King Saud University

College of Sciences Department of Mathematics

Final Examination Math 244 Semester II 1439-1440 Duration: 3hr.

Calculators are not allowed 2 pages

Question 1 : [6 pts]

a) Let A be a matrix of order 3 such that |A| = 3 and $|A^2 + I| = 2$. Find $|A + A^{-1}|$.

b) Find the matrix
$$B = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$
 such that $B \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$ and $B \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

Question 2: [6 pts]

(a) Let (V, \langle , \rangle) be an inner product space. Compute $\langle 3v_1 - 2v_3, v_1 + v_2 + v_3 \rangle$, where $\langle v_1, v_3 \rangle = 0$, $\langle v_2, v_3 \rangle = 0$, $\langle v_1, v_2 \rangle = 2$, $||v_1|| = 5$ and $||v_3|| = 2$.

(b) Let $A = \begin{pmatrix} 1 & 2 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 2 & 4 & -1 & 1 & 0 & 2 \end{pmatrix}$.

- (i) Find a basis B for the column space of the matrix A.
- (ii) Show that B is a basis for \mathbb{R}^3 .

Question 3 : [7 pts]

Consider the following inner product on \mathbb{R}^3 :

$$\langle (\mathbf{x}, \mathbf{y}, \mathbf{z}), (\mathbf{x}', \mathbf{y}', \mathbf{z}') \rangle = 2\mathbf{x}\mathbf{x}' + \mathbf{y}\mathbf{y}' + \mathbf{z}\mathbf{z}' + \mathbf{x}\mathbf{y}' + \mathbf{x}'\mathbf{y}.$$

Let $u_1 = (-1, 1, x), u_2 = (-1, y, 2)$ and $u_3 = (z, 1, -2).$

- (a) Find the values of x so that $||u_1|| = 1$.
- (b) Find the values of x, y so that $\cos(\theta) = 0$, where θ the angle between u_1 and u_2 .
- (c) Find the values of x, y, z so that the set $K = \{u_1, u_2, u_3\}$ is orthogonal.

Question 4: [11 pts]

- a) Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation such that T(1,1,0) = (1,2), T(1,0,1) = (2,1) and T(1,1,1) = (0,0).
 - (i) Prove that $\{(1, 1, 0), (1, 0, 1), (1, 1, 1)\}$ is a basis of \mathbb{R}^3 .
 - (ii) Find the expression of T(x, y, z), for $(x, y, z) \in \mathbb{R}^3$.
 - (iii) Find a basis for Im(T).
- b) Let $B = \{v_1, v_2, v_3, v_4\}$ be a basis for a vector space V, $C = \{u_1 = (1, -1, 1), u_2 = (1, 1, 1), u_3 = (0, 1, 1)\}$ a basis of \mathbb{R}^3 and $T: V \longrightarrow \mathbb{R}^3$ the linear transformation such that

$$[T]_B^C = \begin{pmatrix} 3 & 1 & 1 & 0 \\ 1 & 3 & 1 & 2 \\ -1 & 1 & 0 & 1 \end{pmatrix}.$$

 $([T]_B^C$ is the matrix of T with respect to the bases B and C.)

- (i) Find $T(v_1), T(v_2), T(v_3), T(v_4)$.
- (ii) Find $\operatorname{Rank}(T)$.
- (iii) Calculate nullity(T).

Question 5 : [10 pts]

a) Consider the matrix
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ -2 & -2 & -3 \end{pmatrix}$$
.

- (i) Find $q_A(\lambda) = \det(\lambda I A)$.
- (ii) Deduce that 1, -1, -1 are the eigenvalues of A.
- (iii) Find a matrix P such that $P^{-1}AP$ is a diagonal matrix.
- (iv) Find A^{1440} and A^{-1} .

b) For which values of
$$a \in \mathbb{R}$$
 the matrix $B = \begin{pmatrix} a & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ is diagonalizable?