Calculators are not allowed

2 pages

Question 1 : [7pts]

1. Let A, B, C and D be matrices of order 3 such that $A B+A C-D=0$, $|D|=6, B=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 2 \\ -1 & 1 & 0\end{array}\right)$ and $C=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & -2 & -1 \\ 1 & -1 & 3\end{array}\right)$.
Find $|A|$.
2. Let R and S be matrices of order 3 such that $R S+R-2 I=0$.

Find R^{-1} if $S=\left(\begin{array}{lll}1 & 0 & 2 \\ 2 & 3 & 4 \\ 0 & 2 & 5\end{array}\right)$.
3. Find a basis of the vector subspace $W=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) ; a-b-2 c-3 d=0\right\}$.

Question 2: [5pts]
Find the values of m for which the following linear system

$$
\left\{\begin{array}{ccc}
x+m y+2 z & = & 3 \\
4 x+(6+m) y-m z & = & 13-m \\
x+2(m-1) y+(m+4) z & = & m+2
\end{array}\right.
$$

a) has a unique solution.
b) has infinite solutions.
c) has no solution.

Question 3 : [8pts]

1. Let V be a vector space and $B=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ a basis of V.

Explain why $u_{1}-2 u_{2}+3 u_{6} \neq 5 u_{3}+7 u_{4}-6 u_{5}$.
2. Define $T: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3}$ by:

$$
T(x, y, z, t)=(x-2 y+z+3 t, 2 x-3 y+2 t,-x+3 z+5 t)
$$

(a) Find the matrix of the linear transformation T with respect to the standard bases of \mathbb{R}^{4} and \mathbb{R}^{3}.
(b) Find a basis for kernel T.
(c) Find a basis for Image T.

Question 4 : [7pts]
Let B and C be bases of a vector space V of dimension 3 such that ${ }_{C} P_{B}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$. ${ }_{C} P_{B}$ is the transition matrix from the basis B to the basis $\left.C\right)$. Let $T: V \longrightarrow V$ be a linear transformation with $[T]_{B}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & 0\end{array}\right)$.

1. If $[v]_{C}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, find $[v]_{B}$.
2. If $[w]_{B}=\left(\begin{array}{c}-2 \\ 2 \\ 1\end{array}\right)$, find $[T(w)]_{B}$.
3. If $B=\left\{u_{1}, u_{2}, u_{3}\right\}$. Find the values of a, b, c such that $T\left(u_{1}\right)=a u_{1}-\frac{b}{5} u_{2}+c u_{3}$.

Question 5 : [5pts]

1. Let F be the subspace of the Euclidean inner product space \mathbb{R}^{3} spanned by $\left\{v_{1}=(1,1,0), v_{2}=(1,1,1)\right\}$.
Use Gram-Schmidt process to get an orthonormal basis of F.
2. Let \mathbb{R}^{3} be the Euclidean inner product space and $u=(1,-1,1), v=(2,0,-2)$ in \mathbb{R}^{3}.
(a) Find $\|u+v\|^{2}$.
(b) Find $\cos \theta$, if θ is the angle between the vectors u and v.

Question 6 : [8pts]

1. Compute B^{10} if $B=\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$.
2. Let $A=\left(\begin{array}{ccc}1 & -1 & 3 \\ 0 & 1 & 0 \\ 0 & 3 & -2\end{array}\right)$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues and its corresponding eigenvectors of A.
(c) Explain why A is not diagonalizable?
