Question: 1. (a) Use Cramer's rule to solve the system of equations

$$
\begin{gather*}
x+y-2 z=1 \\
2 x-y+z=2 \tag{6}\\
x-2 y-4 z=-4
\end{gather*}
$$

(b) For what values of λ, the following matrix is invertible

$$
A=\left[\begin{array}{ccc}
\lambda & 1 & 2 \lambda \tag{6}\\
0 & \lambda-1 & 0 \\
1 & 3 & \lambda^{2}+3
\end{array}\right]
$$

Question: 2.(a) Find value of a, b and c such that $U=<a, b, c>$ is orthogonal to

$$
\begin{equation*}
V=<1,2,1>\text { and } W=<1,-1,1>. \tag{6}
\end{equation*}
$$

(b) Let $a=<2,3,4>$ and $b=<-1,3,5>$ and $c=2 a+3 b$, show that $\quad(a \times b) . c=0$.

Question: 3 . (a) Find equation of the plane containing points $\mathbf{P}(1,1,1), \mathbf{Q}(1,0,1)$ and $\mathbf{R}(\mathbf{0}, 1,0)$.
Also find distance of the plane from the point $S(2,3,5)$.
(b) Use differentials to approximate the change in temperature $T=x y+y z+x z$, if the point (x, y, z) moves from the point $P(2,-1,3)$ to the point Q (1.98, -0.98, 3.02) .

Question: 4 . (a) A particle starts at an initial position $r(0)=<1,0,0>$ with initial velocity $v(0)=<1,-1,1>$. Its acceleration is $a(t)=4 t i+6 t j+k$. Find its velocity and position at time t.
(b) Let $r(t)=<t^{2}, 2 t, t>$ be the position vector of a moving point P. Find tangential and normal components of acceleration (a_{T} and a_{N}) at point $\mathbf{Q (1 , 2 , 1)}$. Also find curvature κ.
Question: 5 .(a) Show that the function $\quad z=\ln \left(x^{2}+y^{2}\right), x \neq 0, y \neq 0$

$$
\begin{equation*}
\text { satisfies the Laplace equation } \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0 \tag{10}
\end{equation*}
$$

(b) Find the equation of the tangent plane and normal line to the graph of the surface $x^{2}+y^{2}-z^{2}=18$ at the point $\mathbf{P}(\mathbf{3}, \mathbf{5},-\mathbf{4})$.

Question: 6.(a) Find a point on the surface $z=3 x^{2}-y^{2}$, where the tangent plane is parallel to the plane $6 x+4 y-z=5$.
(b) Use Lagrange multipliers to find the maximum value of the function $f(x, y)=x^{2}+y$ subject to constraint $x^{2}+y^{2}=1$.

