Exercises 1

First Semester 2018

Problem 1 (Unit Tangent Vector)

For the curve $\gamma(t)=\left(t^{2}-1, t^{2}+1, t^{3}+t\right)$
(i) compute the velocity,
(ii) compute the speed,
(iii) check that the curve is regular,
(iv) compute the unit tangent vector of the curve.

Problem 2 (Arc length)

For the space curve $\gamma(t)=(6 \cos 2 t, 6 \sin 2 t, 5 t)$, where $t \in[0, \pi]$, find the following:
(i) check that the curve is unit speed curve,
(ii) arc length of γ measured from $t=0$ to $t=t_{0}$,
(iii) the normal reparametrisation of γ.

Problem 3 (Closest Point to the Origin) (*-Question)

Let $\gamma(t)$ be a regular parametrised space curve which does not pass through the origin. Show that, if $\gamma\left(t_{0}\right)$ is the point on the curve closest to the origin, then $\gamma\left(t_{0}\right)$ is orthogonal to $\gamma^{\prime}\left(t_{0}\right)$.
[Hint: Let $f(t)=\gamma(t) \bullet \gamma(t)=\operatorname{dist}^{2}(0, \gamma(t))$. Deduce that $f^{\prime}\left(t_{0}\right)=0$.]
Hand in your solutions in the lecture by 2 pm on Tuesday 25/08/2018.

