TIME: 3hours M - 107

KING SAUD UNIVERSITY DEPARTMENT OF MATHEMATICS (SEMESTER I, 1429-1430) FINAL

NOTE: Attempt all Questions.

Question: 1. (a) Use Cramer's rule to solve the system of equations	
x + y - 2z = 1	
2x - y + z = 2	[6]
x - 2y - 4z = -4	
(b) For what values of λ , the following matrix is invertible	
$\begin{bmatrix} \lambda & 1 & 2\lambda \end{bmatrix}$	
$A = \begin{bmatrix} \lambda & 1 & 2\lambda \\ 0 & \lambda - 1 & 0 \\ 1 & 3 & \lambda^2 + 3 \end{bmatrix}$	[6]
$\begin{bmatrix} 1 & 3 & \lambda^2 + 3 \end{bmatrix}$	
Question: 2.(a) Find value of a, b and c such that $U = \langle a, b, c \rangle$ is orthogonal to	
V = <1, 2, 1 > and W = <1, -1, 1 >.	[6]
(b) Let $a = <2,3,4>$ and $b = <-1,3,5>$ and $c = 2a+3b$,	
show that $(a \ge b) \cdot c = 0.$	[6]

Question: 3 . (a) Find equation of the plane containing points P(1,1,1), Q(1,0,1) and R(0,1,0). Also find distance of the plane from the point S(2,3,5). [8]

> (b) Use differentials to approximate the change in temperature T = xy + yz + xz, if the point (x, y, z) moves from the point P(2, -1, 3) to the point Q(1.98, -0.98, 3.02). [8]

Question: 4. (a) A particle starts at an initial position r(0) = <1, 0, 0> with initial velocity

v(0) = <1, -1, 1>. Its acceleration is a(t) = 4ti + 6tj + k. Find its velocity and position at time t. [10]

(b) Let $r(t) = \langle t^2, 2t, t \rangle$ be the position vector of a moving point P. Find tangential and normal components of acceleration (a_T and a_N) at point Q(1,2,1). Also find curvature κ . [10]

Question: 5.(a) Show that the function $z = \ln(x^2 + y^2)$, $x \neq 0, y \neq 0$

satisfies the Laplace equation
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
. [10]

(b) Find the equation of the tangent plane and normal line to the graph of the surface $x^2 + y^2 - z^2 = 18$ at the point P (3, 5, -4). [10]

Question: 6.(a) Find a point on the surface z = 3x² - y², where the tangent plane is parallel to the plane 6x + 4y - z = 5. [10]
(b) Use Lagrange multipliers to find the maximum value of the function f (x, y) = x² + y subject to constraint x² + y² = 1. [10]

/1 - 10/