Chapter (3)

Describing Data Numerical Measures Examples

Example (1)

If King Saud University (girls section) has 10 coffee shops on the campus and if their purchases (in thousands) per month are as follows:
$10,20,30,40,40,41,45,50,52,60$
Find the Population mean.
Solution:

$$
\mu=\frac{\sum_{i=1}^{10} X_{i}}{10}=\frac{10+20+\cdots+60}{10}=\frac{388}{10}=38.8
$$

Example (2)

The following are ages (in years) for a sample of students from school A:
$15,10,18,17,18,11,11,15,14,13,11,10$
Find the sample mean.

Solution:

$$
\bar{X}=\frac{\sum_{i=1}^{12} X_{i}}{12}=\frac{15+10+\cdots .+10}{12}=\frac{136}{12}=\mathbf{1 3 . 5 8}
$$

Example (3)

The average age of 5 women in a group is 27 years. If two other women aged 40 and 28 years join the group, find, in years, the new average age of the group of women.

Solution:

The average age of 5 women $=\bar{X}=\mathbf{2 7}$

$$
\sum X=135
$$

The average age of 7 women $=\frac{135+40+28}{7}=29$

Example (4)

Suppose that you have three samples and their means and sizes are

Sample	Mean	Sire
$\mathbf{1}$	$\mathbf{2 0}$	$\mathbf{1 0}$
$\mathbf{2}$	$\mathbf{2 2}$	$\mathbf{1 2}$
$\mathbf{3}$	$\mathbf{2 4}$	$\mathbf{1 1}$

Then weighted the mean of all samples together would be given by

$$
\bar{X}_{W}=\frac{\sum_{i=1}^{n} X_{i} W_{i}}{\sum_{i=1}^{n} W_{i}}=\frac{20(10)+22(12)+24(11)}{10+12+11}=22.06
$$

Example (5)

A student received an A in English Composition I (3 credits), a C in Introduction to Psychology (3 credits), a B in Biology I (4 credits), and a D in Physical Education (2 credits). Assuming A= 4 grade points, $\mathrm{B}=3$ grade points, $\mathrm{C}=2$ grade points, $\mathrm{D}=1$ grade point, and $\mathrm{F}=0$ grade points, find the student's grade point average.

$$
\bar{X}_{W}=\frac{\sum_{i=1}^{n} X_{i} W_{i}}{\sum_{i=1}^{n} W_{i}}=\frac{4(3)+3(4)+1(2)}{3+3+4+2}=27 \text { points }
$$

Mean for grouped data
1- The Discrete data

$$
\bar{X}=\frac{\sum_{i=1}^{k} f_{i} X_{i}}{\sum_{i=1}^{k} f_{i}}
$$

X: represents any particular value .
f : is the frequency in each value.

Example (6)

Table shows the distribution of households by the number of children

Number of children(X)	0	1	2	3	4	5
Number of households(F)	5	7	8	5	3	4

Calculate the arithmetic mean of the number of children Solution:

							Total
Number of children(X)	0	1	2	3	4	5	
Number of households(F)	5	7	8	5	3	4	32
FX	0	7	16	15	12	20	70

$\bar{X}=\frac{\sum_{i=1}^{k} f_{i} X_{i}}{\sum_{i=1}^{k} f_{i}}=\frac{\mathbf{7 0}}{\mathbf{3 2}}=\mathbf{2 . 1 9}=\mathbf{3}$

2-The Arithmetic Mean of Grouped Data (Continuous data) Example (7)
The following table gives the marks of a sample of 30 students.

marks	$(2-4)$	$(4-6)$	$[6-8)$	$(8-10)$	$(10-12)$	$(12-14)$
frequency	3	6	8	7	4	2

Find the mean
Solution:

marks	Frequency (f)	Midpoint (m)	fm
$[2-4)$	3	3	9
$[4-6)$	6	5	30
$[6-8)$	8	7	56
$[8-10)$	7	9	63
$[10-12)$	2	11	44
$[12-14]$	$\sum f=30$		26
Total	$4 m f=228$		

$$
\bar{X}=\frac{\sum f m}{n}=\frac{228}{30}=7.6
$$

The Median

The median is the midpoint of the values after they have been ordered from the smallest to the largest or from the largest to the smallest.

Median for ungrouped data

How do you find the median when (n) is odd?
1- Arrange all values (N) from smallest to largest
2 - Find it by counting $\{(\mathrm{n}+1) / 2\}$ observations up from the bottom
3 - The median is the center of the list
Example (8)
Find the median for the sample values:
$3,5,1,6,7,4,8,7,5,10,4,7,8,9,2$
Solution: Arranging the data in ascending order gives:
$1,2,3,4,4,5,5,7,7,7,7,8,8,9,10$
$\mathrm{n}=15$ "odd"
The rank of median $=(15+1) / 2=8$
Median : the value of the observation of order $8=6$

How do you find the median when (n) is even?

1- Arrange all values (N) from smallest to largest
2 - Find it by counting $\left.\left\{\mathrm{R}_{1}=(\mathrm{n} / 2) \quad \mathrm{R}_{2}=(\mathrm{n} / 2)+1\right)\right\}$
observations up from the bottom
3 - The median is the average of the center two values
Example (9)
Find the median for the sample values:

$$
3,5,1,6,7,4,8,7,5,4,7,8,9,2
$$

Solution: Arranging the data in ascending order gives:
$1,2,3,4,4,5,5,7,7,7,7,8,8,9$
$\mathrm{n}=14$ "even"
$\mathrm{R}_{1}=\mathrm{n} / 2=14 / 2=7 \quad, \mathrm{R}_{2}=(\mathrm{n} / 2)+1=7+1=8$
The value of the observation of ordered 7 is 5
The value of the observation of ordered 8 is 6
Then the median is the average of these two values:
Median $==(5+6) / 2=5.5$

The Mode

- The mode is the value of the observation that appears most frequently.
- If all values are different or have the same frequency, there is no mode.
- A set of values may have more than one mode.

Mode for ungrouped data

Example (10):

Find the mode of the following data:
Group (1): $12,15,18,17,15,14,13,15$
Group (2): $12,13,18,17,15,14,13,15$
Group (3): $12,10,18,17,11,14,13,15$
Group (4): $12,12,18,18,11,11,13,13$

Solution:

The mode of group (1) is 15
The mode of group (2) is 13,15
The is no mode of group (3)
The is no mode of group (4)

A comparison of the properties of measures of central tendency

It can found for both quantitative and qualitative variables.

A set of values may have more than one mode.

Mode depends on the value of the most frequent.

The mode cannot be distorted by extreme values

Median

It can be computed for an openended table.

The median can only found for quantitative and qualitative (ordinal) variables.

A set of data has a unique median
median in his account depends only on the value that mediates data

The median cannot be distorted by extreme values

Mean

It is difficult to compute the mean from an open-ended table.

The mean can only be found for quantitative variables

A set of data has a unique mean

All the values are included in computing the mean.

The mean can be distorted by extreme values

Example (11):

For these situations, state which measure of central tendency-mean, median, or mode-should be used. a) The most typical case is desired. mode b) The distribution is open-ended. median
c) There is an extreme value in the data set.
median
d) The data are categorical. mode
e) Further statistical computations will be needed. mean
f) The values are to be divided into two approximately equal groups, one group containing the larger values and one containing the smaller values. median

Example (12):

Describe which measure of central tendency- mean, median or mode was probably used in each situation.
a) One-half of the factory workers make more than $\$ 5.37$ per hour, and one-half make less than $\$ 5.37$ per hour. median
b) The average number of children per family in the Plaza Heights Complex is 1.8 .
c) Most people prefer red convertibles over any other color. mode
d) The average person cuts the lawn once a week. mode
e) The most common fear today is fear of speaking in public. Mode
f) The average age of college professors is 42.3 years. mean

The Relative Positions of the Mean, Median and the Mode

Example (13)

The following are the grades a professor gave on the first test in a statistics class: $52,61,74,75,82,83,86,87,88$ and 90 . Distribution of grades is :

(A) Negatively skewed	(B) Bimodal
(C) Normally distributed	(D) Positively skewed

Mean $=77.8$
Median $=82.5$
Mode $=$ None
Median > Mean

Geometric Mean

Example (14)
Compute the geometric mean of following percent increases :8,12,14,26,and 5
Solution

$$
G M=\sqrt[n]{\left(X_{1}\right)\left(X_{2}\right)\left(X_{3}\right) \ldots\left(X_{n}\right)}
$$

Geometric Mean $=G M=\sqrt[5]{(1.08)(1.12)(1.14)(1.26)(1.05)}=1.128$
$1.128-1=0.128$
12.8 percent increase

Example (15)

In 1985 there were 340,213 cell phone subscribers in the United States. By 2006 the number of cell phone subscribers increased to $233,000,000$.What is the geometric mean annual increase for the period?
Solution
Rate of Increase Over Time

$$
G M=\sqrt[n]{\frac{\text { Value at end period }}{\text { Value at start of period }}}-1
$$

$$
G M=\sqrt[21]{\frac{233,000,000}{340,213}}-1=1.3646
$$

$1.3646-1=0.3647$
Rate of increase is 36.47 percent per year

Range

The different between the largest and the smallest values

$$
\text { Range }=\text { largest value }- \text { smallest value }
$$

Example (16)
Find the range for the following data:
$20,40,45,70,99,50,30,31,60,34$

Solution:

20, 30, 31, 34, 40, 45, 50, 60, 70, 99
Largest value $=99$
Smallest value $=20$
Range $=99-20=79$

Example (17)

Find the range for the following table:

Age (in years)	$(15-20)$	$(20-25)$	$(25-30)$	$(30-35)$	$(35-40)$	$(40-45)$
Frequency	3	6	10	7	6	2

Solution:

The midpoint of the last class $=42.5$
The midpoint of the first class $=17.5$
$\mathrm{R}=42.5-17.5=25$

Mean Deviation :

The mean of the absolute deviation of a set of data about the data's mean.

$$
M D=\frac{\sum|X-\bar{X}|}{n}
$$

Example (18)
If the sample is removed from the factory workers of foodstuffs size 5 workers, and record the number of years of experience, and were as follows :

$$
9 \quad 510138
$$

Calculate the mean deviation Solution :

$$
\bar{X}=9
$$

					Total	
X_{i}	9	5	10	13	8	45
$\left(X_{i}-\bar{X}\right)$	0	-4	1	4	-1	0
$\left\|X_{i}-\bar{X}\right\|$	0	4	1	4	1	10

Mean Deviation : $M D=\frac{\sum|X-\bar{X}|}{n}=\frac{10}{5}=2$

Variance and Standard Deviation (for ungrouped data)

Variance:The arithmetic mean of the squared deviation from the mean.

Population variance

$$
\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N}
$$

Sample variance

$$
S^{2}=\frac{\sum(X-\bar{X})^{2}}{n-1}
$$

Standard Deviation :The square root of the variance

Population Standard Deviation :

$$
\sigma=\sqrt{\frac{\sum(X-\mu)^{2}}{N}}
$$

Sample Standard Deviation:

$$
S=\sqrt{\frac{\sum(X-\bar{X})^{2}}{n-1}}
$$

Example (19)

The following are age (in years) of a sample of babies from clinic A:
$2,3,4,5,4,5,6,3$
Find the variance and Standard Deviation

Solution:

$$
\bar{X}=4
$$

\mathbf{X}_{i}	2	3	4	5	4	5	6	3	32
$\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)$	-2	-1	0	1	0	1	2	-1	0
$\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}$	4	1	0	1	0	1	4	1	12

Sample variance

$$
S^{2}=\frac{\sum(X-\bar{X})^{2}}{n-1}=\frac{12}{7}=1.71
$$

Sample Standard Deviation:
$S=\sqrt{\frac{\sum(X-\bar{X})^{2}}{n-1}}=\sqrt{1.71}=1.31$

Variance and Standard Deviation

 for Grouped Data$$
\text { variance } S^{2}=\frac{\sum f(M-\bar{X})^{2}}{n-1}
$$

M : is the midpoint of the class.
$f:$ is the class frequency.
n : is the of observations in the sample .
\bar{X} : is the designation for the sample mean

Example (20)

The following table gives the marks of a sample of students.

marks	$(4-6)$	$(6-8)$	$(8-10)$	$(10-12)$	$(12-14)$	$(14-16)$
frequency	1	3	7	4	3	2

Find the variance.

Marks	f	Midpoint (mi)	$f_{i} m_{i}$	$\left(m_{i}-\bar{X}\right)$	$\left(m_{i}-\bar{X}\right)^{2}$	$f\left(m_{i}-\bar{X}\right)^{2}$
$(4-6)$	1	5	5	-5.1	26.01	26.01
$(6-8)$	3	7	21	-3.1	9.61	28.83
$(8-10)$	7	9	63	-1.1	1.21	8.47
$(10-12)$	4	11	44	0.9	0.81	3.24
$(12-14)$	3	13	39	2.9	8.41	25.23
$(14-16)$	2	15	30	4.9	24.01	48.02
Total	20		202			

$$
\bar{X}=\frac{202}{20}=10.1
$$

variance $=S^{2}=\frac{\sum f(M-\bar{X})^{2}}{n-1}=\frac{139.8}{20-1}=7.36$

Standard deviation $=S=\sqrt{\frac{\sum f(M-\bar{X})^{2}}{n-1}}$

$$
=\sqrt{\frac{139.8}{20-1}}=\sqrt{7.36}=2.71
$$

