King Saud University:Mathematics DepartmentMATH-254First Semester1438-39 HSolution of the Final ExaminationMaximum Marks = 40Time: 180 mins.

Name of the Teacher:______ Section No. _____

Note: Check the total number of pages are Five (5). (10 Multiple choice questions and Three (3) Full questions)

The Answer Tables for Q.1 to Q.10 : Marks: 2 for each one $(2 \times 10 = 20)$

1 S Mark [a, b, c of d] for the correct answer in the box.										
Q. No.	1	2	3	4	5	6	7	8	9	10
a,b,c,d										

Ps. : Mark {a, b, c or d} for the correct answer in the box.

Quest. No.	Marks
Q. 1 to Q. 10	
Q. 11	
Q. 12	
Q. 13	
Total	

- Question 1: The number of iterations required to approximate the root of the equation $2\sin x + x 1 = \ln [0, 1]$ accurate to within 10^{-5} using Bisection method is:
 - (a) 10 (b) 13 (c) 17 (d) 19
- **Question 2**: Newton's iterative method for approximating the square root of a positive number a is given by:

(a)
$$\left(\frac{x_n}{2} + \frac{a}{x_n^2}\right)$$
 (b) $\left(\frac{x_n}{2} - \frac{a}{x_n^2}\right)$ (c) $\frac{1}{2}\left(x_n + \frac{a}{x_n}\right)$ (d) $\frac{1}{2}\left(x_n - \frac{a}{x_n}\right)$

Question 3: The iterative scheme $x_{n+1} = \frac{x_n^2 + 2}{2x_n - 1}$ converges to $\alpha = 2$:

(a) linearly (b) quadratically (c) cubically (d) quartically

Question 4: The condition number of the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 - \frac{1}{2n} \end{bmatrix}$ is: (a) 2n (b) 4n (c) 6n (d) 8n

- Question 5: The norm of the Gauss-Seidel iteration matrix for the linear system of two equations $2x_1 x_2 = 1$, $x_1 + 2x_2 = 3$ is:
 - (a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) 1 (d) $\frac{1}{8}$

Question 6: If $f(x) = \frac{1}{x}$ and $\alpha \neq 1$, then the value of α for which $f[1, \alpha] = f[2, 2, 2]$ is:

(a)
$$-2$$
 (b) -4 (c) -6 (d) -8

- Question 7: When using the two-point forward formula with h = 0.2 for approximating the value of f'(1), where $f(x) = \ln(x+1)$, we have the computed approximation (accurate to 4 decimal places):
 - (a) 0.4766 (b) 0.4966 (c) 0.4666 (d) 0.4866
- Question 8: If f(0) = 3, $f(1) = \frac{\alpha}{2}$, $f(2) = \alpha$, and Simpson's rule for $\int_0^2 f(x) dx$ gives 2, then the value of α is:
 - (a) 1.0 (b) 2.0 (c) 0.5 (d) 3.0
- Question 9: Using data points: (0, 1), (0.1, 1.1), (0.2, 1.3), (0.3, 1.4), (0.45, 1.5), (0.5, 1.7), then the **best** approximate value of f''(0.3) using 3-point difference formula is:
 - (a) 0.0 (b) 0.1 (c) 0.2 (d) 0.3

Question 10: Given initial-value problem y' = x + y, y(0) = 1, the approximate value of y(0.1) using Euler's method with n = 1 is:

(a) 1.1 (b) 1.01 (c) 1.02 (d) 1.2

Question 11: Find the rate of convergence of the Newton's method at the root x = 0 of the equation $x^2 e^x = 0$. Use quadratic convergence method to find second approximation to the root using $x_0 = 0.1$. Also, compute the absolute error. [6 points]

Solution. Given $f(x) = x^2 e^x$ and so $f'(x) = (x^2 + 2x)e^x$. Using Newton's iterative formula, we get

$$x_{n+1} = x_n - \frac{(x_n^2 e^{x_n})}{((x_n^2 + 2x_n)e_n^x)} = \frac{(x_n + x_n^2)}{(2 + x_n)}, \quad n \ge 0.$$

The fixed point form of the developed Newton's formula is

$$x_{n+1} = g(x_n) = \frac{(x_n + x_n^2)}{(2 + x_n)},$$

where

$$g(x) = \frac{(x+x^2)}{(2+x)}.$$

By taking derivative, we have

$$g'(x) = \frac{(x^2 + 4x + 2)}{(2+x)^2},$$
$$g'(0) = \frac{1}{2} = \neq 0.$$

Thus the method converges linearly to the given root.

The quadratic convergent method is modified Newton's method

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}, \qquad n \ge 0,$$

where m is the order of multiplicity of the zero of the function. To find m, we do

$$f''(x) = (x^2 + 4x + 2)e^x$$
, and $f''(0) = 2 \neq 0$,

so m = 2. Thus

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)} = x_n - 2\frac{(x_n^2 e^{x_n})}{((x_n^2 + 2x_n)e_n^x)} = x_n - 2\frac{(x_n^2)}{(x_n^2 + 2x_n)}, \qquad n \ge 0.$$

Now using initial approximation $x_0 = 0.1$, we have

$$x_1 = x_0 - 2\frac{(x_0^2)}{(x_0^2 + 2x_0)} = 0.004,$$

and

$$x_2 = x_1 - 2\frac{(x_1^2)}{(x_1^2 + 2x_1)} = 0.0000008,$$

the required two approximations. The possible absolute error is

$$|\alpha - x_2| = |0.0 - 0.0315| = 0.0000008.$$

•

Question 12: Use LU-factorization method with Doolittle's method $(l_{ii} = 1)$ to find values of α for which the following linear system has unique solution and infinitely many solutions. Write down the solution for both cases. [7 points]

Solution. We use Simple Gauss-elimination method to convert the following matrix of the given system by using the multiples $m_{21} = 2$, $m_{31} = -1$ and $m_{32} = 1/4$,

$$A = \begin{pmatrix} 1 & 0.5 & \alpha \\ 2 & -3 & 1 \\ -1 & -1.5 & 2.5 \end{pmatrix},$$

into equivalent an upper-triangular matrix form

$$\left(\begin{array}{rrrr} 1 & 0.5 & \alpha \\ 0 & -4 & 1-2\alpha \\ 0 & 0 & 0.5\alpha - 0.25 \end{array}\right),$$

to get LU-factorization of A in the following form

$$A = \begin{pmatrix} 1 & 0.5 & \alpha \\ 2 & -3 & 1 \\ -1 & -1.5 & 2.5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0.25 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0.5 & \alpha \\ 0 & -4 & 1 - 2\alpha \\ 0 & 0 & 1.5\alpha + 2.25 \end{pmatrix} = LU.$$

Then by solving the lower-triangular system of the form $L\mathbf{y} = [0.5, -1, -1]^T$ and obtained the solution $\mathbf{y} = [0.5, -2, 0]^T$. Now solving the upper-triangular system $U\mathbf{x} = \mathbf{y}$ of the form

$$\begin{pmatrix} 1 & 0.5 & \alpha \\ 0 & -4 & 1-2\alpha \\ 0 & 0 & 1.5\alpha+2.25 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -2 \\ 0 \end{pmatrix}.$$

From last equation we have

$$(1.5\alpha + 2.25)x_3 = 0,$$

so for unique solution of the given system $(1.5\alpha + 2.25) \neq 0$ (nonsingular), which implies that $x_3 = 0$. Using backward substitution, we have $x_2 = 0.5$ and $x_1 = 0.25$. Thus, $[0.25, 0.5, 0]^T$ is the unique solution of the given system.

If $(1.5\alpha + 2.25) = 0$ (singular), that is, $\alpha = -1.5$, then for this we must have infinitely many solutions. So to get the infinitely many solutions, we have to solve the following resulting system

By taking $\alpha = -1.5$ and If we choose $x_3 = t \in R$, $t \neq 0$, then we have $x_2 = 0.5 + t$ and $x_1 = 0.25 + t$, so $\mathbf{x}^* = [0.25 + t, 0.5 + t, t]^T$ is the required infinitely many solutions of the given system.

Question 13: Construct the divided differences table for $f(x) = \ln(x+1) + x^2$ using the values x = 1, 2, 3, 4, 5. If the approximation of f(3.5) by a cubic Newton's polynomial is 13.7526, then find the best approximation of f(3.5) by using Newton's polynomial of degree four. Compute the error bound. [7 points]

Solution. The results of the divided differences are listed in Table 1.

		Zeroth	First	Second	Third	Fourth
		Divided	Divided	Divided	Divided	Divided
k	x_k	Difference	Difference	Difference	Difference	Difference
0	1	1.6931				
1	2	5.0986	3.4055			
2	3	10.3863	5.2877	0.9411		
3	4	17.6094	7.2231	0.9677	0.0089	
4	5	26.7918	9.1823	0.9796	0.0040	-0.0012

Table 1: Divided differences table for $f(x) = \ln(x+1) + x^2$

$$\begin{aligned} f(3.5) &\approx p_4(3.5) &= p_3(3.5) + (3.5-1)(3.5-2)(3.5-3)(3.5-4)f[1,2,3,4,5] \\ f(3.5) &\approx p_4(3.5) &= 13.7526 + (2.5)(1.5)(0.5)(-1.5)(-0.0012) \\ f(3.5) &\approx p_4(3.5) &= 13.7538. \end{aligned}$$

Since the error bound for the fourth-degree polynomial $p_4(x)$ is

$$|f(x) - p_4(x)| = \frac{|f^{(5)}(\eta(x))|}{5!} |(x - x_0)(x - x_1)(x - x_2)(x - x_3)(x - x_4)|.$$

Taking the fifth derivative of the given function, we have

$$f^{(6)}(x) = \frac{24}{(x+1)^5}$$

and

$$|f^{(5)}(\eta(x))| = M = | \le \max_{1 \le x \le 5} \left| \frac{24}{(x+1)^5} \right| = \frac{3}{4} = 0.75,$$

therefore, we get

$$|f(3.5) - p_4(3.5)| \le \frac{(1.40625)(0.75)}{120} = 8.789 \times 10^{-3},$$

•

which is the required error bound for the approximation $p_4(3.5)$.