King Saud University
College of Engineering Department of Civil Engineering

FINAL EXAM

CE302 Mechanics of Materials - $\mathbf{2}^{\text {nd }}$ Semester 1431-32H

Sunday, $10^{\text {th }}$ Rajab 1432 H $-12^{\text {th }}$ June 2011
Time allowed: 3 hours

Student Name	SOTUTTONS
Student Number	
Section (put X please)	\square 30629 (from 9:00 to 10:00 A.M.)
	$\square 30170$ (from 10:00 to 11:00 A.M.)

Questions	Maximum Marks	Marks obtained		
$\mathbf{Q} \neq \mathbf{1}$	7			
$\mathbf{Q} \neq \mathbf{2}$	7			
$\mathbf{Q} \neq \mathbf{3}$	8			
$\mathbf{Q} \neq \mathbf{4}$	8			
$\mathbf{Q} \neq \mathbf{5}$	10			
$\mathbf{Q} \neq \mathbf{6}$	10			
Total marks				-

Total marks obtained (in words):

Question $=1$ (7 points):

The reinforced concrete beam shown is subjected to a positive bending moment of $175 \mathrm{kN} \cdot \mathrm{m}$. Knowing that the modulus of elasticity is 25 GPa for the concrete and 200 GPa for the steel, determine;
(a) the stress in the steel,
(b) the maximum stress in the concrete.

$$
\begin{aligned}
& n=\frac{E_{s}}{E_{c}}=\frac{200 \mathrm{GPa}}{25 \mathrm{GPa}}=8.0 \\
& A_{s}=4 \cdot \frac{\pi}{4} d^{2}=(4)\left(\frac{\pi}{4}\right)(25)^{2}=1.9635 \times 10^{3} \mathrm{~mm}^{2} \\
& n A_{s}=15.708 \times 10^{3} \mathrm{~mm}^{2}
\end{aligned}
$$

'Locate the neutral axis.
$300 \times \frac{x}{2}-\left(15.708 \times 10^{3}\right)(480-x)=0$
$150 x^{2}+15.708 \times 10^{3} x-7.5398 \times 10^{5}=0$
Solve for $x . \quad x=\frac{-15.708 \times 10^{3}+\sqrt{\left(15.708 \times 10^{3}\right)^{2}+(4)(150)\left(7.5398 \times 10^{6}\right.}}{(2)(150)}$
$x=177.87 \mathrm{~mm}, \quad 480-x=302.13 \mathrm{~mm}$
$I=\frac{1}{3} 300 x^{3}+\left(15.708 \times 10^{3}\right)(480-x)^{2}$
$=\frac{1}{3}(300)(177.87)^{3}+\left(15.708 \times 10^{3}\right)(302.13)^{2}$
$=1.9966 \times 10^{-1} \mathrm{~mm}^{4}=1.9966 \times 10^{-3} \mathrm{~m}^{4}$

$$
\sigma=-\frac{n M_{y}}{I}
$$

(a) Steel: $y=-302.45 \mathrm{~mm}=-0.30245 \mathrm{~m}$

$$
\sigma=-\frac{(8.0)\left(175 \times 10^{3}\right)(-0.30245)}{1.9966 \times 10^{-5}}=212 \times 10^{6} \mathrm{~Pa}=212 \mathrm{MPa} \rightarrow
$$

(b) Concrete:

$$
y=177.87 \mathrm{~mm}=0.17787 \mathrm{~m}
$$

$$
\sigma=-\frac{(1.0)\left(175 \times 10^{3}\right)(0.17787)}{1.9966 \times 10^{-3}}=-15.59 \times 10^{6} \mathrm{~Pa}=-15.59 \mathrm{MPa}
$$

Question $\neq 2$ (7 points):

A milling operation was used to remove a portion of a solid bar of square cross section. Knowing that $a=30 \mathrm{~mm}, \mathrm{~d}=20 \mathrm{~mm}$ and $\sigma_{\text {all }}=60 \mathrm{MPa}$, determine the magnitude P of the largest load that can be safely applied at the centers of the ends of the bar.

$$
\begin{aligned}
& A=a d, \quad I=\frac{1}{12} a d^{3}, \quad c=\frac{1}{2} d \\
& e=\frac{a}{2}-\frac{d}{2} \\
& E=\frac{P}{A}+\frac{M c}{I}=\frac{P}{2 d}+\frac{6 P e d}{a d^{3}}
\end{aligned}
$$

$\sigma=\frac{P}{a d}+\frac{3 P(a-d)}{n d^{2}}=K P \quad$ where $K=\frac{1}{a d}+\frac{3(a-d)}{a d^{2}}$
Data: $\quad a=30 \mathrm{~mm}=0.030 \mathrm{~m} \quad d=20 \mathrm{~mm}=0.020 \mathrm{~m}$

$$
\begin{aligned}
& K=\frac{1}{(0.030)(0.020)}+\frac{(3)(0.010)}{(0.030)(0.020)^{2}}=4.1667 \times 10^{3} \mathrm{~m}^{-2} \\
& P=\frac{\sigma^{\prime}}{K}=\frac{60 \times 10^{6}}{4.1667 \times 10^{3}}=14.40 \times 10^{3} \mathrm{~N} \quad P=14.40 \mathrm{kN}
\end{aligned}
$$

Question $=3$ (8 points):

The rigid bar DEF is welded at point D to the steel beam AB . For the loading shown, determine;
(a) the equations defining the shear and bending at portion AD of the steel beam AB,
(b) the location and magnitude of the largest bending moment.
(Hint: Replace the 700 N load applied at F by an equivalent force-couple system at D)

SOLUTION

Reactions. We consider the beam and bar as a free body and observe that the total load is 4300 N . Because of symmetry, each reaction is equal to 2150 N .

Modified Loading Diagram. We replace the $700-\mathrm{N}$ load applied at F by an equivalent force-couple system at D. We thus obtain a loading diagram consisting of a concentrated couple, three concentrated loads (including the two reactions), and a uni formly distributed load
a) Cut the beam somewhere in between portion $A D$

$\Sigma F_{y}=0: \quad 2150-750 x-V=0$
$V=2150-750 x \quad 0<x<3.3 \mathrm{~m}$
$\sum_{\text {cut }}^{+}=0: M+750 \times\left(\frac{x}{2}\right)-2150 x=0$

$$
M=-375 x^{2}+2150 x \quad 0<x<3.3 \mathrm{~m}
$$

b) Moment will be maximum when $V=0$

$$
\begin{aligned}
& V=2150-750 x=0 \\
& x= \frac{2150}{750}=2.86 \mathrm{~m} \\
& \therefore M_{\text {max }}=-375(2.86)^{2}+2150(2.86) \\
& M_{\text {max }}=+3081 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

Question $\neq 4$ (8 points):

For the beam \& loading shown and considering the given cross-section through section n-n, determine;
(a) the shearing stresses at points a and b ,
(b) the largest shearing stress.

(a)

(b)

$R_{A}=R_{B}=50 \mathrm{kN}$
Draw shear diagram.
$V=50 \mathrm{kN}$

Determine section properties.

Part	$A\left(\mathrm{~mm}^{2}\right)$	$\bar{y}(\mathrm{~mm})$	$A \bar{y}\left(\mathrm{~mm}^{3}\right)$	$d(\mathrm{~mm})$	$A d^{2}\left(\mathrm{mmm}^{4}\right)$	$\overline{\mathrm{I}}\left(\mathrm{mmm}^{4}\right)$
(1)	2500	100	250000	50	6250000	2083333
(2)	5000	25	125000	-25	3125000	1041667
Σ	7500		375000		9375000	3125000

$\bar{y}=\frac{\Sigma A \bar{y}}{\Sigma A}=\frac{375000}{7500}=50 \mathrm{~mm}$.
$I=\Sigma A d^{2}+\Sigma \bar{I}=12.5 \times 10^{6} \mathrm{~mm}^{4}$
(a) $A=625 \mathrm{~mm}^{2} \quad \bar{y}=87.5 \mathrm{~mm} \quad Q_{a}=A \bar{y}=54687.5 \mathrm{man}^{-3}$
$t=25 \mathrm{~mm}$
$\tau_{a}=\frac{V Q_{a}}{I t}=\frac{(50000)(54687.5)}{\left(12.5 \times 10^{6}\right)(25)}=8.75 \mathrm{MPa}$
$A=1250 \mathrm{~mm}^{2} \quad \bar{y}=75 \mathrm{~mm} \quad Q_{b}=A \bar{y}=93750 \mathrm{~mm}^{3}$
$t=25 \mathrm{~mm}$
$\tau_{b}=\frac{V Q_{b}}{I t}=\frac{(50000)(93750)}{\left(12.5 \times 10^{6}\right)(25)}=15 \mathrm{MPa}$
(b)

$Q=A_{1} \bar{y}_{1}=(2500)(50)=125000$
$t=25 \mathrm{~mm}$
$\tau_{\text {max }}=\frac{V Q}{I t}=\frac{(50000)(125000)}{\left(12.5 \times 10^{6}\right)(25)}=20 \mathrm{MPa}$.

A single horizontal force P of magnitude 500 N is applied to end D of lever
 ABD . Knowing that portion AB of the lever has a diameter of 30 mm , determine;
(a) the state of plane stress (i.e. the normal and shearing stresses) on an element located at point $\mathrm{H}, 100 \mathrm{~mm}$ above point A and having sides parallel to the x and y axes,
(b) the principal planes (i.e. $\Theta_{p 1} \& \Theta_{p 2}$) and the principal stresses (i.e. $\sigma_{\max }$ $\left.\& \sigma_{\text {min }}\right)$ at the same point H .

SOLUTION

Force-Couple System. We replace the force \mathbf{P} by an equivalent forcecouple system at the center C of the transverse section containing point H :

$$
\begin{aligned}
P=500 \mathrm{~N} \quad T & =(500 \mathrm{~N})(0.45 \mathrm{~m})
\end{aligned}=225 \mathrm{~N} \cdot \mathrm{~m},
$$

a. Stresses $\sigma_{x}, \sigma_{y}, \tau_{x y}$ at Point H. Using the sign convention shown in Fig. 7.2, we determine the sense and the sign of each stress component by carefully examining the sketch of the force-couple system at point C :

$$
\begin{array}{rlrl}
\sigma_{x}=0 & \sigma_{y} & =+\frac{M c}{I}=+\frac{(125 \mathrm{~N} \cdot \mathrm{~m})(0.015 \mathrm{~m})}{\frac{1}{4} \pi(0.015)^{4}} & \sigma_{y}=47.16 \mathrm{MPa} \\
\tau_{x y} & =+\frac{T c}{J}=+\frac{(225 \mathrm{~N} \cdot \mathrm{~m})(0.015)}{\frac{1}{2} \pi(0.015)^{4}} & \tau_{x y}=42.44 \mathrm{MPa}
\end{array}
$$

We note that the shearing force \mathbf{P} does not cause any shearing stress at point H.
b. Principal Planes and Principal Stresses. Substituting the values of the stress components into Eq. (7.12), we determine the orientation of the principal planes:

$$
\begin{aligned}
& \tan 2 \theta_{p}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}=\frac{2(42.44)}{0-47.16}=-1.80 \\
& 2 \theta_{p}=-61.0^{\circ} \quad \text { and } \quad 180^{\circ}-61.0^{\circ}=+119^{\circ} \\
& \quad \theta_{p}=-30.5^{\circ} \quad \text { and } \quad+59.5^{\circ}
\end{aligned}
$$

Substituting into Eq. (7.14), we determine the magnitudes of the principal stresses:

$$
\begin{aligned}
\sigma_{\max , \min }= & \frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\
& =\frac{0+47.16}{2} \pm \sqrt{\left(\frac{0-47.16}{2}\right)^{2}+(42.44)^{2}}
\end{aligned}=23.58 \pm 48.55 \mathrm{MPa} .
$$

Question $\neq 6$ (10 points):

A wide-flange shape column $A B$ carries a centric load P of magnitude 60 kN . Cables $B C$ and $B D$ are taut and prevent motion of Point B in the $x z$ plane. Using Euler's formula and a factor of safety of 2.2, and neglecting the tension in the cables, determine the maximum allowable length L. Take $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{I}_{\mathrm{x}}=48.9 \times 10^{6} \mathrm{~mm}^{4} \& \mathrm{I}_{\mathrm{y}}=$ $4.73 \times 10^{6} \mathrm{~mm}^{4}$ for W250 x 32.7. (Hint: Consider buckling in xz-plane and yz-plane separately)

$W 250 \times 32.7: \quad I_{x}=48.9 \times 10^{6} \mathrm{~mm}^{4}, \quad I_{y}=4.73 \times 10^{6} \mathrm{~mm}^{4}$ $P=60 \mathrm{kN}$.

$$
P_{c r}=\left(F_{. S}\right) P=(2.2)(60)=132 \mathrm{kN}
$$

Buckling in $x z$-plane. $\quad L_{e}=0.7 \mathrm{~L}$

$$
\begin{aligned}
P_{c r} & =\frac{\pi^{2} E I_{y}}{(0.7 L)^{2}} \quad L=\frac{\pi}{0.7} \sqrt{\frac{E I_{f}}{P_{c n}}} \\
L & =\frac{\pi}{0.7} \sqrt{\frac{\left(200 \times 10^{9}\right)\left(4.73 \times 10^{-6}\right)}{132000}}=12.01 \mathrm{~m} .
\end{aligned}
$$

Buckling in $y z$-plane. $L_{e}=2 L$
$P_{c r}=\frac{\pi^{2} E I_{x}}{(2 L)^{2}} \quad L=\frac{\pi}{2} \sqrt{\frac{E I_{x}}{P_{c x}}}=\frac{\pi}{2} \sqrt{\frac{\left(200 \times 10^{9}\right)\left(48.9 \times 10^{-6}\right)}{132000}}=13.52 \mathrm{~m}$.
Smaller value for L governs.
$L=12.01 \mathrm{~m}$

