Exercises -1-

Question 1:

A furniture manufacturer makes wooden tables and chairs. The production process involves two types of labor: carpentry and finishing. A table requires 2 hours of carpentry and 1 hour of finishing, and a chair requires 3 hours of carpentry and $1 / 2$ hour of finishing. The profit is $\$ 35$ per table and $\$ 20$ per chair. The manufacturer's employees can supply a maximum of 108 hours of carpentry work and 20 hours of finishing work per day. How many tables and chairs should be made each day to maximize the profit?

Answer:
Let $x_{1}=$ number of tables made per day
$x_{2}=$ number of chairs made per day

Linear programming model:
$\operatorname{Max} Z=35 x_{1}+20 x_{2}$
Subject to :

$$
\begin{array}{cl}
2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 108 & \text { (carpentry) } \\
\mathrm{x}_{1}+0.5 \mathrm{x}_{2} \leq 20 & \text { (finishing) } \\
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 & \text { (nonnegativity) }
\end{array}
$$

There should be 3 tables and 34 chairs made each day to maximize profit, and that would yield a profit of $\$ 785$.

Question 2:

A small manufacturer employs 5 skilled men and 10 semi - skilled men and makes an article in two qualities, a deluxe model and an ordinary model. The making of a deluxe model requires 2 hours work by a skilled man and 2 hours work by a semi - skilled man. The ordinary model requires 1 hour by a skilled man and 3 hours by a semi - skilled man. By work rules no man can work more than 8 hours per day. The manufacturers clear profit of the deluxe model is L.E. 10 and of the ordinary model L.E. 8 . How many of each type should be made in order to maximize his total daily profit.

Answer:

Let $\mathrm{x}_{1}=$ deluxe model
$\mathrm{x}_{2}=$ ordinary model
Linear programming model:
$\operatorname{Max} \mathrm{Z}=10 x_{1}+8 x_{2}$
Subject to

$$
\begin{aligned}
2 \mathrm{x}_{1}+1 \mathrm{x}_{2} \leq 40 & \text { (skilled men) } \\
2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 80 & \text { (semi-skilled men) } \\
\mathrm{x}_{1}, x_{2}>0 & \text { (nonnegativity) }
\end{aligned}
$$

$\left(x_{1}, x_{2}\right)$	Objective function $Z=10 x_{1}+8 x_{2}$
$(0,0)$	0
$(0,26.67)$	213.36
$(20,0)$	200
$(10,20)$	260

Thus, the maximum profit is 260 obtained when 10 units of deluxe model and 20 unit of ordinary model is produced

Question 3:

The Manager of an oil refinery has to decide on the optimal mix of two possible blending processes of which the inputs and outputs per production run as follows:

Process	Input		Output	
	Crude A	Crude B	Gasoline X	Gasoline Y
1	5	3	5	8
2	4	5	4	4

The maximum amount available crude A and B are 200 units and 150 units respectively. The market requirement shows that at least 100 units of gasoline X and 80 units of gasoline Y must be produced. The profit per production run from process 1and process 2 are $3 \$$ and $4 \$$ respectively. Formulate the problem as linear programming problem.

Answer:
Maximize $Z=3 x_{1}+4 x_{2}$, subject to: $5 x_{1}+4 x_{2} \leq 200,3 x_{1}+5 x_{2} \leq 150,5 x_{1}+4 x_{2} \geq 100$, $8 x_{1}+4 x_{2} \geq 80$ and $x_{1}, x_{2} \geq 0$.

