

King Saud University College of Engineering Department of Civil Engineering

FINAL EXAM

CE302 Mechanics of Materials – 2nd Semester 1431- 32H

Sunday, 10th Rajab 1432 H – 12th June 2011 Time allowed: 3 hours

Student Name	SOLUTIONS	
Student Number		
Section (put X please)	□ 30629 (from 9:00 to 10:00 A.M.) □ 30170 (from 10:00 to 11:00 A.M.)	

Questions	Maximum Marks	Marks obtained
$\mathbf{Q} \neq 1$	7	
$\mathbf{Q} \neq 2$	7	
$\mathbf{Q} \neq 3$	8	
$\mathbf{Q} \neq 4$	8	
$\mathbf{Q} \neq 5$	10	
$\mathbf{Q} \neq 6$	10	
	Total marks	

Total marks obtained (in words):

Instructor's Signature

Question \neq 2 (7 points):

d

$$A = ad, \quad I = \frac{1}{12}ad^{3}, \quad c = \frac{1}{2}d$$

$$e = \frac{a}{2} - \frac{d}{2}$$

$$e = \frac{P}{A} + \frac{Mc}{I} = \frac{P}{ad} + \frac{6Ped}{ad^{3}}$$

$$G = \frac{P}{Ad} + \frac{3P(a-d)}{nd2} = KP \quad \text{where } K = \frac{1}{ad} + \frac{3(a-d)}{ad^{2}}$$
Data: $a = 30 \text{ mm} = 0.030 \text{ m} \quad d = 20 \text{ mm} = 0.020 \text{ m}$

$$K = \frac{1}{(0.030)(0.020)} + \frac{(3)(0.010)}{(0.030)(0.020)^{2}} = 4.1667 \times 10^{3} \text{ m}^{-2}$$

$$P = \frac{C}{K} = \frac{60 \times 10^{2}}{4.1667 \times 10^{3}} = 14.40 \times (0^{3} \text{ N})$$

$$P = 14.40 \text{ kN} = 14.40 \text{ kN}$$

D E

.5 m

750 N/m Mn 630 N 110 R. - 2150 N P - 700 N - 2150 N - 3.3 m 1.5 m VI 2150 D В A 325 1025 2150 М +3081 N - m +3011 N · m +2381 N · m - 2.86 m

The rigid bar DEF is welded at point D to the steel beam AB. For the loading shown, determine;

(a) the equations defining the shear and bending at portion AD of the steel beam AB,

(b) the location and magnitude of the largest bending moment.

(Hint: Replace the 700 N load applied at F by an equivalent force-couple system at D)

SOLUTION

Reactions. We consider the beam and bar as a free body and observe that the total load is 4300 N. Because of symmetry, each reaction is equal to 2150 N.

Modified Loading Diagram. We replace the 700-N load applied at F by an equivalent force-couple system at D. We thus obtain a loading diagram consisting of a concentrated couple, three concentrated loads (including the two reactions), and a uniformly distributed load

a) Cut the beam somewhere in between portion AD
TSO N/M
A
$$V \downarrow \downarrow \downarrow \downarrow \downarrow$$

2150 N
EFy=0: 2150-750X-V=0
 $V=2150-750X$ $0 < x < 3.3m$
 T
EM =0: M + 750x $(\frac{x}{2})$ - 2150X = 0
 $M=-375x^{2}+2150x$ $0 < x < 3.3m$
b) Moment will be maximum when V=0
 $V=2150-750x = 0$
 $X=\frac{2150}{750}=2.86m$
 $M_{max}=-375(2.86)^{2}+2150(2.86)$

Question \neq 5 (10 points):

A single horizontal force P of magnitude 500 N is applied to end D of lever ABD. Knowing that portion AB of the lever has a diameter of 30 mm, determine;

(a) the state of plane stress (i.e. the normal and shearing stresses) on an element located at point H, 100 mm above point A and having sides parallel to the x and y axes,

(b) the principal planes (i.e. $\Theta_{p1} \& \Theta_{p2}$) and the principal stresses (i.e. $\sigma_{max} \& \sigma_{min}$) at the same point H.

SOLUTION

Force-Couple System. We replace the force P by an equivalent forcecouple system at the center C of the transverse section containing point H:

$$P = 500 \text{ N} \qquad T = (500 \text{ N})(0.45 \text{ m}) = 225 \text{ N} \cdot \text{m}$$
$$M_{\text{v}} = (500 \text{ N})(0.25 \text{ m}) = 125 \text{ N} \cdot \text{m}$$

a. Stresses σ_x , σ_y , τ_{xy} at Point H. Using the sign convention shown in Fig. 7.2, we determine the sense and the sign of each stress component by carefully examining the sketch of the force-couple system at point *C*:

$$\sigma_x = 0 \qquad \sigma_y = +\frac{Mc}{I} = +\frac{(125 \text{ N} \cdot \text{m})(0.015 \text{ m})}{\frac{1}{4}\pi (0.015)^4} \qquad \sigma_y = 47.16 \text{ MPa} \blacktriangleleft$$

$$\tau_{xy} = +\frac{Tc}{J} = +\frac{(225 \text{ N} \cdot \text{m})(0.015)}{\frac{1}{2}\pi (0.015)^4} \qquad \tau_{xy} = 42.44 \text{ MPa} \blacktriangleleft$$

We note that the shearing force P does not cause any shearing stress at point H.

b. Principal Planes and Principal Stresses. Substituting the values of the stress components into Eq. (7.12), we determine the orientation of the principal planes:

$$\tan 2\theta_p = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} = \frac{2(42.44)}{0 - 47.16} = -1.80$$

$$2\theta_p = -61.0^\circ \quad \text{and} \quad 180^\circ - 61.0^\circ = +119^\circ$$

$$\theta_p = -30.5^\circ \quad \text{and} \quad +59.5^\circ \blacktriangleleft$$

Substituting into Eq. (7.14), we determine the magnitudes of the principal stresses:

$$\tau_{\max,\min} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$= \frac{0 + 47.16}{2} \pm \sqrt{\left(\frac{0 - 47.16}{2}\right)^2 + (42.44)^2} = 23.58 \pm 48.55$$
$$\sigma_{\max} = +72.13 \text{ MPa} \blacktriangleleft$$

 $\sigma_{\rm min}$ = -24.97 MPa

Question \neq 6 (10 points):

A wide-flange shape column *AB* carries a centric load P of magnitude 60 kN. Cables *BC* and *BD* are taut and prevent motion of Point *B* in the *xz* plane. Using Euler's formula and a factor of safety of 2.2, and neglecting the tension in the cables, determine the maximum allowable length *L*. Take E = 200 GPa and $I_x = 48.9 \times 10^6$ mm⁴ & $I_y = 4.73 \times 10^6$ mm⁴ for W250 x 32.7. (Hint: Consider buckling in xz-plane and yz-plane separately)

$$W_{250\times32.7}: I_{x} = 48.9\times10^{6} \text{ mm}^{4}, I_{y} = 4.73\times10^{6} \text{ mm}^{4}$$

$$P = 60 \text{ kN}.$$

$$P_{er} = (F.S.)P = (2.2)(60) = 132 \text{ kN}$$

$$\frac{Buckling in \times 2-plane}{132000} = 12.01 \text{ m}.$$

$$\frac{Buckling in \times 2-plane}{132000} = 12.01 \text{ m}.$$

$$\frac{Buckling in \times 2-plane}{132000} = 12.01 \text{ m}.$$

$$\frac{Buckling in \times 2-plane}{132000} = 13.52 \text{ m}.$$

$$P_{er} = \frac{\pi^{2}EI_{x}}{(2L)^{2}} \qquad L = \frac{\pi}{2}\sqrt{\frac{EI_{x}}{P_{er}}} = \frac{\pi}{2}\sqrt{\frac{(200\times10^{9})(4.73\times10)}{132000}} = 13.52 \text{ m}.$$
Smaller value for L governs. $L = 12.01 \text{ m}.$