Facies and sequence stratigraphy of some Miocene sediments in the Cairo–Suez District, Egypt

Mohamed Tawfik, Abdelbaset El-Sorogy, Ahmed Mowafi, Mazen Al-Malky

1. Introduction

The overall sedimentary nature of the Miocene sediments in the Cairo–Suez District, Egypt tends to be dominated by epicic ramp deposits. The Cairo–Suez area lays East of Cairo and extends about 120 km to the city of Suez. It lies between Latitudes 29°–30°00′N and Longitudes 31°15′–32°35′E (Fig. 1). The topography of the area is largely controlled by its structure and the relief is generally low except for few hills and small mountains. Topographically, the area is subdivided into three ridges crossing the district in a more or less E–W alignment; between these ridges there are two depressions. The Cairo–Suez asphaltic road passes through the southern one, while Gabal Ataqa, Gabal Abou Treifiya, Gabal Qattamiya, Gabal Anqabiya, Gabal Nasuri and Gabal Mokattam form an elongated ridge running parallel to Cairo–Suez high way depression from East to West and to the South of it (Abou Khadrah et al., 1993). The oldest exposed rocks in the area are of Early Cretaceous age while the youngest rocks are of Quaternary age (Fig. 1). The Miocene rocks of the Cairo–Suez area were the subject of many studies since the last quarter of the 19th century.

The regional stratigraphy of the Miocene in the Cairo–Suez area has been studied by different authors (e.g. Fuchs, 1883; Depéret and Fourtau, 1900; Blanckenhorn, 1901; Barron, 1907; Shukri and Akmal, 1953; Sadek, 1959; Said, 1962, 1971, 1990; Said and Metwalli, 1963; Ghorab and Marzouk, 1965; Abdallah and Abd El-Hady, 1966; Barakat and Aboul Ela, 1970; Stratigraphic Sub-Committee, 1974; Abbass, 1977; El-Heiny, 1982; Abdel Wahab and El-Belassy, 1987; Szczechura and Abd-Elsahf, 1988; Abd-Elsahf and Abd-Elmoneim, 1992; Hamza, 1992; Abou Khadrah et al., 1993; El-Sorogy and Ziko, 1999; El-Shazly and Saber, 1999; Abdelghany, 2002; Elattar, 2003; Mowafi, 2006). The lithostratigraphic classification of the Miocene in the Cairo–Suez area is illustrated in Table 1.

The main two aims of the present study are: (1) Identifying facies types of the Miocene sediments in the Cairo–Suez area in Egypt, as well as make an acceptable interpretation by integrates micro- and biofacies analysis to construct a 2D siliciclastic–carbonate model. (2) Estimating the studied successions in the view of sequence stratigraphic analysis by subdividing the studied sections into sequences, cycle sets, and cycles. Three stratigraphic sections have been chosen to fulfill these aims of study. These are Gabal Geneifa, Gabal Gharra and Gabal Homeira sections (Fig. 1).

1.1. Methodology

A standardized logging sheet was developed and used to log the studied sections of the Cairo–Suez District, Egypt. The main...
properties recorded in these sections are: texture, biota, grain type and size, sorting, bedding style, sedimentary features of the rocks and facies. 450 representative samples were collected from the field to produce 162 thin sections, which were examined under polarizing microscope to integrate lithological, paleontological and diagenetic data for facies characterization, and sequence stratigraphy. The nomenclature of limestone in the present study follows that system introduced by Dunham (1962) and Embry and Klovan (1972).

2. Results and discussion

2.1. Facies analysis and interpretation

14 Lithofacies types (LFT) were distinguished in the Miocene studied sections on the Cairo–Suez District (Table 2, Figs. 2 and 3). The description and classification of these lithofacies types depend on the following: textures, mineralogy, rock color, grain size, sorting, components (skeletal or non-skeletal), thickness of different rock unit, bedding style, sedimentary features, interpretation of depositional setting and the appearance according to lithofacies code (Fig. 4). In general, the studied sections are divided into two lithostratigraphic units namely, the Gharra Formation and the Genefe Formation in ascending order, according to Ghorab and Marzouk (1965).

The Gharra Formation rests unconformably on sediments of Oligocene age (sands and gravels) with silicified woods in both Gabal Gharra and Gabal Homeira sections, while in Gabal Geneifa one the base of the formation is unexposed. In all the three sections, the Gharra Formation is conformably overlain by the Genefe Formation, and consists mainly of clastics (shale, claystone, marl and sandstone) with sandy limestone interbeds. The limestones are low or moderate fossiliferous to highly fossiliferous, containing rich assemblages of macrofossils.

Fig. 1. Location map of the studied sections, 1. Gabal Geneifa section, 2. Gabal Gharra section, 3. Gabal Homeira section.

Table 1
Different rock units proposed by different authors for the Miocene rocks in the Cairo–Suez District.
<table>
<thead>
<tr>
<th>Lithofacies types</th>
<th>Lithology and texture</th>
<th>Sedimentary structure and diagenesis</th>
<th>Grain size and sorting</th>
<th>Components</th>
<th>Thickness</th>
<th>Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFT 1a: Sandy silty shale</td>
<td>Shale, siltstone and sandstone</td>
<td>Fine lamination</td>
<td>Subrounded to subangular, poorly sorted</td>
<td>Iron oxides, gypsum.</td>
<td>Meters (m) thick units</td>
<td>2a</td>
</tr>
<tr>
<td>LFT 2a: Calcareous quartz arenite</td>
<td>Sandstone, quartz arenite</td>
<td>Lamination</td>
<td>Subrounded to angular, poorly to moderately sorted</td>
<td>Iron oxides, molluscan shells, feldspar grains as plagioclase and microcline</td>
<td>Meters thick units</td>
<td>2b</td>
</tr>
<tr>
<td>LFT 2b: Calcareous fossil quartz arenite</td>
<td>Sandstone, quartz arenite</td>
<td>Lamination</td>
<td>Subrounded to angular, poorly to moderately sorted</td>
<td>Few foraminifera, echinoids, molluscan shells and euhedral and zoned dolomite</td>
<td>Decimeters (Dm) to several (m).</td>
<td>2c</td>
</tr>
<tr>
<td>LFT 3a: Sandy bioclastic dolomudstone</td>
<td>Dolostone, mudstone</td>
<td>Bioturbation</td>
<td>Siltite, poorly sorted</td>
<td>Few foraminifera, molluscan shells and quartz grains.</td>
<td>Centimeters (cm) to Dm.</td>
<td>2d</td>
</tr>
<tr>
<td>LFT 3b: Calcareous fossil quartz arenite</td>
<td>Sandstone, quartz arenite</td>
<td>Lamination</td>
<td>Subrounded to angular, poorly to moderately sorted</td>
<td>Iron oxides, molluscan shells, feldspar grains as plagioclase and microcline</td>
<td>Meters thick units</td>
<td>2b</td>
</tr>
<tr>
<td>LFT 3c: Calcareous fossil quartz arenite</td>
<td>Sandstone, quartz arenite</td>
<td>Lamination</td>
<td>Subrounded to angular, poorly to moderately sorted</td>
<td>Few foraminifera, molluscan shells and quartz grains.</td>
<td>Centimeters (cm) to Dm.</td>
<td>2d</td>
</tr>
<tr>
<td>LFT 4a: Sandy bioclastic dolomudstone</td>
<td>Dolostone, mudstone</td>
<td>Bioturbation</td>
<td>Siltite, poorly sorted</td>
<td>Few foraminifera, molluscan shells and quartz grains.</td>
<td>Centimeters (cm) to Dm.</td>
<td>2d</td>
</tr>
<tr>
<td>LFT 4b: Calcareous fossil quartz arenite</td>
<td>Sandstone, quartz arenite</td>
<td>Lamination</td>
<td>Subrounded to angular, poorly to moderately sorted</td>
<td>Iron oxides, molluscan shells, feldspar grains as plagioclase and microcline</td>
<td>Meters thick units</td>
<td>2b</td>
</tr>
<tr>
<td>LFT 4c: Calcareous fossil quartz arenite</td>
<td>Sandstone, quartz arenite</td>
<td>Lamination</td>
<td>Subrounded to angular, poorly to moderately sorted</td>
<td>Few foraminifera, molluscan shells and quartz grains.</td>
<td>Centimeters (cm) to Dm.</td>
<td>2d</td>
</tr>
<tr>
<td>LFT 5a: Sandy fossiliferous grainstone</td>
<td>Limestone, grainstone</td>
<td>Cross bedding</td>
<td>Medium to coarse arenite, moderately sorted</td>
<td>Bioclastic of shell fragments, foraminiferes (Miliolidae), echinoid fragments, dolomite rhombs and quartz grains.</td>
<td>Dm to meters thick units</td>
<td>2f</td>
</tr>
<tr>
<td>LFT 5b: Molluscan grainstone</td>
<td>Limestone, grainstone</td>
<td>Cross bedding</td>
<td>Medium to coarse arenite, moderately sorted</td>
<td>Bioclastic of shell fragments, foraminiferes (Miliolidae), echinoid fragments, dolomite rhombs and quartz grains.</td>
<td>Dm to meters thick units</td>
<td>2f</td>
</tr>
<tr>
<td>LFT 5c: Sandy fossiliferous grainstone</td>
<td>Limestone, grainstone</td>
<td>Cross bedding, neomorphism</td>
<td>Medium to coarse arenite, moderately to well sorted</td>
<td>Bioclastic of shell fragments, foraminiferes (Miliolidae), echinoid fragments, dolomite rhombs and quartz grains.</td>
<td>Dm to meters thick units</td>
<td>2f</td>
</tr>
<tr>
<td>LFT 6a: Algal coralline framestone</td>
<td>Limestone, framestone</td>
<td>Amalgamated beds</td>
<td>Medium arenite to fine rudite, moderately to well sorted</td>
<td>Foraminifera (Operculina complanata, Amphistegina sp., Miogypsina sp.), ostracods, algae, bryozoa, molluscan fragments, echinoids, algal oncoids and quartz grains.</td>
<td>Several dm thick units</td>
<td>3f</td>
</tr>
</tbody>
</table>

The Genefe Formation rests conformably on the sediments of Gharra Formation and its top is not covered in the three sections and it consists mainly of algal, reefal and chalky limestones with oyster banks, mudstone and calcareous shale intercalations. The limestones and calcareous shales are low or moderate fossiliferous to highly fossiliferous with macrofossils assemblages.

2.2. Lithofacies associations (LFA) and depositional model

Facies types were grouped into lithofacies associations (LFA) based on their interpreted depositional environment on the carbonate platform. Table 3 lists the names and characteristics of these lithofacies associations. From the previous data, a 2D depositional model for the inner ramp part of a platform with facies types and related depositional/lithofacies associations for the investigated area of the Miocene outcrop sections was done (Fig. 5).

2.3. Sequence stratigraphy

The interpreted lithofacies types are stacked into facies sequences of multiple hierarchies. Based on the approach of Kerans and Tinker (1997), three orders of cycles were distinguished. Cycles of small-scale order form cycle sets of medium-scale order which finally arranged in sequences (large-scale cycle). The most significant vertical changes within these successions are sedimentary texture, grain size and bio-component. The described
cycles, cycle sets and sequences were subdivided into transgressive and regressive parts. They are separated by turnarounds, i.e. zones of maximum and minimum accommodation (Cross and Lessenger, 1998).

2.3.1. Small-scale cycles
2.3.1.1. Restricted ramp cycle type. The thickness of this rather asymmetrical cycle type ranges in thickness from 3 to 5 m (Fig. 6). The main distribution of this cycle is apparently restricted on S1 and S2 at the three studied sections. The lower part of this cycle varies from 1.25 to 4.5 m thick, consists mainly of brownish gray, moderately compact, thinly laminated, jointed, unfossiliferous, ferruginous, gypsiferous, with gypsum bands and veins (up to 2 cm thick), very slightly calcareous (LFT 1a). The vertical thickness of the upper part ranges in thickness from 0.25 to 0.75 m and consists of yellowish brown, moderately sorted and compact calcareous sandstone, with few feldspar minerals and pelecypod fragments (LFT 2a).

The lower part could be interpreted as low energy proximal peritidal facies types forming a regressive hemi-cycle. The sequence boundary is marked by change in facies from shale sediments to bioclastic sandstone. The transgressive hemi-cycle could be interpreted as a retrogradation of more distal, tidal flat facies association over the peritidal strata.

2.3.1.2. Back shoal cycle type. This cycle type has an average thickness from 6 to 8 m (Fig. 7), it exists in S1 and S2 in all sections. The basal part is several decimeters thick, begins with calcareous
fossiliferous, coarse grained and moderately sorted quartz arenite. Well preserved molluscan fauna and echinoids are common (LFT 2b). The facies stacking pattern is followed by up to 2 m thick units of bioclastic dolomitic wackestone that the major components of it represented by micritized foraminifers (Miliolidae) and dominant echinoid fragments (LFT 3b). The middle part of this cycle is represented by bioclastic echinoidal packstone which contains a high amount of echinoid, algae, bryozoa and shell fragments (LFT 4c). The upper part of this cycle is several decimeters thick, consists of gray, moderately hard and poorly sorted bioclastic wacke/packstone, with subangular to subrounded mudclasts (LFT 4a).

The clastic basal part and the wackestones in the lower part of this cycle type could be interpreted as a proximal lagoon environment deposited under low energy conditions and could represent the transgressive hemi-cycle. Muddy, finely grained and prevailing echinoid beds could be interpreted as full marine distal lagoon environment and thus, the presence of a maximum flooding zone in the middle part. The regressive hemi-cycle is interpreted to be marked by the transition from the distal lagoon to proximal lagoon in the upper part.

2.3.1.3. Shoal cycle type. This rather asymmetrical cycle type ranges in thickness from 6 to 8 m (Fig. 8). The distribution of this cycle type is mainly observed in S2 and S3 in all sections. The base of this cycle is dominated by several decimeters thick, gray colored, moderately hard and poorly sorted bioclastic waclcke/packstones that mostly contain polymictic bryozoans, algae, mulluscan fragments, echinoids, foraminifera (Operculina complanata, Amphistegina sp., and Niagypsinia sp.) and quartz grains (LFT 4a). These beds are overlain by up to 3 m of bioclastic pack/grainstone (LFT 5a), dominated by Shell fragments, foraminifera (Heterostegina sp.), algae, pelecypod fragments, echinoidal plates and spines. Above the grainstone beds, there are bryozoans wacke/packstones which contain different types of bryozoan, foraminifera (Operculina complanata, Amphistegina sp. and Miliolidae), algae, mulluscan fragments, echinoids, algal oncoids and quartz grains (LFT 4b). The cycle is capped by a sharp top, marked by a bioturbated hard ground which consists of sandy wackestone.

The basal part of this cycle is represented by bioclastic wacke/packstones, dominated by bivalvial shells and foraminifera, which
Fig. 6. Restricted ramp small scale cycle type.

Fig. 7. Back shoal small scale cycle type.

Fig. 8. Shoal small scale cycle type.
may indicate the back shoal and also could represent the transgressive hemi-cycle. The overlying shoal pack/grainstone beds could be interpreted as a maximum flooding zone. The regressive hemi-cycle shows the same succession of facies types like the transgressive hemi-cycle but in a reverse order. The sharp top of this cycle may represent the sequence boundary.

2.3.1.4. Shoal margin cycle type. This cycle ranges in thickness from 5 to 8 m (Fig. 9). They show asymmetrical patterns. The base of this cycle is dominated by several decimeters-thick sandy fossiliferous grainstones, represented by foraminifera (*Heterostegina* sp. and others) some serpulids, algae (*Lithothamnium* sp.), ostracods, bryozoans (*Holoporella* sp.), molluscan fragments (pelecypods and gastropods), echinoidal fragments (LFT 5c). The grainstones beds are overlain by 2–3 m thick of framestones. These beds contain huge amounts of scleractinian corals and algae, with frequent amount of foraminifera, shell fragments and echinoids (LFT 6a). The upper part of this cycle type is marked by sandy algal grainstones dominated by *Lithothamnium* sp., foraminiferal tests and little amount of pellets are also present (LFT 5d).

The base of this cycle is composed of fossiliferous grainstones which could be interpreted as shoal sediments, deposited under moderate to high energy conditions, forming a transgressive hemi-cycle. The continuous rise in sea level led to the deposition of algal coralline framestones indicating a shoal margin facies. The coarse-grained nature of the coralline framestones reflects high energy and could be interpreted as maximum flooding zone. A distinctive decrease in sea level is marked by decimeters algal grainstones forming the regressive hemi-cycle in the upper part.

2.3.2. Medium scale cycles (Cycle sets)

These cycle sets stack of 3 cycles, form transgressive–regressive cycle sets, some 10–25 m in thickness. Each studied section is subdivided into 3 sequences (S1, S2 and S3) which will be explained later. Each sequence contains 3 cycle sets.

2.3.2.1. Restricted ramp cycle set. This cycle set has an average thickness of 15 m and consists of 3 small scale cycles. It is found in CS 1.1, CS 1.3 and CS 2.3 in Gabal Geneifa section (Fig. 10a), CS 1.1 and CS 1.3 in Gabal Gharra (Fig. 10b) and CS 1.1 and CS 2.1 in

Fig. 9. Shoal margin small scale cycle type.

Fig. 10. The three studied sections. (A) Gabal Geneifa. (B) Gabal Gharra. (C) Gabal Homeira.
Gabal Homeira (Fig. 10c). This cycle set consists of a vertical stacking of peritidal to tidal flat small scale cycles. In the lower part, the tidal flat sediments have an average thickness of 5 m and decrease upward to a thickness of 2 m. In contrast, the upper part of the peritidal beds is of greater thickness.

The lower part is interpreted as tidal flat deposits forming a transgressive hemi-cycle while the upper part that consists mainly of unconsolidated claystone indicates a shift toward a proximal supratidal setting and forms a progressive hemi-cycle set.

2.3.2.2. Back shoal to restricted ramp cycle set. It consists of a stack of up to 3 small scale cycles, ranges in thickness from 15 to 20 m. This cycle set type is identified in CS 2.1, CS 3.1 and CS 3.2 at the Gabal Genefe section (Fig. 10a), and CS 1.3, CS 2.3, CS 3.1 and CS 3.3 in Gabal Homeira (Fig. 10c). The lower part of this cycle set is about 12 m thick, which consists of yellowish brown to brown, compact, massive, argillaceous, fossiliferous, wacke/packstone, slightly ferruginous in the upper part. It contains echinodermal, molluscan and bryozoa fragments. The microfossils include algal fragments as *Lithothamnium* sp. and *Lithophyllum* sp.; foraminifers as *Operculina complanata* (Defrance), *Miogypsina intermedia* Drooger and *Amphistegina* sp. The beds grade upwards to brownish yellow and yellow bioclastic packstones and they contain a pectinid band, a very crowded with *Pecten beudanti* Basterot, *P. (Amussiopecten) bursigalis* Lamark. These beds also yield *Gastrana* sp.; gastropods, crustacea as *Balanus*; bryozoa and algae. The upper part of this cycle set, up to 8 m thick, consists of dark brown and yellowish brown; moderately compact; laminated; gyppiferous; ferruginous; rare fossiliferous; very slightly calcareous silty claystones and sandstones.

The *wacke/packstones* in the lower part can be interpreted as an initial transgression within this cycle set. During sea level rise, the distal lagoon related facies types are interpreted as retrograding over the proximal lagoon deposits and may represent a maximum flooding zone. The regressive hemi-cycle is interpreted to be marked by the transition from the distal lagoon to the restricted ramp in the upper part.

2.3.2.3. Shoal to back shoal cycle set. This cycle set has an average vertical thickness of 18 m and consists of 3 small scale cycles that are identified in CS 1.2, CS 2.2 and CS 3.2 in Gabal Genefe section (Fig. 10a), CS 1.2, CS 2.3, CS 3.1 and CS 3.2 in Gabal Gharra (Fig. 10b) and CS 1.2, CS 2.2 and CS 3.2 in Gabal Homeira (Fig. 10c). The basal part of this cycle set ranges in thickness from 4 to 6 m and consists of yellowish white to yellowish brown; moderately compact sandy bioclastic wackeestones, pebbly at its lower part. It is poorly fossiliferous, and contain some bad preserved bivalve shells, *Balanus concavus* part. It is poorly fossiliferous, and contain some bad preserved biv.-ere compact sandy bioclastic wackestones, pebbly at its lower part.

The upper part is up to 6 m thick, which consists mainly of sandy bioclastic wacke/packstones which contain hunge amount of bivalvian shells as *Pecten* sp. and *Chlamys* sp., echinoides, foraminiferas and algae. This cycle set is capped by thin bedded gysiferous, ferruginous, unconsolidated and very slightly calcareous silty claystone.

The wackestone in the lower part could be interpreted as an initial transgression. The continuous rise in sea level led to the deposition of distal moderate to high energy bioclastic grainstones indicating a shoal facies, and could be interpreted as a maximum flooding zone. The upper part consists of muddy facies which exhibits a depositional shift toward back shoal settings during the fall of sea-level. The claystones on the top of this cycle set suggest a low accommodation restricted ramp environment and a sequence boundary.

2.3.2.4. Shoal margin to shoal cycle set. It consists of a stack of up to 3 small scale cycles and ranges in thickness from 15 to 20 m. This cycle set type was observed only at the Gabal Gharra section and is identified in CS 2.1, CS 2.2 and CS 3.2 (Fig. 10b). The basal part, up to 2 m thick, consists of yellow to yellowish white, compact, massive, slightly sandy bioclastic grainstones. They are crowded with bivalves, gastropods, echinoderms and foraminifera. Overlying the basal part, brown to yellow, moderately hard, massive and grain supported algal coralline framestones dominated by scleractinian reef which is monospecific (*Leptastrea* sp.), and it is replaced in parts with algal limestone band. The upper part of this cycle set has a range in thickness of 5 to 6 m, and is composed of yellowish white, moderately compact, chalky bioclastic algal grainstones dominated by algae *Lithothamnium* sp. and *Lithophyllum* sp., echinoids, bryozoa and few coral fragments are also recorded.

The transgressive hemi-cycle resulted in the deposition of bioclastic grainstone beds. The maximum flooding zone is built up of algal coralline framestones interpreted as a shoal margin environment. The upper beds of this cycle set exhibit a shift from the shoal margin toward the shoal settings representing a regressive hemi-cycle.

2.3.3. Large scale cycles (sequences)

Three large scale cycles (sequences) are distinguished in the studied sections. Sequence 1 ranges in thickness from 45 to 65 m, and it constitutes 3 medium scale cycles and 9 small scale cycles. The base of this sequence is unexposed and its age is interpreted to correspond to the Late Burdigalian stage (18–16.38 My.), according to *Snedden* and *Chengjie Liu* (2010). Sequence 2 ranges in thickness between 20 and 40 m and is constituted of 3 cycle sets and 9 cycles. It matches the Langhian of the lower part of the Genefe formation. The base of this sequence is the boundary between Burdigalian and Langhian age. The age of S2 is interpreted to correspond to Late Burdigalian–Early Langhian stage (16.38–14.78 My.). Sequence 3 ranges in thickness between 18 and 47 m and constitutes of 3 cycle sets and 9 cycles. S3 is matches the *Serravallian* of the upper part of the Genefe formation. The base of this sequence is the boundary between Langhian and Serravallian age. The age of S3 is interpreted to correspond to Late Langhain–*Early Serravallian* stage (14.78–13.66 My.).

2.3.3.1. Gabal genefe section.

2.3.3.1.1. Sequence 1. Sequence 1 is 65 m thick (Fig. 10a) and it starts with 25 m of yellowish gray; moderately compact; thinly laminated, jointed, unconsolidated, ferruginous, gysiferous, shale, with gypsum bands and veins; very slightly calcareous, dipping to the West (20–30 deg.); intercalated with yellowish brown, sub-rounded to subangular, moderately sorted, semi-friable to moderately compact siltstones with shell fragments of bivalves overlain by 25 m of brownish white, compact, massive, jointed, slightly argillaceous sandy pack/stone in the upper part.

The Shane beds in the lower part of the sequence 1 indicate a restricted ramp related facies and could be interpreted as an initial transgressive hemifluctuation. During the sea level rise, the change from proximal shale beds to distal carbonate beds occurred. The
maximum flooding interval could be represented on the grainstones beds. The upper part, which is interpreted as a regressive hemisequence consists of muddy facies and might indicate a depositional shift toward the restricted ramp facies again during a sea-level fall.

2.3.3.1.2. Sequence 2. Sequence 2 is 20 m thick (Fig. 10b). The lower 12 m consists mainly of yellowish white compact, fine to medium, subangular to rounded, moderately sorted dolomitized quartz arenite. It is sometimes associated with grains of ferruginous materials and poorly ferrilithic with some molluscan fragments. On top of the sandstones there is grayish yellow, moderately compact bioclastic sandy pack/grainstones. The sand content is made up of fine to medium, subangular to subrounded quartz grains. It yields Chlamys radians (Nyst), Ch. (Ch.) costal (Fontannes), Ch. (Argopecten) macroirs (Sowerby), Pecten (P.) cristato-costatus Sacco, P. (P.) fraesi Fuchs, Crassostrea frondosa (Defrance), Miogypsina intermedia Drooger, Operculina sp. The upper part of this sequence is about 8 m thick and consists of greenish gray, soft to moderately compact, highly gypsiferous, ferruginous, unfossiliferous silty claystones.

The clastic beds in the lower part of the sequence 2 indicate a restricted ramp to back shoal related facies and could be interpreted as an initial transgressive hemisequence. During the sea level rise, the distal moderate energy shoal related facies types retrograded over the clastic beds and can be interpreted as maximum flooding zone. The upper part of this sequence could represent a regressive hemicycle. It consists of muddy facies which indicates a depositional shift toward a restricted ramp setting.

2.3.3.1.3. Sequence 3. The average thickness of sequence 3 is 3 to 18 m (Fig. 10a). The lower part is 10 m thick and is dominated by yellowbrown to brown, compact, massive, argillaceous, fossiliferous bioclastic wacke/packstones, slightly ferruginous in the upper part. These contain Chlamys (Macrochlamis) sordao Uoglini, Clypeaster intermedius Desmoulins, Lithothamnium sp., Lithophyllum sp., Operculina complanata (Defrance), Miogypsina intermedia Drooger, Amphistegina sp. Above the bioclastic packstones, thick-bedded bioclastic grainstones beds are dominated by large sized pectinids as Pecten (Oppenheimpecten) convexo-costatus Abich, Chlamys (Macrochlamis) sordao Uoglini and other molluscs, echinoderms, bryozoans and foraminifers as Gastrana sp., Conus (Lithoconus) mercati Brocchi, Ampullina (Pseudamara) maefadyeni Abbass, Retepora sp., Holoparella sp., Amphistegina sp., Miogypsina intermedia Drooger, Operculina complanata (Defrance). The bioclastic packstones partially display intense ferrugination and bioturbated wackestone beds, which exhibit a sharp contact. The maximum flooding interval could be placed on the shoal beds. Falling sea level is interpreted by the transition from the distal open marine to proximal restricted ramp environment again in the upper part.

2.3.3.2.2. Sequence 2. The average thickness of sequence 2 of the Gharra section is about 38 m (Fig. 10b). Its lower part, 20 m thick, consists of bioclastic calcareous sandstones and fossiliferous pack/grainstones. The sandstones contain Crassostrea frondosa (Defrance), Alectrionyalla plicatula (Gmelin), Chlamys scabrella Lamarck, Pecten (Flabellipunct) flabelliformis (Brocchi), Anomia burligalesis Defrance, Clementia sp., Paracastella steffanini (Desio). The pack/grainstones beds contain Crassostrea frondosa (Defrance), Alectronyalla plicatula (Gmelin), Pecten (P.) cristato-costatus Sacco, Chlamys scabrella Lamarck, Ch. (Argopecten) macroirs (Sowerby), Ch. senatoria (Gmelin), Cardium sp., Callista (Costacallista) erycina (Linné), Paphia (Callistotapes) vetula (Bastrot), Clementia sp., Diplodonta sp., Cari sp., Utraria sp., Gastrana laminosa (Sowerby), Turritella (T.) terebralis Lamarck, Echinolampas amplus Fuchs, Clypeaster marginatus Lamarck, Scutella ammonis Fuchs, Balanus concavus (Brom), Lithothamnium sp., Lithophyllum sp.

On top of these beds, there are algal coralline framestones that contain high amounts of a scleractinian coral Leptastrea sp., and it is replaced in parts with an algal grainstone beds. The upper part of this sequence is 18 m thick consisting of yellowish white, compact, massive, slightly argillaceous, and slightly sandy bioclastic algal pack/grainstones. The algae are represented by Lithothamnium sp., and Lithophyllum sp. This sequence is capped by 1 m thick bioturbated wackestone beds, which exhibit a sharp contact. The wackestones partially display intense ferrugination and dolomitization.

Bioclastic sandstones and pack/grainstones facies which constitutes the lower part of this sequence is interpreted as a shoal environment and could represent an initial transgressive hemisequence. During the subsequent sea level rise, more distal coral reef related facies types retrograded over the shoal beds. The maximum flooding interval could be represented at the algal coralline framestone beds. The relative fall in sea level is marked by the transition from the shoal margin to the shoal facies in the upper part of the sequence. The bioturbated wackestone layer on the top of this sequence suggests a low accommodation restricted ramp environment and a sequence boundary between sequence 2 and sequence 3.

2.3.3.2.3. Sequence 3. The thickness of sequence 3 is about 40 m (Fig. 10b), starting with 18 m thick bioclastic pack/framestones. Most beds are moderately sorted and rich in fossils like Crassostrea frondosa (Defrance), Alectrionyalla plicatula (Gmelin), Chlamys (Argopecten) subunalvinae (Blanckenhorn), Ch. (Argopecten) macroirs (Sowerby), Ch. malvinae (Dubois), Ch. senatoria (Gmelin),
broken parts of echinoids, bryozoaa, few corals, foraminifers as Miogypsinia intermedia Drooger. The thickness of the upper part of the succession is about 22 m and consists mainly of yellowish white to white, moderately compact, chalky bioclastic algal pack/grainstones. It yields some shell fragments, echinoid plates and undefined foraminifer. Also, it yields Lithothamnium sp. and Lithophyllum sp.

The lower part of this sequence is interpreted as a shoal related facies, which may represent a transgressive hemi-sequence. During the subsequent sea level rise, more distal high energy shelf margin related facies types retrograded over the shoal beds and the maximum flooding interval is interpreted at the reef beds. The relative fall in sea level could be marked by the transition from the shoal margin related facies to the proximal shoal environment in the upper part of the sequence.

2.3.3.3. Gabal Homeira section. 2.3.3.3.1. Sequence 1. Sequence 1 is 46 m thick (Fig. 10c). The lower part is 23 m and begins mainly with varicolored, moderately compact, fractured, unfossiliferous, slightly calcareous shale; yellowish brown, fine to medium grained, subrounded, moderately sorted quartz arenite; poorly fossiliferous and intercalated with sandy dolostone bands. Above these facies types, there are yellowish brown, soft to moderately compact, slightly argillaceous, sandy pack/grainstones. These facies types were rich with bivalves, gastropods, echinoderms, bryozoans, foraminifers, algae, in the form of Crassotrema frondosa (De Serrés), Alecctonella plicatula (Gmelin), Pecten fuchsi Fontannes, P. (P.) zizinitae Blanckenhorn, Chlamys malvineae (Dubois), Ch. (Aquitecten) scabriscula (Matheron), Ficus sp., Turrithella (T.) cleveleyi Abbass, T. (Eichwaldiella) foudai Abbass, T. (T.) terebralis Lamarck, Bursa faizae Abbass, Echinolampas amplus Fuchs, E. plagiiosomous Agassiz, Cypleaster marginatus Lamarck, Holoporella polythele (Russ), Lithothamnium sp. and Lithophyllum sp., Operculina complanata (Defrance), Miogypsinia intermedia Drooger.

The upper part is about 22 m thick and consists mainly of bioclastic wacke/packstone beds. These facies types were interpreted as a shoal related facies in the upper part of this sequence. The overall sedimentary nature of the Miocene sediments in the Genefa, Gharra and Homeira sections at Cairo–Suez District in northern Egypt is dominated by shallow marine carbonate-siliciclastic rocks and included in Gharra and Genefa formation.

14. Different facies types have been distinguished based on textures, rock color, grain size, sorting, roundness, components, thickness, bedding style, sedimentary features, interpretation of depositional setting and the appearance according to lithofacies code. These facies types were grouped into 6 lithofacies associations (LFA) ranging from peritidal (LFA 1) to shoal margin (LFA 6).

The following facies types are stacked into 4 cycle types. These cycle types build up to nine 4th order cycle sets, which are vertically arranged in three 3rd orders and subsequently subdivided into fourth order cycle sets and fifth-order cycles. The age the three orders builds up are: (1) Early Langhian stage (18–16.38 My), Late Burdigalian–Early Langhian stage (16.38–14.78 My) and Late Langhian–Early Serravallian stage (14.78–13.66 My).

3. Conclusions

The overall sedimentary nature of the Miocene sediments in Genefa, Gharra and Homeira sections at Cairo–Suez District in northern Egypt is dominated by shallow marine carbonate-siliciclastic rocks and included in Gharra and Genefa formation.

14. Different facies types have been distinguished based on textures, rock color, grain size, sorting, roundness, components, thickness, bedding style, sedimentary features, interpretation of depositional setting and the appearance according to lithofacies code. These facies types were grouped into 6 lithofacies associations (LFA) ranging from peritidal (LFA 1) to shoal margin (LFA 6).

The lithofacies types are stacked into 4 cycle types. These cycle types build up to nine 4th order cycle sets, which are vertically arranged in three 3rd orders and subsequently subdivided into fourth order cycle sets and fifth-order cycles. The age the three cycles are interpreted to correspond to the Late Burdigalian stage (18–16.38 My), Late Burdigalian–Early Langhian stage (16.38–14.78 My) and Late Langhian–Early Serravallian stage (14.78–13.66 My).

The lower part of this sequence consists of sandstone beds which could be interpreted as a restricted ramp environment that was deposited under low energy conditions and formed a transgressive hemi-sequence. During the subsequent sea level rise, the distal open marine shelf related facies types retrograded over the restricted ramp beds. The maximum flooding interval is interpreted at the grainstone shelf beds. The relative decrease in sea level is marked by a transition from the distal shelf to the back shoal related facies in the upper part of this sequence.

2.3.3.3.3. Sequence 3. Sequence 3 attains about 35 m thick in Homeira section (Fig. 10c). The thickness of the lower hemi-sequence is 16 m and starts with yellowish white bioclastic wacke/packstone beds, containing broken parts of echinoids as Scutella ammonis Fuchs, Parascutella stefanini (Desio) and echinoid spines; algae as Lithothamnium sp. and Lithophyllum sp.; and foraminifers as Amphistegina sp. Above wacke/packstone beds, there are brownish white, moderately to highly compact, massive sandstone pack/grainstone beds. These facies types were interpreted at the grainstone shelf beds. The relative decrease in sea level is marked by a transition from the distal shoal to the back shoal related facies in the upper part of this sequence.

These facies types were interpreted as a shoal related facies in the upper part of this sequence.
Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this research group No. (RG-1435-033).

References

Barron, T., 1907. The Topography and Geology of the District Between Cairo and Suez. Egyptian Survey Department, Cairo, p. 133.

