
3.8 Harmonic Functions

Let U ⊂ Rn be an open set. Let f : U → C. If f is C2 on U , and satisfies the Laplace equation

∆f(x) :=

n∑
k=1

∂2f

∂x2
k

(x) = 0, x ∈ U,

then we say that f is a harmonic function on U . The symbol ∆ is called the Laplace operator.
In this course, we focus on the case n = 2, and identify R2 with C. The Laplace equation

becomes

∆f(z) =
∂2f

∂x2
(z) +

∂2f

∂y2
(z) = 0, z ∈ U.

Note that a complex function is harmonic if and only if both of its real part and imaginary part
are harmonic.

Theorem 3.8.1. Let f be analytic in an open set U ⊂ C. Then f is harmonic in U .

Proof. Let f = u+iv. We have seen that f is infinitely many times complex differentiable, which
implies that u and v are infinitely many times real differentiable. From the Cauchy-Riemann
equation, we get ux = vy and uy = −vx in U . Thus,

uxx + uyy = vyx − vxy = 0, vxx + vyy = −uyx + uxy = 0,

which implies that both u and v are harmonic, and so is f .

From now on, we assume that a harmonic function is always real valued.

Lemma 3.8.1. Let u be a real valued C2 function defined in an open set U . Then u is harmonic
in U if and only if ux − iuy is analytic in U .

Proof. Suppose u is harmonic in U . Then ux, uy ∈ C1 and (ux)x = (−uy)y and (ux)y =
−(−uy)x. Cauchy-Riemann equation is satisfied by ux and −uy. So ux − iuy is analytic.
On the other hand, if ux − iuy is analytic, then the Cauchy-Riemann equation implies that
(ux)x = (−uy)y, i.e., uxx + uyy = 0. So u is harmonic.

Definition 3.8.1. Let u be a harmonic function in a domain U . If a real valued function v
satisfies that u+ iv is analytic in U , then we say that v is a harmonic conjugate of u in U .

A harmonic conjugate must also be a harmonic function because it is the imaginary part of
an analytic function. If v and w are both harmonic conjugates of u in U , then vx = −uy = wx
and vy = ux = wy in U . Since U is connected, we get v − w is constant. This means that, the
harmonic conjugates of a harmonic function, if it exists, are unique up to an additive constant.
Also note that if v is a harmonic conjugate of u, then −u (instead of u) is a harmonic conjugate
of v. This is because −i(u+ iv) = v − iu is analytic.
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Theorem 3.8.2. Let u be a harmonic function in a simply connected domain U . Then there
is a harmonic conjugate of u in U .

Proof. Let f = ux− iuy in U . From the above lemma, f is holomorphic in U . Since U is simply
connected, f has a primitive in U , say F . Write F = ũ+ iṽ. Then

ux − iuy = f = F ′ = ũx − iũy.

Thus, ux = ũx and uy = ũy in U . Since U is connected, we see that ũ − u is a real constant.
Let C = ũ−u ∈ R. Then F −C = u+ iṽ is holomorphic in U . Thus, ṽ is a harmonic conjugate
of u.

Remark. The theorem does not hold if we do not assume that U is simply connected. However,
a harmonic conjugate always exists locally: if u is a harmonic function in an open set U , then
for any disk D(z0, r) ⊂ U , there is f , which is analytic in D(z0, r) and satisfies that Re f = u.
Since such f is infinitely many times complex differentiable, we see that u is infinitely many
times real differentiable in D(z0, r). Since D(z0, r) ⊂ U can be chosen arbitrarily, we see that
every harmonic function is infinitely many times real differentiable.

Example.

1. Let D = C \ {0}. Let u(z) = ln |z| = 1
2 ln(x2 + y2). Then ux = x

x2+y2
and uy = y

x2+y2
.

So ux − iuy = 1
x+iy is holomorphic in D. From the above lemma, u is harmonic. If v is a

harmonic conjugate of u in D, then u+ iv is a primitive of ux − iuy = 1
z in D. However,

we already know that 1
z has no primitive in C \ {0}. Recall that

∫
|z|=1

dz
z = 2πi 6= 0.

Thus, u has no harmonic conjugates in D.

2. Let u(x, y) = x2 +2xy−y2. Then uxx+uyy = 2−2 = 0. So u is harmonic in R2. We now
find a harmonic conjugate of u. If v is a harmonic conjugate, then vy = ux = 2x + 2y.
Thus, v = 2xy + y2 + h(x), where h(x) is a differentiable function in x. From −uy = vx,
we get 2y − 2x = 2y + h′(x). So we may choose h(x) = −x2. So one harmonic conjugate
of u is 2xy + y2 − x2.

Theorem 3.8.3. [Mean Value Theorem for Harmonic Functions] Let u be harmonic on
D(z0, R). Then for any r ∈ (0, R),

u(z0) =
1

2π

∫ 2π

0
u(z0 + reiθ)dθ;

u(z0) =
1

πr2

∫
|z−z0|≤r

u(z)dxdy.

Proof. This follows from the Mean Value Theorem for holomorphic functions, and the existence
of harmonic conjugates of u in the simply connected domain D(z0, R).
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Corollary 3.8.1. With the above setup, if u attains its maximum at z0, then u is constant in
D(z0, R).

Proof. We have seen a similar proposition, which says that if f is holomorphic in D(z0, R), and
|f | attains its maximum at z0, then |f | is constant in D(z0, R). The two proofs are similar.

Here is another proof. Let f be analytic such that u = Re f . Then ef is also analytic, and
|ef | = eu. Since u attains its maximum at z0, |ef | also attains its maximum at z0. An earlier
proposition shows that |ef | is constant, which implies that u = log |ef | is constant.

Theorem 3.8.4. [Maximum Principle for Harmonic Functions] Let u be harmonic in a
domain U .

(i) Suppose that u has a local maximum at z0 ∈ U . Then u is constant.

(ii) If U is bounded, and u is continuous on U , then there is z0 ∈ ∂U such that u(z0) =
max{u(z) : z ∈ U}.

(iii) The above statements also hold if “maximum” is replaced by “minimum”.

Proof. (i) From the above corollary, there is r0 > 0 such that u is constant in D(z0, r0). Let
w ∈ U . Since D is connected, we may find a finite sequence of disks Dk = D(zk, rk), 0 ≤ k ≤ n,
in U , such that w ∈ Dn and Dk−1 ∩Dk 6= ∅, 1 ≤ k ≤ n. Since each Dk is simply connected,
there is fk holomorphic in Dk such that u = Re fk in Dk. We already see that u is constant in
D0. So Re f1 = u is constant in D0 ∩D1. From C-R equations, we see that f1 is constant in
D0 ∩D1. From the Uniqueness Theorem, we see that f1 is constant in D1. Thus, u = Re f1 is
constant in D1. Using induction, we see that u is constant in every Dk. Since Dk−1 ∩Dk 6= ∅,
u is constant in

⋃n
k=0Dk. Thus, f(w) = f(z0) as w ∈ Dn and z0 ∈ D0.

(ii) Since U is bounded, U is compact. Since u is continuous on U , it attains its maximum
at some w0 ∈ U . If w0 ∈ ∂U , we may let z0 = w0. If w0 ∈ U , then (i) implies that u is constant
in U . The continuity then implies that u is constant in U . We may take z0 to by any point on
∂U .

(iii) Note that −u is also harmonic, and when −u attains its maximum, u attains its
minimum.

Corollary 3.8.2. Suppose u and v are both harmonic in a bounded domain U and continuous
on U . Suppose that u = v on ∂U . Then u = v on U .

Proof. Let h = u− v. Then h is harmonic in U , continuous on U , and h ≡ 0 on ∂U . From the
above theorem, h attains its maximum and minimum at ∂U . So h has to be 0 everywhere, i.e.,
u = v in U .

The above corollary says that, if u is harmonic in a bounded domain U and continuous on
U , then the values of u on U are determined by the values of u on ∂U .
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We introduce the differential operators

∂

∂z
=

1

2

( ∂
∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

( ∂
∂x

+ i
∂

∂y

)
.

This mean that, if f = u+ iv, then

fz :=
∂f

∂z
=

1

2
(ux + ivx)− i

2
(uy + ivy) =

ux + vy
2

+ i
vx − uy

2
;

fz :=
∂f

∂z
=

1

2
(ux + ivx) +

i

2
(uy + ivy) =

ux − vy
2

+ i
vx + uy

2
.

So the Cauchy-Riemann equation is equivalent to fz = 0; and if f is holomorphic, then fz =
ux + ivx = f ′. Moreover, it is clear that

∂

∂z

∂

∂z
=

∂

∂z

∂

∂z
=

1

4
∆.

Thus, if f is holomorphic, then ∆f = 0, from which we see again that f is harmonic. If u is
harmonic, then from ∂z∂zu = 1

4∆u = 0 we see that ∂zu is holomorphic, which is used in a proof
a theorem.

Remark. The smoothness, mean value theorem and the maximum principle also hold for
harmonic functions in Rn for n ≥ 3. But the technique of complex analysis can not be used.
For example, the mean value theorem follows from the divergence theorem.

Homework. Chapter VIII, §1: 7 (a,b,c,e).

1. Find all real-valued C2 differentiable functions h defined on (0,∞) such that u(x, y) =
h(x2 + y2) is harmonic on C \ {0}.

2. Prove that any positive harmonic function in R2 is constant. Hint: If f is an entire
function with Re f > 0, then consider e−f .
Remark: This statement does not hold for Rd with d ≥ 3.

3. Let u be a nonconstant harmonic function on C. Show that for any c ∈ R, u−1(c) is
unbounded. Hint: {|z| > R} is connected for any R > 0.
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3.9 Winding Numbers

Let γ be a closed curve, and α ∈ C \ γ. The winding number or index of γ with respect to α is

W (γ, α) =
1

2πi

∫
γ

1

z − α
dz.

Example. Suppose γ is a Jordan curve. If α lies in the exterior of γ, then applying Cauchy’s
Theorem to f(z) = 1

z−α , we get W (γ, α) = 0. If α lies in the interior of γ, then applying
Cauchy’s Formula to f(z) = 1, we get W (γ, α) = 1 or −1, where the sign depends on the
orientation of γ.

Lemma 3.9.1. W (γ, α) ∈ Z.

Proof. Suppose γ is defined on [a, b]. Define F (t) =
∫ t
a

γ′(s)
γ(s)−αds, a ≤ t ≤ b. Then F is

continuous on [a, b], F (a) = 0, F (b) = 2πiW (γ, α), and F ′(t) = γ′(t)
γ(t)−α for t ∈ [a, b] other than

the partition points, say a = x0 < x1 < · · · < xn = b.We now compute

d

dt
e−F (t)(η(t)− α) = e−F (t)η′(t)− e−F (t)F ′(t)(η(t)− α) = 0, t ∈ [a, b] \ {x0, . . . , xn}.

Hence there is a constant C ∈ C such that C(η(t)− α) = eF (t), a ≤ t ≤ b. Since η is closed, we
have eF (b) = eF (a) = e0 = 1, which implies that F (b) ∈ 2πiZ. So W (γ, α) = 1

2πiF (b) ∈ Z.

Remark. Let θ0 be an argument of the C in the above proof. From η(t)− α = CeF (t) we see
that ImF (t)+θ0 is an argument of η(t)−α for a ≤ t ≤ b. Now suppose h is a continuous function
on [a, b] such that h(t) is an argument of η(t)−α for a ≤ t ≤ b, then (h(t)− ImF (t)−θ0)/(2πi)
is an integer-valued continuous function on [a, b], which must be constant. Thus,

W (γ, α) =
F (b)− F (a)

2πi
=
i ImF (b)− i ImF (a)

2πi
=
h(b)− h(a)

2π
.

This means that 2πW (γ, α) equals to the total increment of arg(z − α) along γ.

Lemma 3.9.2. The map α 7→W (γ, α) is continuous on C \ γ.

Proof. Fix α0 ∈ C \ γ. Let (αn) be a sequence that converges to α0. It suffices to show that
1

z−αn →
1

z−α0
uniformly on z ∈ γ. Let r = dist(α0, γ) > 0. For n big enough, we have

|αn − α0| < r/2, which implies that dist(αn, γ) ≥ r/2. For those n, we have∣∣∣ 1

z − αn
− 1

z − α0

∣∣∣ =
|αn − α0|

|z − αn||z − α0|
≤ |αn − α0|

r2/2
, z ∈ γ.

Thus, ‖ 1
z−αn −

1
z−α0
‖γ ≤ |αn−α0|

r2/2
when n is big enough, which implies that 2πiW (γ, αn) =∫

γ
1

z−αndz →
∫
γ

1
z−α0

dz = 2πiW (γ, α0).
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Corollary 3.9.1. W (γ, ·) is constant on each connected component of C \ γ.

Proof. This follows from the above two lemmas and the fact that a continuous integer valued
function is constant on a domain.

Corollary 3.9.2. W (γ, α) = 0 if α lies on the unbounded component of C \ γ.

Proof. This follows from the fact that, as α→∞, 1
z−α → 0 uniformly in z ∈ γ.

We define a contour γ to be a “sum” of finitely many closed curves γk, 1 ≤ k ≤ n, which
may or may not have intersections. The repetitions in γk’s are allowed. The integral along a
contour is defined to be

∫
γ =

∑n
k=1

∫
γk

. The winding number of a contour γ with respect to

α ∈ C \ γ = C \
⋃n
k=1 γk is W (γ, α) =

∑n
k=1W (γk, α). The above propositions also hold for

contours.

Examples.

1. The winding numbers of a trefoil knot in 5 different domains.

Observe that the winding number increases by 1 if we cross the contour from its right to its
left; decreases by 1 if we cross the contour from its left to its right.

Theorem 3.9.1. [The General Cauchy’s Theorem] Let f be holomorphic in a domain U .
Let γ be a contour in U such that W (γ, α) = 0 for every α ∈ C \ U . Then

∫
γ f = 0.

The interested reader may refer to Chapter IV, § 3 of Lang’s book for a proof. Note that the
condition that W (γ, α) = 0 for every α ∈ C \ U is necessary. For otherwise we may construct
a counterexample: f(z) = 1

z−α .

Theorem 3.9.2. [The General Cauchy’s Formula] Let f be holomorphic in a domain U .
Let γ be a contour in U such that for every α ∈ C \ U , W (γ, α) = 0. Let z0 ∈ U . Then

1

2πi

∫
γ

f(z)

z − z0
dz = W (γ, z0)f(z0).

Proof. Assuming the general Cauchy’s Theorem, the proof of this theorem is not difficult. Let
r > 0 be such that D̄(z0, r) ⊂ U . Define a contour η to be γ + (−W (γ, z0)){|z − z0| = r}.
Here if W (γ, z0) = 0, then η = γ; if W (γ, z0) > 0, this should be understood as η = γ +
W (γ, z0){|z − z0| = r}−. If Let U ′ = U \ {z0}. Then for any α ∈ C \ U ′, W (η, α) = 0. Since
f(z)
z−z0 is holomorphic in U ′, from the general Cauchy’s Theorem,

0 =
1

2πi

∫
η

f(z)

z − z0
dz =

1

2πi

∫
γ

f(z)

z − z0
dz − W (γ, z0)

2πi

∫
|z−z0|=r

f(z)

z − z0
dz

=
1

2πi

∫
γ

f(z)

z − z0
dz −W (γ, z0)f(z0),

where the last equality follows from the Cauchy’s Formula for Jordan curves.

Homework. Find the winding numbers for a given closed curve. See the course webpage.
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