King Saud University

College of Sciences

Department of Mathematics

Final Examination Math 244 Semester II 1439-1440 Duration: 3hr.

Calculators are not allowed

2 pages

Question 1: [6 pts]
a) Let A be a matrix of order 3 such that $|A|=3$ and $\left|A^{2}+I\right|=2$.

Find $\left|A+A^{-1}\right|$.
b) Find the matrix $B=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ such that $B\binom{1}{-2}=\binom{4}{-5}$ and $B\binom{2}{1}=\binom{3}{5}$.

Question 2: [6 pts]

(a) Let $(V,\langle\rangle$,$) be an inner product space.$

Compute $\left\langle 3 v_{1}-2 v_{3}, v_{1}+v_{2}+v_{3}\right\rangle$, where $\left\langle v_{1}, v_{3}\right\rangle=0,\left\langle v_{2}, v_{3}\right\rangle=0$, $\left\langle v_{1}, v_{2}\right\rangle=2,\left\|v_{1}\right\|=5$ and $\left\|v_{3}\right\|=2$.
(b) Let $A=\left(\begin{array}{cccccc}1 & 2 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 2 & 4 & -1 & 1 & 0 & 2\end{array}\right)$.
(i) Find a basis B for the column space of the matrix A.
(ii) Show that B is a basis for \mathbb{R}^{3}.

Question 3 : [7 pts]

Consider the following inner product on \mathbb{R}^{3} :

$$
\left\langle(\mathbf{x}, \mathbf{y}, \mathbf{z}),\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}, \mathbf{z}^{\prime}\right)\right\rangle=\mathbf{2} \mathbf{x x ^ { \prime }}+\mathbf{y} \mathbf{y}^{\prime}+\mathbf{z z}^{\prime}+\mathbf{x} \mathbf{y}^{\prime}+\mathbf{x}^{\prime} \mathbf{y} .
$$

Let $u_{1}=(-1,1, x), u_{2}=(-1, y, 2)$ and $u_{3}=(z, 1,-2)$.
(a) Find the values of x so that $\left\|u_{1}\right\|=1$.
(b) Find the values of x, y so that $\cos (\theta)=0$, where θ the angle between u_{1} and u_{2}.
(c) Find the values of x, y, z so that the set $K=\left\{u_{1}, u_{2}, u_{3}\right\}$ is orthogonal.

Question 4 : [11 pts]

a) Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be a linear transformation such that $T(1,1,0)=(1,2), T(1,0,1)=(2,1)$ and $T(1,1,1)=(0,0)$.
(i) Prove that $\{(1,1,0),(1,0,1),(1,1,1)\}$ is a basis of \mathbb{R}^{3}.
(ii) Find the expression of $T(x, y, z)$, for $(x, y, z) \in \mathbb{R}^{3}$.
(iii) Find a basis for $\operatorname{Im}(T)$.
b) Let $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be a basis for a vector space V,
$C=\left\{u_{1}=(1,-1,1), u_{2}=(1,1,1), u_{3}=(0,1,1)\right\}$ a basis of \mathbb{R}^{3} and $T: V \longrightarrow \mathbb{R}^{3}$ the linear transformation such that

$$
[T]_{B}^{C}=\left(\begin{array}{cccc}
3 & 1 & 1 & 0 \\
1 & 3 & 1 & 2 \\
-1 & 1 & 0 & 1
\end{array}\right) .
$$

($[T]_{B}^{C}$ is the matrix of T with respect to the bases B and C.)
(i) Find $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right), T\left(v_{4}\right)$.
(ii) Find $\operatorname{Rank}(T)$.
(iii) Calculate nullity (T).

Question 5: [10 pts]
a) Consider the matrix $A=\left(\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & 2 \\ -2 & -2 & -3\end{array}\right)$.
(i) Find $q_{A}(\lambda)=\operatorname{det}(\lambda I-A)$.
(ii) Deduce that $1,-1,-1$ are the eigenvalues of A.
(iii) Find a matrix P such that $P^{-1} A P$ is a diagonal matrix.
(iv) Find A^{1440} and A^{-1}.
b) For which values of $a \in \mathbb{R}$ the matrix $B=\left(\begin{array}{ccc}a & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$ is diagonalizable?

