Final Exam

(Summer Semester, 1428-1429)

Question 1[6]:

Use Cramer's Rule to solve the system of linear equations:

$$
\left\{\begin{array}{ccc}
x+2 y+3 z & = & 1 \\
2 x+5 y+3 z & = & -2 \\
x+8 z & = & 8
\end{array} .\right.
$$

Question 2[6]:
(a) Find the area of the triangle ABC where $A(1,2,0), B(3,5,4)$ and $C(3,2,3)$.
(b) Find the angle between vectors $a=6 i-4 j+2 k$ and $b=12 i+15 j-6 k$.
(c) Find the distance from the point $L(3,3,1)$ to the line joining the points $M(1,1,1)$ and $N(1,2,3)$.
Question 3[12]:
(a) Identify the surface S : $4 x^{2}+36 y^{2}-9 z^{2}-36=0$. Find its traces on the coordinate planes and sketch the surface.
(b) Find the tangential and normal components of acceleration for the curve $r(t)=e^{t} i+\sin t j+\tan t k$ at time t. Also find the curvature κ.
(c) Find the rectangular coordinates of the point given spherical coordinates: $P\left(3, \frac{\pi}{2}, \pi\right)$ and $Q(3, \pi, 0)$.
Question 4[8]:
(a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}+y^{2}}{x^{2}-3 y^{2}}$ does not exist.
(b) Use Chain Rule to show that:
i/ $f_{x y}=f_{y x}$ if $f(x, y)=\sin ^{2} x \cos y$.
ii/ $y \frac{\partial w}{\partial x}+x \frac{\partial w}{\partial y}=0$, if $w=f\left(x^{2}-y^{2}, y^{2}-x^{2}\right)$.
Question 5[4]: The electric potential V at (x, y, z) is given by

$$
V(x, y, z)=x^{4} y z-x y^{3}+z .
$$

(a) Find the rate of change of V at $P(1,1,-3)$ in direction from P to origin.
(b) In what direction does V increases most rapidly?
(c) What is the maximum rate of change at P ?

Question 6[6]

Find the points on the hyperboloid of two sheets $x^{2}-2 y^{2}-4 z^{2}=16$ at which the tangent plane is parallel to the plane $4 x-2 y+4 z=5$.

Question 7 [8]

(a) Find all the critical points and indicate whether each point gives a local maximum, local minimum or whether it is a saddle point for the function $f(x, y)=2 x^{4}-x^{2}+y^{2}$.
(b) Use Lagrange multipliers to find the largest product of real numbers x, y and z, if $x+y+z^{2}=20$.

