Exercises -1-

Question 1:

A furniture manufacturer makes wooden tables and chairs. The production process involves two types of labor: <u>carpentry and finishing</u>. A **table** requires 2 hours of carpentry and 1 hour of finishing, and a **chair** requires 3 hours of carpentry and 1/2 hour of finishing. The profit is \$35 per table and \$20 per chair. The manufacturer's employees can supply a maximum of 108 hours of carpentry work and 20 hours of finishing work per day. **How many tables and chairs should be made each day to maximize the profit**?

Answer:

Let $x_1 =$ number of tables made per day $x_2 =$ number of chairs made per day

Linear programming model:

Max $Z=35 x_1 + 20 x_2$

Subject to :

 $\begin{array}{ll} 2x_1 + 3x_2 \leq 108 & (\text{carpentry}) \\ x_1 + 0.5x_2 \leq 20 & (\text{finishing}) \\ & x_1, x_2 \geq 0 & (\text{nonnegativity}) \end{array}$

There should be 3 tables and 34 chairs made each day to maximize profit, and that would yield a profit of \$785.

Question 2:

A small manufacturer employs 5 skilled men and 10 semi - skilled men and makes an article in two qualities, a deluxe model and an ordinary model. The making of a **deluxe model** requires 2 hours work by a skilled man and 2 hours work by a semi - skilled man. The **ordinary model** requires 1 hour by a skilled man and 3 hours by a semi - skilled man. By work rules no man can work more than 8 hours per day. The manufacturers clear profit of the deluxe model is L.E. 10 and of the ordinary model L.E. 8. **How many of each type should be made in order to maximize his total daily profit.**

Answer:

Let $x_1 =$ deluxe model $x_2 =$ ordinary model Linear programming model:

Max Z= 10 x_1 + 8 x_2

Subject to

 $\begin{array}{ll} 2x_1 + 1x_2 \leq 40 & (\text{skilled men}) \\ 2x_1 + 3x_2 \leq 80 & (\text{semi-skilled men}) \\ x_1, x_2 > 0 & (\text{nonnegativity}) \end{array}$

200

260

Thus, the maximum profit is 260 obtained when 10 units of deluxe model and 20 unit of ordinary model is produced

(20,0)

(10, 20)

Question 3:

The Manager of an oil refinery has to decide on the optimal mix of two possible blending processes of which the inputs and outputs per production run as follows:

Process	Input		Output	
	Crude A	Crude B	Gasoline X	Gasoline Y
1	5	3	5	8
2	4	5	4	4

The <u>maximum amount</u> available crude A and B are 200 units and 150 units respectively. The market requirement shows that <u>at least 100</u> units of gasoline X and 80 units of gasoline Y must be produced. The profit per production run from process 1 and process 2 are 3\$ and 4\$ respectively. **Formulate the problem as linear programming problem**.

Answer:

Maximize $Z = 3x_1 + 4x_2$, subject to: $5x_1 + 4x_2 \le 200$, $3x_1 + 5x_2 \le 150$, $5x_1 + 4x_2 \ge 100$, $8x_1 + 4x_2 \ge 80$ and x_1 , $x_2 \ge 0$.