3.8 Harmonic Functions

Let $U \subset \mathbb{R}^{n}$ be an open set. Let $f: U \rightarrow \mathbb{C}$. If f is C^{2} on U, and satisfies the Laplace equation

$$
\Delta f(x):=\sum_{k=1}^{n} \frac{\partial^{2} f}{\partial x_{k}^{2}}(x)=0, \quad x \in U,
$$

then we say that f is a harmonic function on U. The symbol Δ is called the Laplace operator.
In this course, we focus on the case $n=2$, and identify \mathbb{R}^{2} with \mathbb{C}. The Laplace equation becomes

$$
\Delta f(z)=\frac{\partial^{2} f}{\partial x^{2}}(z)+\frac{\partial^{2} f}{\partial y^{2}}(z)=0, \quad z \in U .
$$

Note that a complex function is harmonic if and only if both of its real part and imaginary part are harmonic.

Theorem 3.8.1. Let f be analytic in an open set $U \subset \mathbb{C}$. Then f is harmonic in U.
Proof. Let $f=u+i v$. We have seen that f is infinitely many times complex differentiable, which implies that u and v are infinitely many times real differentiable. From the Cauchy-Riemann equation, we get $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ in U. Thus,

$$
u_{x x}+u_{y y}=v_{y x}-v_{x y}=0, \quad v_{x x}+v_{y y}=-u_{y x}+u_{x y}=0,
$$

which implies that both u and v are harmonic, and so is f.
From now on, we assume that a harmonic function is always real valued.
Lemma 3.8.1. Let u be a real valued C^{2} function defined in an open set U. Then u is harmonic in U if and only if $u_{x}-i u_{y}$ is analytic in U.

Proof. Suppose u is harmonic in U. Then $u_{x}, u_{y} \in C^{1}$ and $\left(u_{x}\right)_{x}=\left(-u_{y}\right)_{y}$ and $\left(u_{x}\right) y=$ $-\left(-u_{y}\right)_{x}$. Cauchy-Riemann equation is satisfied by u_{x} and $-u_{y}$. So $u_{x}-i u_{y}$ is analytic. On the other hand, if $u_{x}-i u_{y}$ is analytic, then the Cauchy-Riemann equation implies that $\left(u_{x}\right)_{x}=\left(-u_{y}\right)_{y}$, i.e., $u_{x x}+u_{y y}=0$. So u is harmonic.

Definition 3.8.1. Let u be a harmonic function in a domain U. If a real valued function v satisfies that $u+i v$ is analytic in U, then we say that v is a harmonic conjugate of u in U.

A harmonic conjugate must also be a harmonic function because it is the imaginary part of an analytic function. If v and w are both harmonic conjugates of u in U, then $v_{x}=-u_{y}=w_{x}$ and $v_{y}=u_{x}=w_{y}$ in U. Since U is connected, we get $v-w$ is constant. This means that, the harmonic conjugates of a harmonic function, if it exists, are unique up to an additive constant. Also note that if v is a harmonic conjugate of u, then $-u$ (instead of u) is a harmonic conjugate of v. This is because $-i(u+i v)=v-i u$ is analytic.

Theorem 3.8.2. Let u be a harmonic function in a simply connected domain U. Then there is a harmonic conjugate of u in U.

Proof. Let $f=u_{x}-i u_{y}$ in U. From the above lemma, f is holomorphic in U. Since U is simply connected, f has a primitive in U, say F. Write $F=\widetilde{u}+i \widetilde{v}$. Then

$$
u_{x}-i u_{y}=f=F^{\prime}=\widetilde{u}_{x}-i \widetilde{u}_{y} .
$$

Thus, $u_{x}=\widetilde{u}_{x}$ and $u_{y}=\widetilde{u}_{y}$ in U. Since U is connected, we see that $\widetilde{u}-u$ is a real constant. Let $C=\widetilde{u}-u \in \mathbb{R}$. Then $F-C=u+i \widetilde{v}$ is holomorphic in U. Thus, \widetilde{v} is a harmonic conjugate of u.

Remark. The theorem does not hold if we do not assume that U is simply connected. However, a harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk $D\left(z_{0}, r\right) \subset U$, there is f, which is analytic in $D\left(z_{0}, r\right)$ and satisfies that $\operatorname{Re} f=u$. Since such f is infinitely many times complex differentiable, we see that u is infinitely many times real differentiable in $D\left(z_{0}, r\right)$. Since $D\left(z_{0}, r\right) \subset U$ can be chosen arbitrarily, we see that every harmonic function is infinitely many times real differentiable.

Example.

1. Let $D=\mathbb{C} \backslash\{0\}$. Let $u(z)=\ln |z|=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$. Then $u_{x}=\frac{x}{x^{2}+y^{2}}$ and $u_{y}=\frac{y}{x^{2}+y^{2}}$. So $u_{x}-i u_{y}=\frac{1}{x+i y}$ is holomorphic in D. From the above lemma, u is harmonic. If v is a harmonic conjugate of u in D, then $u+i v$ is a primitive of $u_{x}-i u_{y}=\frac{1}{z}$ in D. However, we already know that $\frac{1}{z}$ has no primitive in $\mathbb{C} \backslash\{0\}$. Recall that $\int_{|z|=1} \frac{d z}{z}=2 \pi i \neq 0$. Thus, u has no harmonic conjugates in D.
2. Let $u(x, y)=x^{2}+2 x y-y^{2}$. Then $u_{x x}+u_{y y}=2-2=0$. So u is harmonic in \mathbb{R}^{2}. We now find a harmonic conjugate of u. If v is a harmonic conjugate, then $v_{y}=u_{x}=2 x+2 y$. Thus, $v=2 x y+y^{2}+h(x)$, where $h(x)$ is a differentiable function in x. From $-u_{y}=v_{x}$, we get $2 y-2 x=2 y+h^{\prime}(x)$. So we may choose $h(x)=-x^{2}$. So one harmonic conjugate of u is $2 x y+y^{2}-x^{2}$.

Theorem 3.8.3. [Mean Value Theorem for Harmonic Functions] Let u be harmonic on $D\left(z_{0}, R\right)$. Then for any $r \in(0, R)$,

$$
\begin{aligned}
& u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta \\
& u\left(z_{0}\right)=\frac{1}{\pi r^{2}} \int_{\left|z-z_{0}\right| \leq r} u(z) d x d y
\end{aligned}
$$

Proof. This follows from the Mean Value Theorem for holomorphic functions, and the existence of harmonic conjugates of u in the simply connected domain $D\left(z_{0}, R\right)$.

Corollary 3.8.1. With the above setup, if u attains its maximum at z_{0}, then u is constant in $D\left(z_{0}, R\right)$.

Proof. We have seen a similar proposition, which says that if f is holomorphic in $D\left(z_{0}, R\right)$, and $|f|$ attains its maximum at z_{0}, then $|f|$ is constant in $D\left(z_{0}, R\right)$. The two proofs are similar.

Here is another proof. Let f be analytic such that $u=\operatorname{Re} f$. Then e^{f} is also analytic, and $\left|e^{f}\right|=e^{u}$. Since u attains its maximum at $z_{0},\left|e^{f}\right|$ also attains its maximum at z_{0}. An earlier proposition shows that $\left|e^{f}\right|$ is constant, which implies that $u=\log \left|e^{f}\right|$ is constant.

Theorem 3.8.4. [Maximum Principle for Harmonic Functions] Let u be harmonic in a domain U.
(i) Suppose that u has a local maximum at $z_{0} \in U$. Then u is constant.
(ii) If U is bounded, and u is continuous on \bar{U}, then there is $z_{0} \in \partial U$ such that $u\left(z_{0}\right)=$ $\max \{u(z): z \in U\}$.
(iii) The above statements also hold if "maximum" is replaced by "minimum".

Proof. (i) From the above corollary, there is $r_{0}>0$ such that u is constant in $D\left(z_{0}, r_{0}\right)$. Let $w \in U$. Since D is connected, we may find a finite sequence of disks $D_{k}=D\left(z_{k}, r_{k}\right), 0 \leq k \leq n$, in U, such that $w \in D_{n}$ and $D_{k-1} \cap D_{k} \neq \emptyset, 1 \leq k \leq n$. Since each D_{k} is simply connected, there is f_{k} holomorphic in D_{k} such that $u=\operatorname{Re} f_{k}$ in D_{k}. We already see that u is constant in D_{0}. So $\operatorname{Re} f_{1}=u$ is constant in $D_{0} \cap D_{1}$. From C-R equations, we see that f_{1} is constant in $D_{0} \cap D_{1}$. From the Uniqueness Theorem, we see that f_{1} is constant in D_{1}. Thus, $u=\operatorname{Re} f_{1}$ is constant in D_{1}. Using induction, we see that u is constant in every D_{k}. Since $D_{k-1} \cap D_{k} \neq \emptyset$, u is constant in $\bigcup_{k=0}^{n} D_{k}$. Thus, $f(w)=f\left(z_{0}\right)$ as $w \in D_{n}$ and $z_{0} \in D_{0}$.
(ii) Since U is bounded, \bar{U} is compact. Since u is continuous on \bar{U}, it attains its maximum at some $w_{0} \in \bar{U}$. If $w_{0} \in \partial U$, we may let $z_{0}=w_{0}$. If $w_{0} \in U$, then (i) implies that u is constant in U. The continuity then implies that u is constant in \bar{U}. We may take z_{0} to by any point on ∂U.
(iii) Note that $-u$ is also harmonic, and when $-u$ attains its maximum, u attains its minimum.

Corollary 3.8.2. Suppose u and v are both harmonic in a bounded domain U and continuous on \bar{U}. Suppose that $u=v$ on ∂U. Then $u=v$ on \bar{U}.

Proof. Let $h=u-v$. Then h is harmonic in U, continuous on \bar{U}, and $h \equiv 0$ on ∂U. From the above theorem, h attains its maximum and minimum at ∂U. So h has to be 0 everywhere, i.e., $u=v$ in \bar{U}.

The above corollary says that, if u is harmonic in a bounded domain U and continuous on \bar{U}, then the values of u on U are determined by the values of u on ∂U.

We introduce the differential operators

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) .
$$

This mean that, if $f=u+i v$, then

$$
\begin{aligned}
& f_{z}:=\frac{\partial f}{\partial z}=\frac{1}{2}\left(u_{x}+i v_{x}\right)-\frac{i}{2}\left(u_{y}+i v_{y}\right)=\frac{u_{x}+v_{y}}{2}+i \frac{v_{x}-u_{y}}{2} ; \\
& f_{\bar{z}}:=\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(u_{x}+i v_{x}\right)+\frac{i}{2}\left(u_{y}+i v_{y}\right)=\frac{u_{x}-v_{y}}{2}+i \frac{v_{x}+u_{y}}{2} .
\end{aligned}
$$

So the Cauchy-Riemann equation is equivalent to $f_{\bar{z}}=0$; and if f is holomorphic, then $f_{z}=$ $u_{x}+i v_{x}=f^{\prime}$. Moreover, it is clear that

$$
\frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=\frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}=\frac{1}{4} \Delta .
$$

Thus, if f is holomorphic, then $\Delta f=0$, from which we see again that f is harmonic. If u is harmonic, then from $\partial_{\bar{z}} \partial z u=\frac{1}{4} \Delta u=0$ we see that $\partial_{z} u$ is holomorphic, which is used in a proof a theorem.

Remark. The smoothness, mean value theorem and the maximum principle also hold for harmonic functions in R^{n} for $n \geq 3$. But the technique of complex analysis can not be used. For example, the mean value theorem follows from the divergence theorem.

Homework. Chapter VIII, §1: 7 (a,b,c,e).

1. Find all real-valued C^{2} differentiable functions h defined on $(0, \infty)$ such that $u(x, y)=$ $h\left(x^{2}+y^{2}\right)$ is harmonic on $\mathbb{C} \backslash\{0\}$.
2. Prove that any positive harmonic function in \mathbb{R}^{2} is constant. Hint: If f is an entire function with $\operatorname{Re} f>0$, then consider e^{-f}.
Remark: This statement does not hold for R^{d} with $d \geq 3$.
3. Let u be a nonconstant harmonic function on \mathbb{C}. Show that for any $c \in \mathbb{R}, u^{-1}(c)$ is unbounded. Hint: $\{|z|>R\}$ is connected for any $R>0$.

3.9 Winding Numbers

Let γ be a closed curve, and $\alpha \in \mathbb{C} \backslash \gamma$. The winding number or index of γ with respect to α is

$$
W(\gamma, \alpha)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-\alpha} d z .
$$

Example. Suppose γ is a Jordan curve. If α lies in the exterior of γ, then applying Cauchy's Theorem to $f(z)=\frac{1}{z-\alpha}$, we get $W(\gamma, \alpha)=0$. If α lies in the interior of γ, then applying Cauchy's Formula to $f(z)=1$, we get $W(\gamma, \alpha)=1$ or -1 , where the sign depends on the orientation of γ.

Lemma 3.9.1. $W(\gamma, \alpha) \in \mathbb{Z}$.
Proof. Suppose γ is defined on $[a, b]$. Define $F(t)=\int_{a}^{t} \frac{\gamma^{\prime}(s)}{\gamma(s)-\alpha} d s, a \leq t \leq b$. Then F is continuous on $[a, b], F(a)=0, F(b)=2 \pi i W(\gamma, \alpha)$, and $F^{\prime}(t)=\frac{\gamma^{\prime}(t)}{\gamma(t)-\alpha}$ for $t \in[a, b]$ other than the partition points, say $a=x_{0}<x_{1}<\cdots<x_{n}=b$. We now compute

$$
\frac{d}{d t} e^{-F(t)}(\eta(t)-\alpha)=e^{-F(t)} \eta^{\prime}(t)-e^{-F(t)} F^{\prime}(t)(\eta(t)-\alpha)=0, \quad t \in[a, b] \backslash\left\{x_{0}, \ldots, x_{n}\right\}
$$

Hence there is a constant $C \in \mathbb{C}$ such that $C(\eta(t)-\alpha)=e^{F(t)}, a \leq t \leq b$. Since η is closed, we have $e^{F(b)}=e^{F(a)}=e^{0}=1$, which implies that $F(b) \in 2 \pi i \mathbb{Z}$. So $W(\gamma, \alpha)=\frac{1}{2 \pi i} F(b) \in \mathbb{Z}$.

Remark. Let θ_{0} be an argument of the C in the above proof. From $\eta(t)-\alpha=C e^{F(t)}$ we see that $\operatorname{Im} F(t)+\theta_{0}$ is an argument of $\eta(t)-\alpha$ for $a \leq t \leq b$. Now suppose h is a continuous function on $[a, b]$ such that $h(t)$ is an argument of $\eta(t)-\alpha$ for $a \leq t \leq b$, then $\left(h(t)-\operatorname{Im} F(t)-\theta_{0}\right) /(2 \pi i)$ is an integer-valued continuous function on $[a, b]$, which must be constant. Thus,

$$
W(\gamma, \alpha)=\frac{F(b)-F(a)}{2 \pi i}=\frac{i \operatorname{Im} F(b)-i \operatorname{Im} F(a)}{2 \pi i}=\frac{h(b)-h(a)}{2 \pi} .
$$

This means that $2 \pi W(\gamma, \alpha)$ equals to the total increment of $\arg (z-\alpha)$ along γ.
Lemma 3.9.2. The map $\alpha \mapsto W(\gamma, \alpha)$ is continuous on $\mathbb{C} \backslash \gamma$.
Proof. Fix $\alpha_{0} \in \mathbb{C} \backslash \gamma$. Let $\left(\alpha_{n}\right)$ be a sequence that converges to α_{0}. It suffices to show that $\frac{1}{z-\alpha_{n}} \rightarrow \frac{1}{z-\alpha_{0}}$ uniformly on $z \in \gamma$. Let $r=\operatorname{dist}\left(\alpha_{0}, \gamma\right)>0$. For n big enough, we have $\left|\alpha_{n}-\alpha_{0}\right|<r / 2$, which implies that $\operatorname{dist}\left(\alpha_{n}, \gamma\right) \geq r / 2$. For those n, we have

$$
\left|\frac{1}{z-\alpha_{n}}-\frac{1}{z-\alpha_{0}}\right|=\frac{\left|\alpha_{n}-\alpha_{0}\right|}{\left|z-\alpha_{n}\right|\left|z-\alpha_{0}\right|} \leq \frac{\left|\alpha_{n}-\alpha_{0}\right|}{r^{2} / 2}, \quad z \in \gamma .
$$

Thus, $\left\|\frac{1}{z-\alpha_{n}}-\frac{1}{z-\alpha_{0}}\right\|_{\gamma} \leq \frac{\left|\alpha_{n}-\alpha_{0}\right|}{r^{2} / 2}$ when n is big enough, which implies that $2 \pi i W\left(\gamma, \alpha_{n}\right)=$ $\int_{\gamma} \frac{1}{z-\alpha_{n}} d z \rightarrow \int_{\gamma} \frac{1}{z-\alpha_{0}} d z=2 \pi i W\left(\gamma, \alpha_{0}\right)$.

Corollary 3.9.1. $W(\gamma, \cdot)$ is constant on each connected component of $\mathbb{C} \backslash \gamma$.
Proof. This follows from the above two lemmas and the fact that a continuous integer valued function is constant on a domain.

Corollary 3.9.2. $W(\gamma, \alpha)=0$ if α lies on the unbounded component of $\mathbb{C} \backslash \gamma$.
Proof. This follows from the fact that, as $\alpha \rightarrow \infty, \frac{1}{z-\alpha} \rightarrow 0$ uniformly in $z \in \gamma$.
We define a contour γ to be a "sum" of finitely many closed curves $\gamma_{k}, 1 \leq k \leq n$, which may or may not have intersections. The repetitions in γ_{k} 's are allowed. The integral along a contour is defined to be $\int_{\gamma}=\sum_{k=1}^{n} \int_{\gamma_{k}}$. The winding number of a contour γ with respect to $\alpha \in \mathbb{C} \backslash \gamma=\mathbb{C} \backslash \bigcup_{k=1}^{n} \gamma_{k}$ is $W(\gamma, \alpha)=\sum_{k=1}^{n} W\left(\gamma_{k}, \alpha\right)$. The above propositions also hold for contours.

Examples.

1. The winding numbers of a trefoil knot in 5 different domains.

Observe that the winding number increases by 1 if we cross the contour from its right to its left; decreases by 1 if we cross the contour from its left to its right.

Theorem 3.9.1. [The General Cauchy's Theorem] Let f be holomorphic in a domain U. Let γ be a contour in U such that $W(\gamma, \alpha)=0$ for every $\alpha \in \mathbb{C} \backslash U$. Then $\int_{\gamma} f=0$.

The interested reader may refer to Chapter IV, $\S 3$ of Lang's book for a proof. Note that the condition that $W(\gamma, \alpha)=0$ for every $\alpha \in \mathbb{C} \backslash U$ is necessary. For otherwise we may construct a counterexample: $f(z)=\frac{1}{z-\alpha}$.
Theorem 3.9.2. [The General Cauchy's Formula] Let f be holomorphic in a domain U. Let γ be a contour in U such that for every $\alpha \in \mathbb{C} \backslash U, W(\gamma, \alpha)=0$. Let $z_{0} \in U$. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z=W\left(\gamma, z_{0}\right) f\left(z_{0}\right)
$$

Proof. Assuming the general Cauchy's Theorem, the proof of this theorem is not difficult. Let $r>0$ be such that $\bar{D}\left(z_{0}, r\right) \subset U$. Define a contour η to be $\gamma+\left(-W\left(\gamma, z_{0}\right)\right)\left\{\left|z-z_{0}\right|=r\right\}$. Here if $W\left(\gamma, z_{0}\right)=0$, then $\eta=\gamma$; if $W\left(\gamma, z_{0}\right)>0$, this should be understood as $\eta=\gamma+$ $W\left(\gamma, z_{0}\right)\left\{\left|z-z_{0}\right|=r\right\}^{-}$. If Let $U^{\prime}=U \backslash\left\{z_{0}\right\}$. Then for any $\alpha \in \mathbb{C} \backslash U^{\prime}, W(\eta, \alpha)=0$. Since $\frac{f(z)}{z-z_{0}}$ is holomorphic in U^{\prime}, from the general Cauchy's Theorem,

$$
\begin{gathered}
0=\frac{1}{2 \pi i} \int_{\eta} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z-\frac{W\left(\gamma, z_{0}\right)}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{z-z_{0}} d z \\
=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z-W\left(\gamma, z_{0}\right) f\left(z_{0}\right),
\end{gathered}
$$

where the last equality follows from the Cauchy's Formula for Jordan curves.

Homework. Find the winding numbers for a given closed curve. See the course webpage.

