Example 1

A hypothesis test is to be performed to determine whether the mean waiting time during peak hours for customers in a <u>supermarket is different from the previous</u> <u>mean waiting time of 8.2 minutes</u>. Previous experience indicates that the waiting time follows a normal distribution with standard deviation equal 3.8 minutes. To test the hypothesis, a random sample of 25 customers will be selected yields mean $\bar{x} = 9.75$.. **Answer the questions 1 to 8.**

Question 1:

The null and alternative hypotheses are...

(A) $H_0: \mu \ge 8.2 \& H_1: \mu < 8.2$	(B) $H_0: \mu = 8.2 \& H_1: \mu \neq 8.2$
(C) $H_0: \mu \le 8.2 \& H_1: \mu > 8.2$	(D) $H_0: \bar{X} \le 8.2 \& H_1: \bar{X} > 8.2$

Question 2:

This hypothesis test is classifies as...

(A) Right-tailed	(B) Two-tailed
(C) Multi-tailed	(D) left-tailed

Question 3:

The appropriate test statistic is...

(A) Z =	$\frac{\overline{X} - \mu}{S / \sqrt{n}}$	(B) $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$
(C) <i>T</i> =	$\frac{\overline{X} - \mu}{S / \sqrt{n}}$	(D) $F = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$

Question 4:

The critical region is best described by figure....

1

Question 5:

With significance level equal 0.10, the decision criterion for the hypothesis test in terms of the computed value of the test statistic is....

(A) Reject H_0 if $z_{stat} < -1.645$	(B) Reject H_0 if $z_{stat} > 1.96$
(C) Reject H_0 if Z_{stat} > 1.645 or Z_{stat} < -1.645	(D) Reject H_0 if $z_{stat} > 1.645$

Question 6:

The	computed	value of our	test statistic is	
(^)	2.04	(P) 2 00	(C) 2.04	

(A) -2.04	(B) 3.98	(C) 2.04	(D) 0.54
Solution:			
$-\frac{9.75-8}{2}$	$\frac{3.2}{2} - 2.04$		
$\frac{2}{3.8} - \frac{3.8}{\sqrt{2}}$	$\frac{1}{25} = 2.04$		

Question 7:

The decision would be to....

- (A) Cannot be determined
- (B) Do not reject the null hypothesis.
- (C) Reject the null hypothesis.
- (D) Reject the alternative hypothesis.

Question 8:

Suppose that in fact the waiting time is increased to 9 minutes ($\mu_{\rm l}{=}\,9.9$), then the decision has been made is...

- (A) Committing Type I error (B) Committing Type II error
- (C) Correct decision $(1-\alpha)$ (D) Correct decision $(1-\beta)$

End of example 1

Example 2

It assumed from last experience that 75% of sports viewers are male. A famous <u>sport newspaper reports that this proportion is different from 0.75</u>. A random sample of 400 season ticket holders reveals that 352 are male. We wish to test the above hypothesis. **Answer the guestions 1 to 9**.

Question 1:

The null and alternative hypotheses are...

(A) $H_0: P \le 0.75 \& H_1: P > 0.75$	(B) $H_0: \pi < 0.75$ & $H_1: \pi \ge 0.75$
(C) $H_0: \pi \le 0.75$ & $H_1: \pi > 0.75$	(D) $H_0: \pi = 0.75$ & $H_1: \pi \neq 0.75$

Question2:

This hypothesis test is classifies as...

(A) Two-tailed	(B) Right-tailed
(C) Opposite-tailed	(D) left-tailed

Question 3:

The appropriate test statistic is...

(A)	$Z = \frac{P - \pi}{\sqrt{\pi(1 - \pi)/n}}$	(B) $T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$
(C)	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	(D) $\chi^{2} = \frac{P - \pi}{\sqrt{\pi(1 - \pi)/n}}$

Question 4:

With significance level equal 0.10, the decision criterion for the hypothesis test in terms of the computed value of the test statistic (Z_{stat}) is....

(A) Reject H_0 if $z_{stat} < -1.645$	(B) Reject H_0 if $z_{stat} > 1.96$
(C) Reject H_0 if $Z_{\rm stat}$ > 1.645 or $Z_{\rm stat}$ < -1.645	(D) Reject H_0 if $z_{stat} > 1.645$

Question 5:

With level of significance 5%, the critical region is best described by figure....

Question 6:

The computed value of our test statistic is.... (A) 0.01 (B) 5.99 (C) 0.23 (D) -0.01 Solution: $z_c = \frac{350/400 - 0.75}{\sqrt{(.75)(.25)/400}} = \frac{0.875 - 0.75}{0.0217} = \frac{0.88 - 0.75}{0.0217} = 5.99$ Question 7: The decision would be to....

(A) Do not Reject the null hypothesis(B) Cannot be determined.(C) Reject the null hypothesis.(D Reject the alternative hypothesis.

Question 8:

Suppose that in fact the true proportion is 0.85, then the decision has been made is... α

(A) Rejecting the true hypothesis(α) type1 error	(B)Do not Rejecting the false hypothesis (β) type11 error.
(C) Do not rejecting the true hypothesis($1-\alpha$)Correct decision	(D) Rejecting the false hypothesis($1 - \beta$)Correct decision

Question 9: Suppose that in fact the true proportion is 0.74, then the decision has been made is...

(A) Rejecting the true hypothesis($^{\it \alpha}$) type1 error	(B)Do not Rejecting the false hypothesis ($^{\beta}$) type11 error.
(C) Do not rejecting the true	(D) Rejecting the false
hypothesis($^{1-lpha}$)Correct decision	hypothesis($^{1-eta}$)Correct decision

End of example 2

Example 3

Question 1:

A 95% confidence interva is $12 < \mu < 17$ null hypothesis is $H_0: \mu = 10$ $H_1: \mu \neq 10$

What is the decision?

(A) Reject the null hypothesis.

(B) Do not Reject the null hypothesis.

(C) Can not be determined

(D) Reject the alternative hypothesis.

Question2: A 95% confidence interval is $0.85 \le \pi \le 0.91$. The null hypothesis is $H_0:\pi = 0.88$

 $H_1:\pi \neq 0.88$

What is the decision?

- (A) Reject the null hypothesis.
- (B) Do not Reject the null hypothesis.
- (C) Cannot be determined
- (D) Do not Reject the alternative hypothesis.

End of example 3