunch than at breakfast.
Reject the null hypothesis, there was a significant difference between two variances $\left(\sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2}\right)$. The test statistic will be use is Separate variance $t$-test

$$
\begin{array}{lc}
\times & H_{0}: \sigma_{1}^{2} \leq \sigma_{2}^{2} \\
\sqrt{ } & H_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}
\end{array}
$$

|  |  |  |  | Upper-Tail Areas $=0.05$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Numerator, $d f_{1}$ |  |  |  |  |  |  |  |  |  |  |
| Denominator, $d f_{2}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 24 |
| 1 | 161.40 | 199.50 | 215.70 | 224.60 | 230.20 | 234.00 | 236.80 | 238.90 | 240.50 | 241.90 | 243.90 | 245.90 | 248.00 | 249.10 |
| $2$ | $18.51$ | $19.00$ | $19.16$ | $19.25$ | $19.30$ | $19.33$ | $19.35$ | $19.37$ | $19.38$ | $19.40$ | $19.41$ | 19.43 | 19.45 | $19.45$ |
| 3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.89 | 8.85 | 8.81 | 8.79 | 8.74 | 8.70 | 8.66 | 8.64 |
| 4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.91 | 5.86 | 5.80 | 5.77 |
| 5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.77 | 4.74 | 4.68 | 4.62 | 4.56 | 4.53 |
| 6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 4.00 | 3.94 | 3.87 | 3.84 |
| 7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.64 | 3.57 | 3.51 | 3.44 | 3.41 |
| 8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.35 | 3.28 | 3.22 | $3.15$ | 3.12 |
| 9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.14 | 3.07 | 3.01 | 2.94 | 2.90 |
| 10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 | 2.91 | 2.85 | 2.77 | 2.74 |
| 11 | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.85 | 2.79 | 2.72 | 2.65 | 2.61 |
| 12 | 4.75 | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 | 2.69 | 2.62 | 2.54 | 2.51 |
| 13 | 4.67 | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 | 2.67 | 2.60 | 2.53 | 2.46 | 2.42 |
| 14 | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 | 2.65 | 2.60 | 2.53 | 2.46 | 2.39 | 2.35 |
| 15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 | 2.48 | 2.40 | 2.33 | 2.29 |
| 16 | $4.49$ | $3.63$ | $3.24$ | $3.01$ | $2.85$ | 2.74 | $2.66$ | $2.59$ | 2.54 | $2.49$ | $2.42$ | $2.35$ | $2.28$ | $2.24$ |
| 17 | 4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 | 2.49 | 2.45 | 2.38 | 2.31 | 2.23 | 2.19 |
| 18 | 4.41 | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 | 2.41 | 2.34 | 2.27 | 2.19 | 2.15 |
| 19 | 4.38 | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 | 2.38 | 2.31 | 2.23 | 2.16 | 2.11 |
| 20 | 4.35 | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 | 2.28 | 2.20 | 2.12 | 2.08 |
| 21 | 4.32 | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 | 2.37 | 2.32 | 2.25 | 2.18 | 2.10 | 2.05 |

## Example (6)

An experiment has a Sigle factor with four groups and nine values in each group.
If SSA=752, SST=1250
Answer the following questions:

1) How many degrees of freedom are there in determining the among-group variation?
2) How many degrees of freedom are there in determining the within-group variation?
3) How many degrees of freedom are there in determining the total variation?
4) What is SSW?
5) What is MSA?
6) What is MSW?
7) What is the value of $F_{\text {stat }}$ ?

Solution:

1) How many degrees of freedom are there in determining The among-group variation?
c-1=4-1=3
2) How many degrees of freedom are there in determining The within-group variation?
$\mathrm{n}-\mathrm{c}=9-4=5$
3) How many degrees of freedom are there in determining The total variation?
$\mathrm{n}-1=9-1=8$
4)What is SSW?

SST-SSA=1250-752=498
5)What is MSA?

$$
M S A=\frac{752}{3}=250.67
$$

6)What is MSW?

$$
M S W=\frac{498}{5}=99.6
$$

7)What is the value of $F_{\text {stat }}$ ?

$$
F_{\text {stat }}=\frac{M S A}{M S W}=\frac{250.67}{99.6}=2.52
$$

## Example(7) (Slide 65-68)

You want to see if three different golf clubs yield different distances. You randomly select five measurements from trials on an automated driving machine for each club. At the 0.05 significance level, is there a difference in mean distance?

|  | Club 1 | Club 2 | Club 3 |
| ---: | ---: | ---: | ---: |
|  | 254 | 234 | 200 |
|  | 263 | 218 | 222 |
|  | 241 | 235 | 197 |
|  | 237 | 227 | 206 |
| Total | 251 | 216 | 204 |
| Mean | 249.2 | 1130 | 1029 |
| $\overline{\bar{X}}=227$ |  |  |  |

$\mathrm{C}=3 \quad \mathrm{n}=15$
SSA $=4716.4 \quad, \quad \mathrm{SSW}=1119.6$
Solution:

| Source of variation (S.V) | Degrees of freedom | $\begin{array}{\|l} \hline \text { Sum of } \\ \text { Squares (S.S) } \end{array}$ | Mean Squares (MS) | F- ratio |
| :---: | :---: | :---: | :---: | :---: |
| Among groups | $\mathrm{c}-1=3-1=2$ | SSA=4716.4 | $\begin{gathered} \text { MSA }=\mathrm{SSA} / \mathrm{c}-1 \\ \frac{4716.4}{2} \\ =2358.2 \end{gathered}$ | $\begin{aligned} & \begin{array}{l} \mathrm{F}_{\text {STAT }}=\mathrm{MSA} / \\ \text { MSW } \\ \quad=\frac{2358.2}{93.3} \\ \quad=25.275 \end{array} \end{aligned}$ |
| Within groups | $\begin{aligned} & \mathrm{n}-\mathrm{c}=15- \\ & 3=12 \end{aligned}$ | SSW=1119.6 | $\begin{aligned} & \mathrm{MSW}=\mathrm{SSW} / \mathrm{n}-\mathrm{c} \\ & \frac{1119.6}{12}=93.3 \end{aligned}$ |  |
| Total | $\mathrm{n}-15-1=14$ | SST $=5836$ |  |  |

Step (1) : State the null and alternate hypotheses:
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
$\mathrm{H}_{1}: \operatorname{Not}$ all $\mu_{j}$ are equal(Not all the means are equal.).

Step (2): Select the level of significance ( $\alpha=0.05$ )

Step (3): The test statistic :

$$
F_{S T A T}=\frac{M S A}{M S W}=\frac{S S A / c-1}{S S W / n-c}=\frac{4716.4 / 3-1}{1119.6 / 15-3}=25.275
$$

Step (4): The critical value:
The degrees of freedom for the numerator $(\mathrm{c}-1)=3-1=2$
The degrees of freedom for the denominator $(\mathrm{n}-\mathrm{c})=15-3=12$

$$
F_{(0.05,2,12)}=3.89
$$

Step (5) : Formulate the decision Rule and make a decision


Reject Ho at $\alpha=0.05$

