College of Science Department of Mathematics

Final Examination

Sunday, January 7, 2018	Math 473	Academic year 1438-39H
8:00 - 11:00 am	Introduction to Differential Geometry	First Semester

Student's Name		
ID number		
Section No.		
Classroom No.		
Teacher's Name	Dr Nasser Bin Turki	
Roll Number		

40

Instructions:

- Your student identity card must be visible on your desk during the entire examination.
- Full marks can be obtained for complete answers to all FIVE questions.
- 1. Let $\alpha: I \mapsto \mathbb{R}^3$ be a unit speed space curve. Define the unit tangent T and the curvature κ . Assuming that the curvature $\kappa(t) \neq 0$ for all $t \in I$, define the principal normal N, the binormal B and the torsion τ . Prove that $(\alpha' \times \alpha'') \bullet \alpha''' = \kappa^2 \tau$.

[8 marks]

2. Let a, b and c be real numbers, a > 0. Let $\alpha : \mathbb{R} \to \mathbb{R}^3$ be the helix

$$\alpha(t) = (a\cos(bt), a\sin(bt), ct).$$

- (a) Find the condition on a, b, c for the helix to be unit speed.
- (b) Assume that the condition for the helix to be unit speed is satisfied.
 - (i) Compute the unit tangent T.
 - (ii) Compute the curvature κ .
 - (iii) Find the Serret-Frenet basis (Frame) of α .

[8 marks]

Final Examination Math 473 page 1 of 2

- 3. Let X(u, v) = (u + v, u v, uv).
- (a) Show that X defines a regular surface patch.
- (b) Calculate the coefficients E, F, G of the first fundamental form for this surface.
- (c) Write down an integral which gives the length of the curve $\gamma_1(t) = X(t,1)$ on this surface from t = 1 to t = 2. You do not need to evaluate this integral.
- (d) Calculate the cosine of the angle between the coordinate curves

$$\alpha_1(t) = X(t, 1)$$
 and $\alpha_2(t) = X(1, t)$

on the surface at the point X(1,1)=(2,0,1), where the curves α_1 and α_2 meet.

(e) Is the surface patch X conformal. Why.

[10 marks]

- **4**. Let $X:U\subset\mathbb{R}^2\mapsto\mathbb{R}^3$ be a regular surface patch given by $X(u,v)=(\cos u,\sin u,v)$.
- (a) Compute the first fundamental form of the surface X. Compute the second fundamental form of the surface X. Compute the principal curvatures of this surface. Is there umbilic point(s).
- (b) Compute the Gauss curvature and the mean curvature of this surface. Determine whether the surface is hyperbolic, parabolic or elliptic.

[10 marks]

- **5**. Let $X: U \mapsto \mathbb{R}^3$ be a surface patch given by $X(u, v) = (u, v, \pi)$.
- (a) Compute the Christoel symbols Γ_{ij}^k of X.
- (b) Compute the coefficients β_i^j of X.
- (c) Compute the Gauss-Weingarten equations of the surface X.

[4 marks]

Final Examination Math 473 page 2 of 2