Question: 1 . (a) For what values of λ does the system of equations have[10+4+10](i) unique solution, (ii) infinitly many solutions and (iii) no solution.

$$3x + \lambda z = 2$$

$$3x + 3y + 4z = 4$$

$$y + 2z = 3$$

(b) By using properties of determinant, show that

 $\begin{vmatrix} y+z & z+x & y+x \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix} = 0.$

(c) For the given system of linear equations:

$$x + 2y + 3z = 1$$

$$3x + y + 3z = 3$$

$$x + 2y + 4z = 1$$

- i. Write the system of equation in the form AX=B,
- ii. Find adj (A),
- iii. Use adj (A) to find A⁻¹, if exists, and
- iv. Use A⁻¹ to solve the given system.

Question:2.(a) Find the comp_b^a and Proj_b^a [6+6+6] if a = -2i + j + k and b = 4i - 3j + k.

(b) Find the point at which the line

x=2+3t, y=-4t, z=5+t, $t \in R$ intersects the plane 4x+5y-2z=18.

(c) Find the direction cosines and direction angles of the vector a = 2i + 3j - 6k

Question: 3. (a) Show that $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$ does not exist.

[6+8+6] (b) A particle starts from position
$$r(1) = t + J$$
. Its velocity is $v(t) = 2ti + 3t^2j + \sqrt{tk}$. Find its position at time t.

(c) Find the parametric equations of the tangent line to the curve with parametric equations $x = t^5$, $y = t^4$, $z = t^3$, at the point (1, 1, 1).

Question: 4.(a) Show that the function $f(x, y) = \ln(x^2 + y^2)$ $x \neq 0, y \neq 0$

[6+6+8] satisfies the Laplace equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$

(b) If
$$3xy^3 + 3x^2y - 6y + 9xy = 8$$
 find $\frac{dy}{dx}$

- (c) Find the tangential and normal components of the acceleration of a particle moving along th curve $x = t^3$, y = t+2, z = 4, $t \in R$ at t = 1. Also find the curvature at t = 1.
- Question: 5. (a) The base radius and the height of the right circular cone are measured to be 10cm and 25cm respectively, with a possible error in measurement of 0.1cm in each. Use differentials to estimate the maximum error in the calculated volume of the cone. $\left[V = \frac{1}{3}\pi r^2 h\right]$
- [6+8+6] (b) Find the directional derivative of f(x, y) = xy
 at the point P(3, 2) in the direction of <1, 2>. In which direction is the direction of the derivative maximum? What is the maximum value of the derivative?
 - (c) Use Lagrange multipliers to find the maximum and minimum values of the function f(x, y) = x + 2y subject to constraint $x^2 + y^2 = 5$.

NOTE: For solution of the paper visit http://faculty.ksu.edu.sa/khawaja/default.aspx