Exercise

Q: A Company has 2 production facilities $S 1$ and $S 2$ with production capacity of 100 and 110 units per week of a product, respectively. These units are to be shipped to 3 warehouses D1, D2 and D3 with requirement of 80,70 and 60 units per week, respectively. The transportation costs (in \$) per unit between factories to warehouses are given in the table below.
A)

Destination Sources	D_{1}	D_{2}	D_{3}	Supply
S_{1}	1	2	3	100
S_{2}	4	1	5	110
Demand	80	70	60	

Find initial basic feasible solution (IBFS) to the following transportation problem using NWCM, then optimize the solution using MODI method (Modified Distribution Method or (u-v) method).

Answer:
$\operatorname{Min} Z=x_{11}+2 x_{12}+3 x_{13}+4 x_{21}+x_{22}+5 x_{23}$

$$
x_{11}+x_{12}+x_{13} \leq 100
$$

$$
x_{21}+x_{22}+x_{23} \leq 110
$$

$$
x_{11}+x_{21} \geq 80
$$

$$
x_{12}+x_{22} \geq 70
$$

$$
\begin{aligned}
& \operatorname{Min} Z=\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} x_{i j} \\
& \text { s.t } \\
& \sum_{j=1}^{m} x_{i j} \leq s_{i} \\
& \sum_{i=1}^{n} x_{i j} \leq d_{j}
\end{aligned}
$$

$$
x_{13}+x_{23} \geq 60
$$

$\sum_{i=1}^{m} s_{i}=\sum_{j=1}^{n} d_{j}=210$, so we don't need dummy demand or dummy supply.
$\min \left(S_{1}=100, D_{1}=80\right)=\mathbf{8 0}$, This satisfies the complete demand of D_{1} and leaves $100-80=20$ units with S_{1}. $\min \left(S_{1}=20, D_{1}=70\right)=\mathbf{2 0}$, This exhausts the capacity of S_{1} and leaves $70-20=50$ units with D_{2}.
$\min \left(S_{2}=110, D_{2}=50\right)=\mathbf{5 0}$, This satisfies the complete demand of D_{2} and leaves $110-50=60$ units with S_{2}. $\min \left(S_{2}=60, D_{3}=60\right)=60$, This satisfies S_{2} and D_{3}.

Initial feasible solution (IBFS) is:

$$
X_{11}=80, X_{12}=20, X_{22}=50, X_{23}=60
$$

The minimum total transportation cost:

TTC $=Z=80 * 1+20 * 2+50 * 1+60 * 5=470 \$$
Here, the number of allocated cells $=4$ is equal to $m+n-1=3+2-1=4$
Optimality test using MODI method...

$$
\boldsymbol{\delta}_{\boldsymbol{k j}}=v_{j}+u_{i}-\boldsymbol{C}_{\boldsymbol{k j}},
$$

1. Find u_{i} and v_{j} for all occupied cells (i, j), where $v_{j}+u_{i}=C_{i j}$

- Substituting, $u_{1}=0$, we get
- $c_{11}=u_{1}+v_{1} \Rightarrow v_{1}=c_{11}-u_{1} \Rightarrow v_{1}=1-0 \Rightarrow v_{1}=1$
- $c 12=u 1+v 2 \Rightarrow v 2=c 12-u 1 \Rightarrow v 2=2-0 \Rightarrow v 2=2$
- $c 22=u 2+v 2 \Rightarrow u 2=c 22-v 2 \Rightarrow u 2=1-2 \Rightarrow u 2=-1$
- $c_{23}=u_{2}+v_{3} \Rightarrow v_{3}=c_{23}-u_{2} \Rightarrow v_{3}=5+1 \Rightarrow v_{3}=6$

2. Find $\boldsymbol{\delta}_{\boldsymbol{k} \boldsymbol{l}}=\boldsymbol{v}_{\boldsymbol{l}}+\boldsymbol{u}_{\boldsymbol{k}}-\boldsymbol{C}_{\boldsymbol{k} \boldsymbol{l}}$ for all unoccupied cells (k, l). IF all $\boldsymbol{\delta}_{\mathrm{kl}} \leq 0$, the solution is optimal solution.
3. Now choose the maximum positive value from all $\delta_{k j}$ (opportunity cost) $=\delta_{13}=3$ and draw a closed path $\boldsymbol{S} 1 \boldsymbol{D} 3 \rightarrow \boldsymbol{S} 1 \mathbf{D} 2 \rightarrow \boldsymbol{S} 2 \boldsymbol{D} 2 \rightarrow \boldsymbol{S} 2 \boldsymbol{D} 3$ with plus/minus sign allocation.

Minimum allocated value among all negative position (-) on closed path $\theta=20$ Subtract 20 from all (-) and Add it to all (+).

		$\mathrm{V}_{1}=1$	$\mathrm{~V}_{2}=2$	$\mathrm{~V}_{3}=6$	
		Sources			

4. Repeat the step 1 to 4 , until an optimal solution is obtained.

		$\begin{aligned} & \hline \mathrm{V}_{1}=1 \\ & \hline \mathrm{D}_{1} \end{aligned}$	$\mathrm{V}_{2}=-1$	$V_{3}=3$	Supply
	Destination Sources		D_{2}	D_{3}	
$\mathrm{U}_{1}=0$	S_{1}	$\begin{array}{lr} \hline & \mathbf{1} \\ 80 \end{array}$	$\delta_{12}=-3$	$\begin{array}{rr} 3 \\ \hline \end{array}$	100
$\mathrm{U}_{2}=2$	S_{2}	$\delta_{21}=-1$	$70{ }^{1}$	$40 \quad 5$	110
	Demand	80	70	60	

We note that all $\boldsymbol{\delta}_{\mathbf{k j}} \leq 0$, so final optimal solution is arrived
Therefore, the optimal solution $X_{11}=80, X_{13}=20, X_{22}=70, X_{23}=40$
And $Z=80 * 1+20 * 3+70 * 1+40 * 5=410 \$$

B) same previous example (A) but change $S 2$ to 130 rather than 110.

Answer:

Destination	D_{1}	D_{2}	D_{3}	Supply
Sources				
S_{1}	1	2	3	100
S_{2}	4	1	5	130
Demand	80	70	60	210

Here Total Demand $=210$ is less than Total Supply $=230$. So, we add a dummy demand constraint with 0 unit cost and with allocation 20.

Destination Sources	D_{1}	D_{2}	D_{3}	D_{4} (Dummy)	Supply
S_{1}	1	2	3	0	100
S_{2}	4	1	5	0	130
Demand	80	70	60	20	230=230

We note that not all $\boldsymbol{\delta}_{\mathbf{k j}} \leq 0$, so we don't reach to optimal solution yet.
Initial feasible solution (IBFS) is:

$$
X_{11}=80, X_{12}=20, X_{22}=50, X_{23}=60, X_{24}=20
$$

The minimum total transportation cost:
$T T C=Z=80 * 1+20 * 2+50 * 1+60 * 5+20 * 0=470$
Here, the number of allocated cells $=5$ is equal to $m+n-1=2+4-1=5$

		$\mathrm{V}_{1}=1$	$\mathrm{V}_{2}=-1$	$\mathrm{V}_{3}=3$	$\mathrm{V}_{4}=-2$	
	Destination Sources	D_{1}	D_{2}	D_{3}	D_{4} (Dummy)	Supply
$\mathrm{U}_{1}=0$	S_{1}	${ }^{80} \begin{array}{r} 1 \\ \hline \end{array}$	$\delta_{12}=-3^{\mathbf{2}}$	20^{3}	$\delta_{14}=-2$	100
$\mathrm{U}_{2}=2$	S_{2}	$\delta_{21}=-14$	$\begin{array}{ll} & 1 \\ 70 \end{array}$	405	20	110
	Demand	80	70	60	20	

We note that all $\boldsymbol{\delta}_{\mathbf{k j}} \leq 0$, so final optimal solution is arrived
C) same previous example in part (B) but change D1, D2 and D3 to 90,80 and 100 units per week, respectively.

Answer:

Destination	D_{1}	D_{2}	D_{3}	Supply
Sources				
S_{1}	1	2	3	100
S_{2}	4	1	5	130
Demand	90	80	100	270

Here Total Demand $=270$ is greater than Total Supply $=230$. So, we add a dummy supply constraint with 0 unit cost and with allocation 40.

H.W Example: The ICARE Company has three factors located throughout a state with production capacity 40,15 and 40 gallons. Each day the firm must furnish its four retail shops D1, D2, D3 with at least 25,55, and 20 gallons respectively. The transportation costs (in \$.) are given below.

Destination Sources	D_{1}	D_{2}	D_{3}	Supply
S_{1}	10	7	8	40
S_{2}	15	12	9	15
S_{3}	7	8	12	40
Demand	25	55	20	

Q: Find the optimum transportation schedule and minimum total cost of transportation.
Answer:

The minimum total transportation cost $=7 \times 40+9 \times 15+7 \times 25+8 \times 15+0 \times 5=710$

