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Chapter 1

The Indefinite Integrals

1.1 Antiderivatives and Indefinite Integrals

We begin with the definition of the antiderivatives and indefinite integrals. Then, we provide basic integration rules.

1.1.1 Antiderivatives

Definition 1.1 A function F is called an antiderivative of f on an interval I if

F
′
(x) = f (x) for every x ∈ I.

Example 1.1

(1) Let F(x) = x2 +3x+1 and f (x) = 2x+3.
Since F

′
(x) = f (x), then the function F(x) is an antiderivative of f (x).

(2) Let G(x) = sin x+ x and g(x) = cos x+1.
Since G

′
(x) = cos x+1, then the function G(x) is an antiderivative of g(x).

If F(x) is an antiderivative of f (x), then every function F(x)+c is also antiderivative of f (x), where c is a constant. The upcoming theorem
states that any antiderivative G(x), which is different from F(x) can be expressed as F(x)+ c where c is an arbitrary constant.

Theorem 1.1 If functions F and G are antiderivatives of a function f on an interval I, there exists a constant c such that
G(x) = F(x)+ c.

Proof. Let H be a function defined as follows:
H(x) = G(x)−F(x) ∀x ∈ I

where F and G are antiderivatives of the function f . Let a,b ∈ I such that a < b. Since F and G are antiderivatives of f , then

H ′(x) = G′(x)−F ′(x) = f (x)− f (x) = 0

for every x ∈ I. Since the function H is differentiable, it is continuous. From the mean value theorem on [a,b], there is a number c ∈ (a,b)
such that

H ′(c) =
H(b)−H(a)

b−a
.

1 Since H ′(x) = 0 on I, then H ′(c) = 0. This implies H(a) = H(b) and this means H is a constant function. �

1If f is continuous on [a,b] and differentiable on (a,b), there exists a number c ∈ (a,b) such that f ′(c) = f (b)− f (a)
b−a .
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Example 1.2 Let f (x) = 2x. The functions

F(x) = x2 +2,

G(x) = x2− 1
2 ,

H(x) = x2− 3
√

2,

are antiderivatives of the function f . Therefore, F(x) = x2 + c is a general form of the antiderivatives of the function f (x) = 2x.

Example 1.3 Find the general form of the antiderivatives of f (x) = 6x5.

Solution:

If F(x) = x6, then F ′(x) = 6x5. The function F(x) = x6 + c is the general antiderivative of f .

1.1.2 Indefinite Integrals

From Theorem 1.1, if the function F(x)+ c is an antiderivative of f (x), then there exist no antiderivatives in different forms for the
function f (x). This leads us to define the indefinite integral.

Definition 1.2 Let f be a continuous function on an interval I. The indefinite integral of f is the general antiderivative of f on I:∫
f (x) dx = F(x)+ c.

The function f is called the integrand, the symbol
∫

is the integral sign, x is called the variable of the integration and c is the

constant of the integration.

Now, by using the previous definition, the general antiderivatives in Example 1.1 are

1
∫
(2x+3) dx = x2 +3x+ c.

2
∫
(cos x+1) dx = sin x+ x+ c.

We can now work out how to evaluate some integrals. To do that, we should remember differentiation rules of some functions.

Basic Integration Rules

Rule 1: Power of x.
d
dx

xn+1 = (n+1)xn, so
∫
(n+1)xn dx = xn+1 + c

Generally, for n 6=−1, ∫
xn dx =

xn+1

n+1
+ c.

In words, to integrate the function xn, we add 1 to the power and divide the function by n+1. If n = 1, we have a special case∫
1 dx = x+ c.

Rule 2: Trigonometric functions.
d
dx

sin x = cos x, so
∫

cos x dx = sin x+ c

d
dx

cos x =−sin x, so
∫
−sin x dx = cos x+ c

Therefore,
∫

sin x dx =−cos x+ c.
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The other trigonometric functions with the previous rules are listed in the following table:

Derivative Indefinite Integral
d
dx (x) = 1

∫
1 dx = x+ c

d
dx (

xn+1

n+1 ) = xn, n 6=−1
∫

xn dx = xn+1

n+1 + c

d
dx (sin x) = cos x

∫
cos x dx = sin x+ c

d
dx (−cos x) = sin x

∫
sin x dx =−cos x+ c

d
dx (tan x) = sec2 x

∫
sec2 x dx = tan x+ c

d
dx (−cot x) = csc2 x

∫
csc2 x dx =−cot x+ c

d
dx (sec x) = sec x tan x

∫
sec x tan x dx = sec x+ c

d
dx (−csc x) = csc x cot x

∫
csc x cot x dx =−csc x+ c

Table 1.1: The list of basic integration rules.

Example 1.4 Evaluate the integral.

(1)
∫

x−3 dx

(2)
∫ 1

cos2 x
dx

Solution:

(1)
∫

x−3 dx = x−2

−2 + c =− 1
2x2 + c.

(2)
∫ 1

cos2 x
dx =

∫
sec2 x dx = tan x+ c. (sec x = 1

cos x ⇒ sec2 x = 1
cos2 x )

Note that we sometimes need to express an integrand in a form in which we can recognize its derivative like item 2 in the previous
example.

Exercise 1.1

1 - 8 Evaluate the integral.

1
∫ 1√

x
dx

2
∫ 1

x
5
4

dx

3
∫ 1

sin2 x
dx

4
∫
− csc2 x tan2 x dx

5
∫ 1

5
√

x
dx

6
∫ tanx

cos x
dx

7
∫ √x

x3 dx

8
∫ √

sin4 x csc x dx

�
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1.2 Properties of the Indefinite Integral

In this section, we list some properties of the indefinite integrals.

Theorem 1.2 Assume f and g have antiderivatives on an interval I, then

1.
d
dx

∫
f (x) dx = f (x).

2.
∫ d

dx
(F(x)) dx = F(x)+ c.

3.
∫ (

f (x)±g(x)
)

dx =
∫

f (x) dx±
∫

g(x) dx.

4.
∫

k f (x) dx = k
∫

f (x) dx, where k is a constant.

Proof. For items 1 and 2, let F be an antiderivative of f .

1.
d
dx

∫
f (x) dx = d

dx
(
F(x)+ c

)
= f (x).

2.
∫ d

dx
(F(x)) dx =

∫
f (x) dx = F(x)+ c.

3. Let F and G be antiderivatives of f and g, respectively. By differentiating the left side, we have

d
dx

(∫ (
f (x)±g(x)

)
dx
)
=

d
dx

(
F(x)±G(x)

)
= f (x)±g(x).

Hence,
∫ (

f (x)±g(x)
)

dx = F(x)±G(x)+ c1.

From the right side, we have ∫
f (x) dx±

∫
g(x) dx = F(x)±G(x)+ c2

For any special case, we can choose the values of the constants such that c1 = c2 and this prove item 3.

4. By differentiating the left side, we have

d
dx

(∫
k f (x) dx

)
= k

d
dx

(∫
f (x) dx

)
= k

d
dx

(
F(x)

)
= k f (x).

Hence,
∫

k f (x) dx = kF(x)+ c1.

From the right side, we have

k
∫

f (x) dx = kF(x)+ c2

We can choose the values of the constants such that c1 = c2 and this prove item 4. �

In the following example, we use the previous properties and the table of the basic integration rules to evaluate some indefinite integrals.

Example 1.5 Evaluate the integral.

(1)
∫
(4x+3) dx

(2)
∫
(2sin x+3cos x) dx

(3)
∫
(
√

x+ sec2 x) dx
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(4)
∫ d

dx
(sin x) dx

(5)
d
dx

∫ √
x+1 dx

Solution:

(1)
∫
(4x+3) dx = 4x2

2 +3x+ c = 2x2 +3x+ c.

(2)
∫
(2sin x+3cos x) dx =−2cos x+3sin x+ c.

(3)
∫
(
√

x+ sec2 x) dx = x
3
2

3/2 + tan x+ c = 2x
3
2

3 + tan x+ c.

(4)
∫ d

dx
(sin x) dx = sin x+ c.

(5)
d
dx

∫ √
x+1 dx =

√
x+1.

Example 1.6 If
∫

f (x) dx = x2 + c1 and
∫

g(x) dx = tan x+ c2, find
∫ (

3 f (x)−2g(x)
)

dx.

Solution:

From the third and fourth properties,
∫ (

3 f (x)−2g(x)
)

dx = 3
∫

f (x) dx−2
∫

g(x) dx = 3x2−2tan x+ c, where c = 3c1−2c2.

Example 1.7 Solve the differential equation f ′(x) = x3 subject to the initial condition f (0) = 1.

Solution: ∫
f ′(x) dx =

∫
x3 dx

⇒ f (x) =
1
4

x4 + c.

If x = 0, then f (0) = 1
4 (0)

4 + c = 1 and this implies c = 1. Hence, the solution of the differential equation is f (x) = 1
4 x4 +1.

Example 1.8 Solve the differential equation f ′(x) = 6x2 + x−5 subject to the initial condition f (0) = 2.

Solution: ∫
f ′(x) dx =

∫
(6x2 + x−5) dx

⇒ f (x) = 2x3 +
1
2

x2−5x+ c.

Use the condition f (0) = 2 by substituting x = 0 into the function f (x). We have

f (0) = 0+0−0+ c = 2⇒ c = 2.

Therefore, the solution of the differential equation is f (x) = 2x3 + 1
2 x2−5x+2.

Example 1.9 Solve the differential equation f ′′(x) = 5cos x+2sin x subject to the initial conditions f (0) = 3 and f ′(0) = 4.

Solution: ∫
f ′′(x) dx =

∫
(5cos x+2sin x) dx

⇒ f ′(x) = 5sin x−2cos x+ c

Using the condition f ′(0) = 4 gives

f ′(0) = 0−2+ c = 4⇒ c = 6. (use values of the trigonometric functions given on page 180)
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Hence, f ′(x) = 5sin x−2cos x+6. Now, again∫
f ′(x) dx =

∫
(5sin x−2cos x+6) dx

⇒ f (x) =−5cos x−2sin x+6x+ c.

Use the condition f (0) = 3 by substituting x = 0 into f (x). We obtain

f (0) =−5−0+0+ c = 3⇒ c = 8.

Hence, the solution of the differential equation is f (x) =−5cos x−2sin x+6x+8.

Notes:

We can always check our answers by differentiating the results.

In the previous examples, we use x as a variable of the integration. However, for this role, we can use any variable such as y, z, t, etc .
That is, instead of f (x) dx, we can integrate f (y) dy or f (t) dt.

The properties of the indefinite integral and the table of the basic integrals are elementary for simple functions. Meaning that, for more
complex functions, we need some techniques to simplify the integrals. Section 1.3, we shall provide one of these techniques.

Exercise 1.2

1 - 10 Evaluate the integral.

1
∫ √

x5 dx

2
∫
(x

3
4 + x2 +1) dx

3
∫

x(x3 +2x+1) dx

4
∫
(x2 + sec2 x) dx

5
∫
(csc2 x−

√
x) dx

6
∫ 3sin2 x+4

sin2 x
dx

7
∫ x2−1

x4 dx

8
∫ (

4x
2
5 −2x

2
3 + x

)
dx

9
∫ ( 3

x3 +
2
x4 +1

)
dx

10
∫ x2 + x+1

3
√

x
dx

11 - 12 Evaluate.

11 d
dx (

∫ √
cos3 x+1 dx)

12
∫ d

dx
(
√

cos3 x+1) dx

13 - 17 Solve the differential equation subject to the given conditions.

13 f ′(x) = 4x3 +2x+1; f (0) = 1.

14 f ′′(x) = sin x+2cos x; f (0) = 1 and f ′(0) = 3.

15 f ′(x) =
√

x; f (0) = 0.

16 f ′(x) = cosx; f (π) = 1.

17 f ′(x) = sec2 x; f ( π

4 ) = 0.

�

1.3 Integration By Substitution

The integration by substitution (known as u-substitution) is a technique for solving some composite functions. The method is based
on changing the variable of the integration to obtain a simple indefinite integral. The following theorem shows how the substitution
technique works.
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Theorem 1.3 Let g be a differentiable function on an interval I where the derivative is continuous. Let f be continuous on the
interval J contains the range of the function g. If F is an antiderivative of the function f on J, then∫

f (g(x))g
′
(x) dx = F(g(x))+ c, x ∈ I.

Proof. Since F is an antiderivative of f , then d
dx F(g(x)) = F

′
(g(x))g

′
(x) = f (g(x))g

′
(x). Hence,∫

f (g(x))g
′
(x) dx =

∫ d
dx

F(g(x)) dx = F(g(x))+ c. �

The task here is to recognize whether an integrand has the form f (g(x))g
′
(x). The following two examples explain this task.

Example 1.10 Evaluate the integral
∫

2x (x2 +1)3 dx.

Solution:

We can use the previous theorem as follows:

let f (x) = x3 and g(x) = x2 +1, then f
(
g(x)

)
= (x2 +1)3. Since g

′
(x) = 2x, then from Theorem 1.3, we have∫

2x(x2 +1)3 dx =
(x2 +1)4

4
+ c.

We can end with the same solution by using the five steps of the substitution method given below.

Steps of the integration by substitution:

Step 1: Choose a new variable u.

Step 2: Determine the value of du.

Step 3: Make the substitution i.e., eliminate all occurrences of x in the integral by making the entire integral is in terms of u.

Step 4: Evaluate the new integral.

Step 5: Return the evaluation to the initial variable x.

In Example 1.10, let u = x2 +1, then du = 2x dx. By substituting that into the original integral, we have∫
u3 du =

u4

4
+ c.

Now, by returning the evaluation to the initial variable x, we have
∫

2x(x2 +1)3 dx = (x2+1)4

4 + c.

Example 1.11 Evaluate the integral
∫ sec2 √x√

x
dx.

Solution:

We use Theorem 1.3 for the integral 2
∫ sec2 √x

2
√

x
dx. Let f (x) = sec2 x and g(x) =

√
x, then f

(
g(x)

)
= sec2 √x. Since g

′
(x) = 1/(2

√
x),

then we have ∫ sec2 √x√
x

dx = 2tan
√

x+ c.

By using the steps of the substitution method, let u =
√

x, then du = 1
2
√

x dx. By substitution, we obtain

2
∫

sec2 u du = 2tan u+ c = 2tan
√

x+ c.
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Example 1.12 Evaluate the integral
∫ x2−1

(x3−3x+1)6 dx.

Solution:

Let u = x3−3x+1, then du = 3(x2−1) dx. By substitution, we have

1
3

∫
u−6 du =

1
3

1
−5u5 + c =

−1
15(x3−3x+1)5 + c.

The upcoming corollary simplifies the process of the substitution method for some functions.

Corollary 1.1 If
∫

f (x) dx = F(x)+ c, then for any a 6= 0,

∫
f (ax±b) dx =

1
a

F(ax±b)+ c.

Proof. To verify the previous result, it is sufficient to choose the variable u = ax± b, then du = a dx. This implies dx = 1
a du. By

substitution, we have ∫
f (ax±b) dx =

∫
f (u)

du
a

=
1
a

∫
f (u) du =

1
a

F(u) =
1
a

F(ax±b)+ c. �

Example 1.13 Evaluate the integral.

(1)
∫ √

2x−5 dx (2)
∫

cos (3x+4) dx

Solution:

From Corollary 1.1, we have

(1)
∫ √

2x−5 dx = 1
2
(2x−5)3/2

3/2 + c = (2x−5)3/2

3 + c.

(2)
∫

cos (3x+4) dx = 1
3 sin (3x+4)+ c.

Notes:

The substitution method turns the integral into a simpler integral involving the variable u. The new integral can be evaluated by using
either the table of the basic integrals or other techniques of the integration.

When using the substitution method, we need to return to the original variable. All examples above expressed in terms of the original
variable x.

Students should distinguish between integrals that can be evaluated by the substitution method. We must choose u so that du is already
sitting in the integrand, regardless of a constant k. For example, the integral

∫
cos x2 dx cannot be evaluated by the substitution method.

To see this, let u = x2, this implies du = 2x dx. However, the term x is not in the integrand. Therefore, the integral cannot be evaluated
by the substitution method.

The substitution method may be used as a first step in simplifying an integral. It might be followed by other techniques given in
Chapter 5.

Exercise 1.3

1 - 16 Evaluate the integral.
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1
∫

x
√

1+ x2 dx

2
∫

x
√

x−1 dx

3
∫

x2√x−1 dx

4
∫ tan x

cos2 x
dx

5
∫

sin5 x cos x dx

6
∫ x√

2x2 +1
dx

7
∫

cos t
√

1− sin t dt

8
∫ cos3 x

csc x
dx

9
∫

cos (3x+4) dx

10
∫ 1√

x(
√

x+1)2 dx

11
∫

sec 4x tan 4x dx

12
∫ √cot x

sin2 x
dx

13
∫
(1+

1
t
)t−2 dt

14
∫ x√

2x−1
dx

15
∫

x2(4x3−6)7 dx

16
∫

sin2 3xcos 3x dx

�
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Review Exercises

1 - 34 Evaluate the integral.

1
∫

2x dx

2
∫
(3x2 +1) dx

3
∫ (1

2
x3 + x

)
dx

4
∫
(x4 + x3) dx

5
∫
(x2 +3x−1) dx

6
∫
(1−2x−5x3) dx

7
∫ 1

x2 dx

8
∫ √

x5 dx

9
∫ 1√

x3
dx

10
∫
(x−1)(x+1) dx

11
∫
(2x3−3

√
x+

4
x5 ) dx

12
∫

5
√

1+ x dx

13
∫
(x3 +1)(x−1) dx

14
∫ x2−1

x−1
dx

15
∫ x−3√

x
dx

16
∫ x+1

3
√

x
dx

17
∫
(x3−1)2 dx

18
∫

sin (x+1) dx

19
∫
(cos x− x) dx

20
∫
(sec2 x−4) dx

21
∫
(sec x tan x+ x) dx

22
∫
(csc2 x+ x2 +1) dx

23
∫ 1

cos2 x
dx

24
∫ 1

sin2 x
dx

25
∫ tan x

cos x
dx

26
∫

sec x (tan x− sec x) dx

27
∫
(2+ tan2 x) dx (Hint: tan2 x = sec2 x−1)

28
∫ cos x

sin2 x
dx

29
∫ tan x

cos2 x
dx

30
∫

sin x sec2 x dx

31
∫

cos x csc2 x dx

32
∫

sec x (sec x+2tan x) dx

33
∫

csc x (csc x+3cot x) dx

34
∫

sin x
√

cos3 x dx
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35 - 64 Evaluate the integral.

35
∫

x4(3x5 +1)10 dx

36
∫

x
√

x2 +1 dx

37
∫
(2x+1)

√
x2 + x+2 dx

38
∫
(x2−1) 3

√
x3−3x+2 dx

39
∫
(5x+1)(5x2 +2x−5)3 dx

40
∫ sin

√
x√

x
dx

41
∫ sin2 √x√

x cos2 √x
dx

42
∫ cos2 √x
√

x sin2 √x
dx

43
∫ sin 2x

cos2 2x
dx

44
∫ cos

√
x

√
xsin2 √x

dx

45
∫

xsin x2 dx

46
∫ x

cos2 x2 dx

47
∫ x+1

sin2 (x2 +2x−1)
dx

48
∫ csc2 3

√
x

3
√

x2
dx

49
∫ sec2 ( 5

√
x+1)

5
√

x4
dx

50
∫ x√

x2 +9
dx

51
∫ x

3
√

x2−1
dx

52
∫

cos2 x sin x dx

53
∫ sin

√
x cos

√
x√

x
dx

54
∫ cos3 √x sin

√
x√

x
dx

55
∫ 2+ cos x

sin2 x
dx

56
∫ x

5
√

x+1
dx

57
∫

x
√

x−3 dx

58
∫ 1√

x (
√

x+1)3 dx

59
∫ 2− x
√

x
√

4− x
dx

60
∫

sinx
(

cos2 (x+1)
)

dx

61
∫ sin 2x

(5+ cos 2x)3 dx

62
∫ x3
√

x4−1
dx

63
∫ x

3
4

4
√

x
dx

64
∫ sec 3

√
x tan 3

√
x

x
2
3

dx
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65 - 70 Choose the correct answer.

65 The value of the integral
∫ sin x√

2+ cos x
dx is equal to

(a) −2
√

2+ cos x+ c
(b)
√

2+ cos x+ c
(c) −

√
2+ cos x+ c

(d) 2
√

2+ cos x+ c

66 The value of the integral
∫ sin (tan x)

cos2 x
dx is equal to

(a) cos (tan x)+ c
(b) sin (tan x)+ c

(c) −cos (tan x)+ c
(d) −sin (tan x)+ c

67 The integral
∫

x
√

x2 +1 dx is equal to

(a) 1
2 x2
√

x2 +1+ c

(b) 2
3 (x

2 +1)
3
2 + c

(c) − 2
3 (x

2 +1)
3
2 + c

(d) 1
3 (x

2 +1)
3
2 + c

68 The integral
∫ x

cos2 x2 dx is equal to

(a) 1
2 tan x2 + c

(b) tan x2 + c
(c) 1

2 tan x+ c
(d) − 1

cos x2 + c

69 The value of the integral
∫ sec2 x

cot2 x
dx is equal to

(a) 1+cos2 x
3cos3 x + c

(b) 1−3cos2 x
3cos3 x + c

(c) cot4 x
4 + c

(d) tan3 x
3 + c

70 The value of the integral
∫ cos x√

4+ sin x
dx

(a) 1
2
√

sin x+4+ c
(b)
√

sin x+4+ c
(c) 2
√

sin x+4+ c
(d) −2

√
sin x+4+ c
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Chapter 2

The Definite Integrals

2.1 Summation Notation

Summation (or sigma notation) is a simple form used to give a concise expression for a sum of values.

Definition 2.1 Let {a1,a2, ...,an} be a set of numbers. The symbol
n
∑

k=1
ak represents their sum:

n

∑
k=1

ak = a1 +a2 + ...+an.

Example 2.1 Evaluate the sum.

(1)
3
∑

i=1
i3

(2)
4
∑

j=1
( j2 +1)

(3)
3
∑

k=1
(k+1)k2

Solution:

(1)
3
∑

i=1
i3 = 13 +23 +33 = 1+8+27 = 36.

(2)
4
∑

j=1
( j2 +1) = (12 +1)+(22 +1)+(32 +1)+(42 +1) = 2+5+10+17 = 34.

(3)
3
∑

k=1
(k+1)k2 = (1+1)(1)2 +(2+1)(2)2 +(3+1)(3)2 = 2+12+36 = 50.

Theorem 2.1 Let {a1,a2, ...,an} and {b1,b2, ...,bn} be sets of real numbers. If n is any positive integer, then

1.
n
∑

k=1
c = c+ c+ ...+ c︸ ︷︷ ︸

n-times

= nc for any c ∈ R.

2.
n
∑

k=1
(ak±bk) =

n
∑

k=1
ak±

n
∑

k=1
bk.

3.
n
∑

k=1
c ak = c

n
∑

k=1
ak for any c ∈ R.



17

Example 2.2 Evaluate the sum.

(1)
10
∑

k=1
15

(2)
4
∑

k=1
(k2 +2k)

(3)
3
∑

k=1
3(k+1)

Solution:

(1)
10
∑

k=1
15 = (10)(15) = 150.

(2)
4
∑

k=1
(k2 +2k) =

4
∑

k=1
k2 +2

4
∑

k=1
k = (12 +22 +32 +42)+2(1+2+3+4) = 30+20 = 50.

(3)
3
∑

k=1
3(k+1) = 3

3
∑

k=1
(k+1) = 3(2+3+4) = 27.

In the following theorem, we present summations of some polynomial expressions. They will be used later in a Riemann sum.

Theorem 2.2

1.
n
∑

k=1
k = 1+2+3+ ...+n =

n(n+1)
2

2.
n
∑

k=1
k2 = 12 +22 +32 + ...+n2 =

n(n+1)(2n+1)
6

3.
n
∑

k=1
k3 = 13 +23 +33 + ...+n3 =

[ n(n+1)
2
]2

Proof. We prove this theorem by induction.

1.
n
∑

k=1
k = n(n+1)

2 .

(a) If n = 1, then both left and right sides equal 1.

(b) Assume the equality holds for n, that is
n
∑

k=1
k = n(n+1)

2 . We want to prove that the equality holds for n+1. The right side

for n+1 is (n+1)(n+2)
2 . The left side is

n+1

∑
k=1

k =
n

∑
k=1

k+(n+1) =
n(n+1)

2
+(n+1) =

(n+1)(n+2)
2

.

Hence, the result follows.

2.
n
∑

k=1
k2 =

n(n+1)(2n+1)
6 .

(a) If n = 1, then both left and right sides equal 1.

(b) Assume the equality holds for n i.e.,
n
∑

k=1
k2 =

n(n+1)(2n+1)
6 . The task is to prove the equality for n+1. The right side for

n+1 is (n+1)(n+2)(2n+3)
6 . The left side for n+1 is

n+1

∑
k=1

k2 =
n

∑
k=1

k2 +(n+1)2 =
n(n+1)(2n+1)

6
+(n+1)2

=
(n+1)(2n2 +7n+6)

6
=

(n+1)(n+2)(2n+3)
6

.

3.
n
∑

k=1
k3 =

[ n(n+1)
2
]2.

(a) If n = 1, then both left and right sides equal 1.
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(b) Assume the equality holds for n i.e.,
n
∑

k=1
k3 =

[ n(n+1)
2
]2. We want to prove the equality for n+1. The right side for n+1 is[

(n+1)(n+2)
2

]2
and the left side is

n+1

∑
k=1

k3 =
n

∑
k=1

k3 +(n+1)3 =
[n(n+1)

2

]2
+(n+1)3 =

(n+1)2(n2 +4n+4)
4

=
[ (n+1)(n+2)

2

]2
.

Hence, the formula is proved. �

Example 2.3 Evaluate the sum.

(1)
100
∑

k=1
k (2)

10
∑

k=1
k2 (3)

10
∑

k=1
k3

Solution:

(1)
100
∑

k=1
k = 100(100+1)

2 = 5050.

(2)
10
∑

k=1
k2 =

10(11)(21)
6 = 385.

(3)
10
∑

k=1
k3 =

[ 10(11)
2
]2

= 3025.

Example 2.4 Express the sum in terms of n.

(1)
n
∑

k=1
(k+1)

(2)
n
∑

k=1
(k2− k−1)

Solution:

(1)
n
∑

k=1
(k+1) =

n
∑

k=1
k+

n
∑

k=1
1 =

n(n+1)
2 +n =

n(n+3)
2 .

(2)
n
∑

k=1
(k2− k−1) =

n
∑

k=1
k2−

n
∑

k=1
k−

n
∑

k=1
1 =− n(n+1)(2n+1)

6 − n(n+1)
2 −n =

n(n2−4)
3 .

Exercise 2.1

1 - 6 Evaluate the sum.

1
3
∑

i=1
(i+1)

2
5
∑

j=0
j2

3
4
∑

k=1

k
k+1

4
10
∑

i=1
5i

5
30
∑

k=1
4

6
3
∑

j=1
(3−2 j)2

7 - 9 Express the sum in terms of n.

7
n
∑

k=1
(k−1)

8
n
∑

k=1
(k2 +1)

9
n
∑

k=1
(k3 +2k2− k+1)

�
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2.2 Riemann Sum and Area

A Riemann sum is a mathematical form used in this book to approximate the area of a region underneath the graph of a function. Before
start-up in this issue, we provide some basic definitions.

Definition 2.2 A set P = {x0,x1,x2, ...,xn} is called a partition of a closed interval [a,b] if for any positive integer n,

a = x0 < x1 < x2 < .... < xn−1 < xn = b.

Figure 2.1: A partition of the interval [a,b].

Notes:

The division of the interval [a,b] by the partition P generates n subintervals: [x0,x1], [x1,x2], [x2,x3], ..., [xn−1,xn].

The length of each subinterval [xk−1,xk] is ∆xk = xk− xk−1.

The union of subintervals gives the whole interval [a,b].

Definition 2.3 The norm of the partition of P is the largest length among ∆x1,∆x2,∆x3, ...,∆xn i.e.,

|| P ||= max{∆x1,∆x2,∆x3, ...,∆xn}.

Example 2.5 If P = {0,1.2,2.3,3.6,4} is a partition of the interval [0,4], find the norm of the partition P.

Solution:

We need to find the subintervals and their lengths.

Subinterval Length

[xk−1,xk] ∆xk

[0,1.2] 1.2−0 = 1.2

[1.2,2.3] 2.3−1.2 = 1.1

[2.3,3.6] 3.6−2.3 = 1.3

[3.6,4] 4−3.6 = 0.4

The norm of P is the largest length among

{∆x1,∆x2,∆x3,∆x4}.

Hence, ‖ P ‖= ∆x3 = 1.3

Remark 2.1
1. The partition P of the interval [a,b] is regular if ∆x0 = ∆x1 = ∆x2 = ...= ∆xn = ∆x.
2. For any positive integer n, if the partition P is regular then

∆x =
b−a

n
and xk = x0 + k ∆x.

Indeed, let P be a regular partition of the interval [a,b]. Since x0 = a and xn = b, then
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x1 = x0 +∆x ,

x2 = x1 +∆x = (x0 +∆x)+∆x = x0 +2∆x ,

x3 = x2 +∆x = (x0 +2∆x)+∆x = x0 +3∆x.

By continuing doing so, we have xk = x0 + k ∆x.

Figure 2.2: A regular partition of the interval [a,b].

Example 2.6 Define a regular partition P that divides the interval [1,4] into 4 subintervals.

Solution:

Since P is a regular partition of [1,4] where n = 4, then

∆x =
4−1

4
=

3
4

and xk = 1+ k
3
4
.

Therefore,

x0 = 1
x1 = 1+ 3

4 = 7
4

x2 = 1+2( 3
4 ) =

5
2

x3 = 1+3( 3
4 ) =

13
4

x4 = 1+4( 3
4 ) = 4

The regular partition is P = {1, 7
4 ,

5
2 ,

13
4 ,4}.

Now, we are ready to define a Riemann sum .

Definition 2.4 Let f be a function defined on a closed interval [a,b] and let P = {x0,x1, ...,xn} be a partition of [a,b]. Let
ω = (ω1,ω2, ...,ωn) is a mark on the partition P where ωk ∈ [xk−1,xk], k = 1,2,3, ...,n. Then, a Riemann sum of f for P is

Rp =
n

∑
k=1

f (ωk)∆xk.

As shown in Figure 2.3, the amount f (ω1)∆x1 is the area of the rectangle A1, f (ω2)∆x2 is the area of the rectangle A2 and so on. The
sum of these areas approximates the area of the whole region under the graph of the function f from x = a to x = b.

This indicates that if f is a defined and positive function on a closed interval [a,b] and P is a partition of that interval where ω =
(ω1,ω2, ...,ωn) is a mark on the partition P, then the Riemann sum estimates the area of the region under f from x = a to x = b. As the
number of the subintervals increases n→ ∞ (i.e., ||P|| → 0), the estimation becomes better. Therefore,

A = lim
‖P‖→0

Rp = lim
‖P‖→0

n

∑
k=1

f (ωk)∆xk
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Figure 2.3: A region under a function f from x = a to x = b.

Example 2.7 Find a Riemann sum Rp of the function f (x) = 2x− 1 for the partition P = {−2,0,1,4,6} of the interval [−2,6] by
choosing the mark,

(1) the left-hand endpoint,
(2) the right-hand endpoint,
(3) the midpoint.

Solution:

(1) Choose the left-hand endpoint of each subinterval.

Subintervals Length ∆xk ωk f (ωk) f (ωk) ∆xk
[−2,0] 0− (−2) = 2 −2 −5 −10
[0,1] 1−0 = 1 0 −1 −1
[1,4] 4−1 = 3 1 1 3
[4,6] 6−4 = 2 4 7 14

Rp =
4
∑

k=1
f (ωk)∆xk 6

(2) Choose the right-hand endpoint of each subinterval.

Subintervals Length ∆xk ωk f (ωk) f (ωk) ∆xk
[−2,0] 0− (−2) = 2 0 −1 −2
[0,1] 1−0 = 1 1 1 1
[1,4] 4−1 = 3 4 7 21
[4,6] 6−4 = 2 6 11 22

Rp =
4
∑

k=1
f (ωk)∆xk 42

(3) Choose the midpoint of each subinterval.1

Subintervals Length ∆xk ωk f (ωk) f (ωk) ∆xk
[−2,0] 0− (−2) = 2 −1 −3 −6
[0,1] 1−0 = 1 0.5 0 0
[1,4] 4−1 = 3 2.5 4 12
[4,6] 6−4 = 2 5 9 18

Rp =
4
∑

k=1
f (ωk)∆xk 24

1ωk =
xk−1+xk

2 .
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Example 2.8 Let A be the area under the graph of f (x) = x+1 from x = 1 to x = 3. Find the area A by taking the limit of the Riemann
sum such that the partition P is regular and the mark ω is the right-hand endpoint of each subinterval.

Solution:

For a regular partition P, we have

1. ∆x = b−a
n = 3−1

n = 2
n , and

2. xk = x0 + k ∆x where x0 = 1.

Since the mark ω is the right endpoint of each subinterval, then ωk = xk = 1+ 2k
n . Therefore,

f (ωk) = (1+
2k
n
)+1 =

2k
n

+2 =
2
n
(n+ k).

From Definition 2.4,

Rp =
n

∑
k=1

f (ωk)∆xk =
4
n2

n

∑
k=1

(n+ k)

=
4
n2

[
n2 +

n(n+1)
2

]
= 4+

2(n+1)
n

.

(1)
n
∑

k=1
(n+ k) =

n
∑

k=1
n+

n
∑

k=1
k

(2)
n
∑

k=1
k = n(n+1)

2

Hence, lim
n→∞

Rp = 4+2 = 6.

The following definition shows that the definite integral of a defined function f on a closed interval [a,b] is a Riemann sum when
‖ P ‖→ 0.

Definition 2.5 Let f be a defined function on a closed interval [a,b] and let P be a partition of [a,b]. The definite integral of f
on [a,b] is ∫ b

a
f (x) dx = lim

‖P‖→0
∑
k

f (ωk)∆xk

if the limit exists. The numbers a and b are called the limits of the integration.

Example 2.9 Evaluate the integral
∫ 4

2
(x+2) dx.

Solution:

Let P = {x0,x1, ...,xn} be a regular partition of the interval [2,4], then ∆x = 4−2
n = 2

n and xk = x0 +∆x. Also, let the mark ω be the right
endpoint of each subinterval, so ωk = xk = 2+ 2k

n and then f (ωk) =
2
n (2n+ k).

The Riemann sum of f for P is

Rp = ∑
k

f (ωk)∆xk =
4
n2 ∑

k
(2n+ k) =

4
n2

(
2n2 +

n(n+1)
2

)
= 8+

2(n+1)
n

.

From Definition 2.5,
∫ 4

2
(x+2) dx = lim

n→∞
Rp = 8+ lim

n→∞

2n(n+1)
n2 = 8+2 = 10.
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Exercise 2.2

1 - 8 If P is a partition of the interval [a,b], find the norm of the partition P.
1 P = {−1,0,1.3,4,4.1,5}, [−1,5]

2 P = {0,0.5,1,2.5,3.1,4}, [0,4]

3 P = {−3,0,2.3,4.6,4.8,5.5,6}, [−3,6]

4 P = {−2,0,2.3,3,3.5,4}, [−2,4]

5 P = {3,3.5,3.6,4,4.9,7}, [3,7]

6 P = {−2,0,1.3,2,2.5,3.4,5.5}, [−2,5.5]

7 P = {−1,− 1
2 ,0,

1
2 ,1,

3
2 ,2}, [−1,2]

8 P = {0, π

4 ,
π

2 ,
3π

4 ,π}, [0,π]

9 - 12 Define a regular partition P that divides the interval [a,b] into n subintervals.
9 [a,b] = [0,3] n = 5

10 [a,b] = [−1,4] n = 6

11 [a,b] = [−4,4] n = 8

12 [a,b] = [0,1] n = 4

13 - 15 Find a Riemann sum Rp of the function f (x) = x2 +1 for the partition P = {0,1,3,4} of the interval [0,4] by choosing
the mark,

13 the left-hand endpoint,

14 the right-hand endpoint,

15 the midpoint.

16 - 19 Let A be the area under the graph of f from a to b. Find the area A by taking the limit of a Riemann sum such that the
partition P is regular and the mark ω is the right-hand endpoint of each subinterval.

16 f (x) = x/3 a = 1, b = 2

17 f (x) = x−1 a = 0, b = 3

18 f (x) = 5− x2 a =−1, b = 1

19 f (x) = x3−1 a = 0, b = 4
�

2.3 Properties of the Definite Integral

In this section, we present some properties of the definite integral.

Theorem 2.3

1.
∫ b

a
c dx = c(b−a),

2.
∫ a

a
f (x) dx = 0 if f (a) exists.

Proof. Let P = {x0,x1, ...,xn} be a partition of [a,b] and let ω = (ω1,ω2, ...,ωn) be a mark on P.

1. Let f be a constant function defined by f (x) = c. From Definition 2.5,∫ b

a
c dx = lim

‖P‖→0

n

∑
k=1

c ∆xk

= lim
‖P‖→0

c
n

∑
k=1

∆xk

= lim
‖P‖→0

c(b−a)

= c(b−a).

(property 3 on page 16)

(∑
k

∆xk is the length of the interval [a,b])
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2. From Definition 2.5,∫ a

a
f (x) dx = lim

‖P‖→0

n

∑
k=1

f (ωk) (0)

= lim
‖P‖→0

n

∑
k=1

(0)

= lim
‖P‖→0

0 = 0. �

(∆xk = 0 for k = 1,2,3, ...,n)

Theorem 2.4
1. If f and g are integrable on [a,b], then f +g and f −g are integrable on [a,b] and∫ b

a

(
f (x)±g(x)

)
dx =

∫ b

a
f (x)±

∫ b

a
g(x) dx.

2. If f is integrable on [a,b] and k ∈ R, then k f is integrable on [a,b] and∫ b

a
k f (x) dx = k

∫ b

a
f (x) dx.

Proof. Let P = {x0,x1, ...,xn} be a partition of [a,b] and let ω = (ω1,ω2, ...,ωn) be a mark on P.

1. From Definition 2.5, ∫ b

a
( f ±g)(x) dx = lim

‖P‖→0

n

∑
k=1

( f ±g)(ωk)∆xk

= lim
‖P‖→0

( n

∑
k=1

f (ωk)∆xk±
n

∑
k=1

g(ωk)∆xk
)

= lim
‖P‖→0

n

∑
k=1

f (ωk)∆xk± lim
‖P‖→0

n

∑
k=1

g(ωk)∆xk

=
∫ b

a
f (x) dx±

∫ b

a
g(x) dx.

2. From Definition 2.5, ∫ b

a
k f (x) dx = lim

‖P‖→0

n

∑
k=1

k f (ωk)∆xk = lim
‖P‖→0

k
n

∑
k=1

f (ωk)∆xk

= k lim
‖P‖→0

n

∑
k=1

f (ωk)∆xk

= k
∫ b

a
f (x) dx. �

Theorem 2.5
1. If f and g are integrable on [a,b] and f (x)≥ g(x) for all x ∈ [a,b], then∫ b

a
f (x) dx≥

∫ b

a
g(x) dx.

2. If f is integrable on [a,b] and f (x)≥ 0 for all x ∈ [a,b], then∫ b

a
f (x) dx≥ 0.

Proof. Let P = {x0,x1, ...,xn} be a partition of [a,b] and let ω = (ω1,ω2, ...,ωn) be a mark on P.
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1. Since f (x)≥ g(x) for all x ∈ [a,b], then f (ωk)≥ g(ωk) ∀ k = 1,2, ...,n. Hence,

lim
‖P‖→0

n

∑
k=1

f (ωk)∆xk ≥ lim
‖P‖→0

n

∑
k=1

g(ωk)∆xk

⇒
∫ b

a
f (x) dx≥

∫ b

a
g(x) dx.

2. Since f (x)≥ 0 for all x ∈ [a,b], then f (ωk)≥ 0 ∀ k = 1,2, ...,n. Hence,

lim
‖P‖→0

n

∑
k=1

f (ωk)∆xk ≥ 0

⇒
∫ b

a
f (x) dx≥ 0. �

Theorem 2.6 If f is integrable on the intervals [a,c] and [c,b], then f is integrable on [a,b] and∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx.

Proof. Let P = {x0,x1, ...,xn} be a partition of [a,b] contains c = xk and let ω = (ω1,ω2, ...,ωn) be a mark on P. Assume P1 =
{x0,x1, ...,xk} is a partition of [a,c] with a mark u = (ω1,ω2, ...,ωk) and P2 = {xk+1,xk+2, ...,xn} is a partition of [c,b] with a mark
v = (ωk+1,ωk+2, ...,ωn).

Now, if ‖ P ‖→ 0, then ‖ P1 ‖→ 0 and ‖ P2 ‖→ 0. Also,

lim
‖P‖→0

∑
[a,b]

f (ωk)∆xk = lim
‖P1‖→0

∑
[a,c]

f (ωk)∆xk + lim
‖P2‖→0

∑
[c,b]

f (ωk)∆xk

⇒
∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx. �

Theorem 2.7 If f is integrable on [a,b], then ∫ b

a
f (x) dx =−

∫ a

b
f (x) dx.

Proof. From Theorems 2.6 and 2.3 (item 2), we have∫ b

a
f (x) dx+

∫ a

b
f (x) dx =

∫ a

a
f (x) dx = 0.

Therefore, ∫ b

a
f (x) dx =−

∫ a

b
f (x) dx.�

Example 2.10 Evaluate the integral.

(1)
∫ 2

0
3 dx (2)

∫ 2

2
(x2 +4) dx

Solution:

(1)
∫ 2

0
3 dx = 3(2−0) = 6.

(2)
∫ 2

2
(x2 +4) dx = 0.
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Example 2.11 If
∫ b

a
f (x) dx = 4 and

∫ b

a
g(x) dx = 2, then find

∫ b

a

(
3 f (x)− g(x)

2

)
dx.

Solution:

∫ b

a

(
3 f (x)− g(x)

2

)
dx = 3

∫ b

a
f (x) dx− 1

2

∫ b

a
g(x) dx = 3(4)− 1

2
(2) = 11.

Example 2.12 Prove that
∫ 2

0
(x3 + x2 +2) dx≥

∫ 2

0
(x2 +1) dx without evaluating the integrals.

Solution: Let f (x) = x3 + x2 + 2 and g(x) = x2 + 1. We can find that f (x)− g(x) = x3 + 1 > 0 for all x ∈ [0,2]. This implies that
f (x)> g(x) and from Theorem 2.5, we have ∫ 2

0
(x3 + x2 +2) dx≥

∫ 2

0
(x2 +1) dx.

Exercise 2.3

1 - 2 Evaluate the integral.

1
∫ 5

0
7 dx 2

∫ 1

1

√
3x2 +1 dx

3 - 6 Verify the inequality without evaluating the integrals.

3
∫ 2

1
(3x2 +4) dx≥

∫ 2

1
(2x2 +5) dx

4
∫ 4

1
(2x+2) dx≤

∫ 4

1
(3x+1) dx

5
∫ 4

2
(x2−6x+8) dx≤ 0

6
∫ 2π

0
(1+ sin x) dx≥ 0

7 - 10 If
∫ b

a
f (x) dx = 2 and

∫ b

a
g(x) dx = 3, then find

7
∫ b

a

(
6 f (x)− g(x)

3

)
dx

8
∫ a

b

(
f (x)+g(x)

)
dx

9
∫ a

a

√
( f .g)(x) dx

10
∫ a

c
f (x) dx+

∫ c

b
f (x) dx where c ∈ (a,b)

�

2.4 The Fundamental Theorem of Calculus

In this section, we formulate one of the most important results of calculus, the Fundamental Theorem. This theorem links together the
notions of integrals and derivatives.

Theorem 2.8 Suppose that f is continuous on the closed interval [a,b].

1. If F(x) =
∫ x

a
f (t) dt for every x ∈ [a,b], then F(x) is an antiderivative of f on [a,b].

2. If F(x) is any antiderivative of f on [a,b], then
∫ b

a
f (x) dx = F(b)−F(a).

The proof of this theorem is given on page 29.

The Fundamental Theorem simplifies the process of calculating the definite integrals. The following corollary shows how the definite
integral can be evaluated.
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Corollary 2.1 If F is an antiderivative of f , then∫ b

a
f (x) dx =

[
F(x)

]b

a
= F(b)−F(a).

Notes:

From the previous corollary, a definite integral
∫ b

a
f (x) dx is evaluated by two steps:

Step 1: Find an antiderivative F of the integrand,

Step 2: Evaluate the antiderivative F at upper and lower limits by substituting x = b and x = a (evaluate at lower limit) into F , then
subtracting the latter from the former i.e., calculate F(b)−F(a).

When using substitution to evaluate the definite integral
∫ b

a
f (x) dx, we have two options:

Option 1: Change the limits of integration to the new variable. For example,
∫ 1

0
2x
√

x2 +1 dx. Let u = x2 +1, this implies du = 2x dx.

Change the limits u(0) = 1 and u(1) = 2. By substitution, we have
∫ 2

1
u1/2 du. Then, evaluate the integral without returning to the

original variable.

Option 2: Leave the limits in terms of the original variable. Evaluate the integral, then return to the original variable. After that, substitute
x = b and x = a into the antiderivative as in step 2 above.

Example 2.13 Evaluate the integral.

(1)
∫ 2

−1
(2x+1) dx

(2)
∫ 3

0
(x2 +1) dx

(3)
∫ 2

1

1√
x3

dx

(4)
∫ π

2

0
(sin x+1) dx

(5)
∫

π

π

4

(sec2 x−4) dx

(6)
∫ π

3

0
(sec x tan x+ x) dx

Solution:

(1)
∫ 2

−1
(2x+1) dx =

[
x2 + x

]2

−1
=
(
4+2

)
−
(
(−1)2 +(−1)

)
= 6−0 = 6.

(2)
∫ 3

0
(x2 +1) dx =

[
x3

3 + x
]3

0
= ( 27

3 +3)−0 = 12.

(3)
∫ 2

1

1√
x3

dx =
[
−2√

x

]2

1
= −2√

2
− (−2) = −2+2

√
2√

2
=−
√

2+2.

(4)
∫ π

2

0
(sin x+1) dx =

[
− cos x+ x

] π

2

0
= (−cos π

2 + π

2 )− (−cos 0+0) = π

2 +1.

(5)
∫

π

π

4

(sec2 x−4) dx =
[

tan x−4x
]π

π

4

= (tan π−4π)− (tan π

4 −4 π

4 ) =−4π− (1−π) =−3π−1.

(6)
∫ π

3

0
(sec x tan x+ x) dx =

[
sec x+ x2

2

] π

3

0
= (sec π

3 +
( π

3 )
2

2 )− (sec 0+ 0
2 ) = 2+ π2

18 −1 = 1+ π2

18 .

Example 2.14 If f (x) =
{

x2 : x < 0
x3 : x≥ 0

, find
∫ 2

−1
f (x) dx.

Solution:
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The definition of the function f changes at 0. Since [−1,2] = [−1,0]∪ [0,2], then from Theorem 2.6,∫ 2

−1
f (x) dx =

∫ 0

−1
f (x) dx+

∫ 2

0
f (x) dx

=
∫ 0

−1
x2 dx+

∫ 2

0
x3 dx

=
[x3

3

]0

−1
+
[x4

4

]2

0

=
1
3
+

16
4

=
13
3
.

Example 2.15 Evaluate the integral
∫ 2

0
| x−1 | dx.

Solution:

| x−1 |=
{
−(x−1) : x < 1
x−1 : x≥ 1

Since [0,2] = [0,1]∪ [1,2], then from Theorem 2.6,∫ 2

0
| x−1 | dx =

∫ 1

0
(−x+1) dx+

∫ 2

1
(x−1) dx

=
[−x2

2
+ x
]1

0
+
[x2

2
− x
]2

1

= (
1
2
−0)+(0+

1
2
) = 1.

Theorem 2.9 If f is continuous on a closed interval [a,b], then there is at least a number z ∈ (a,b) such that∫ b

a
f (x) dx = f (z)(b−a).

Proof. If f is constant i.e., f (x) = k, then ∫ b

a
f (x) dx = k(b−a) = f (z)(b−a)

for any z ∈ (a,b) and this means the equality is satisfied.

Therefore, assume the function f is not constant. Since the function f is continuous, then from the extreme value theorem, there exist
u, v ∈ [a,b] such that f (u) = m is the minimum value and f (v) = M is the maximum value of f .2 Now, ∀ x ∈ [a,b], we have

m≤ f (x)≤M.

This implies ∫ b

a
m dx≤

∫ b

a
f (x) dx≤

∫ b

a
M dx.

Then,

m(b−a)≤
∫ b

a
f (x) dx≤M(b−a).

⇒ m≤

∫ b

a
f (x) dx

(b−a)
≤M

⇒ f (u)≤

∫ b

a
f (x) dx

(b−a)
≤ f (v)

2If f is a continuous function on a closed interval [a,b], then f takes a minimum value and a maximum value at least once in [a,b].
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From the intermediate value theorem,3 there exists a number z ∈ (a,b) such that

∫ b

a
f (x) dx

(b−a)
= f (z)⇒

∫ b

a
f (x) dx = (b−a) f (z). �

Example 2.16 Find a number z that satisfies the conclusion of the Mean Value Theorem for the function f on the given interval.
(1) f (x) = 1+ x2,
(2) f (x) = 3

√
x,

[0,2]
[0,1]

Solution:

(1) From Theorem 2.9, ∫ 2

0
(1+ x2) dx = (2−0) f (z)[

x+
x3

3

]2

0
= 2(1+ z2)

14
3

= 2(1+ z2)

7
3
= 1+ z2

This implies z2 = 4
3 , then z =± 2√

3
. However, − 2√

3
/∈ (0,2), so z = 2√

3
∈ (0,2).

(2) From Theorem 2.9, ∫ 1

0

3
√

x dx = (1−0) f (z)

3
4

[
x

4
3

]1

0
= 3
√

z

This implies z = 27
64 ∈ (0,1).

In the following, we prove the Fundamental Theorem.

Proof. 1. We want to prove that if x ∈ [a,b], then lim
h→0

F(x+h)−F(x)
h = f (x). Note that

F(x+h) =
∫ x+h

a
f (t) dt =

∫ x

a
f (t) dt +

∫ x+h

x
f (t) dt

= F(x)+
∫ x+h

x
f (t) dt.

Hence, F(x+h)−F(x) =
∫ x+h

x
f (t) dt. Since the function f is continuous on the interval [x,x+h], then from the Mean Value

Theorem for integrals, there is z ∈ (x,x+h) such that

∫ x+h

x
f (t) dt = f (z)h

⇒ F(x+h)−F(x)
h

= f (z).

When h→ 0, (x+h)→ x and this means z→ x. This implies f (z)→ f (x) since f is continuous. Therefore,

F ′(x) = lim
h→0

F(x+h)−F(x)
h

= f (x).

3If f is continuous on a closed interval [a,b] and If u is any number between f (a) and f (b), then there is at least a number z ∈ [a,b] such that f (z) = w.
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2. Assume that F and G are antiderivatives of f on the interval [a,b]. Then, form Theorem 1.1, there is a constant c such that

F(x) = G(x)+ c. Now, if x = a, then F(a) =
∫ a

a
f (t) dt = 0. Thus

F(a) = G(a)+ c⇒ c =−G(a)⇒ F(x) = G(x)−G(a), ∀x ∈ [a,b].

If we assume x = b, then

F(b) =
∫ b

a
f (x) dx = G(b)−G(a). �

In the following, we define the average value of the function f on the interval [a,b].

Definition 2.6 If f is continuous on the interval [a,b], then the average value fav of f on [a,b] is

fav =
1

b−a

∫ b

a
f (x) dx.

Example 2.17 Find the average value of the function f on the given interval.
(1) f (x) = x3 + x−1,
(2) f (x) =

√
x,

[0,2]
[1,3]

Solution:

(1) fav =
1

2−0

∫ 2

0
(x3 + x−1) dx = 1

2

[
x4

4 + x2

2 − x
]2

0
= 1

2

[
(4+2−2)− (0)

]
= 2.

(2) fav =
1

3−1

∫ 3

1

√
x dx = 1

2
2
3

[
x

3
2

]3

1
= 3
√

3−1
3 .

From the Fundamental Theorem, if f is continuous on [a,b] and F(x) =
∫ x

c
f (t) dt where c ∈ [a,b], then

d
dx

∫ x

a
f (t) dt =

d
dx

[
F(x)−F(a)

]
= f (x) ∀x ∈ [a,b].

This result can be generalized as follows:

Theorem 2.10 Let f be continuous on [a,b]. If g and h are in the domain of f and differentiable, then

d
dx

∫ h(x)

g(x)
f (t) dt = f (h(x))h′(x)− f (g(x))g′(x) ∀x ∈ [a,b].

Proof. Let F(x) =
∫ h(x)

g(x)
f (t) dt. For any constant a, we can write

F(x) =
∫ a

g(x)
f (t) dt +

∫ h(x)

a
f (t) dt.

Assume H(x) =
∫ h(x)

a
f (t) dt and let u = h(x). Then, from the chain rule, we have

H ′(x) =
dH
dx

=
dH
du

du
dx

= f (u)h′(x) = f (h(x))h′(x)

Similarly, assume G(x) =
∫ a

g(x)
f (t) dt =−

∫ g(x)

a
f (t) dt. This implies, G′(x) =− f (g(x))g′(x). Thus,

F ′(x) = H ′(x)+G′(x) = f (h(x))h′(x)− f (g(x))g′(x). �
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Corollary 2.2 Let f be continuous on [a,b]. If g and h are in the domain of f and differentiable, then

1. d
dx

∫ h(x)

a
f (t) dt = f (h(x))h′(x) ∀x ∈ [a,b] ,

2. d
dx

∫ a

g(x)
f (t) dt =− f (g(x))g′(x) ∀x ∈ [a,b].

Proof. The proof of this corollary is straightforward from Theorem 2.10 by assuming g(x) = a in item 1 and h(x) = a in item 2.

Example 2.18 Find the derivative.

(1) d
dx

∫ x

1

√
cos t dt

(2) d
dx

∫ x2

1

1
t3 +1

dt

(3) d
dx
(
x
∫ x2

x
(t3−1) dt

)
(4) d

dx

∫ 3

x+1

√
t +1 dt

(5) d
dx

∫ sin x

1

1
1− t2 dt

(6) d
dx

∫ x

−x
cos (t2 +1) dt

(7) d
dx

∫ x2

−x

1
t2 +1

dt

(8) d
dx

∫ sin x

cos x

√
1+ t4 dt

Solution:

(1) d
dx

∫ x

1

√
cos t dt =

√
cos x (1) =

√
cos x.

(2) d
dx

∫ x2

1

1
t3 +1

dt = 1
(x2)3+1 (2x) = 2x

x6+1 .

(3) d
dx
(
x
∫ x2

x
(t3−1) dt

)
=

∫ x2

x
(t3−1) dt + x

(
2x(x6−1)− (x3−1)

) (Let f (x) = x and g(x) =
∫ x2

x (t3−1) dt. Then,
find d

dx ( f g)(x))

(4) d
dx

∫ 3

x+1

√
t +1 dt = 0−

√
(x+1)+1 =−

√
x+2.

(5) d
dx

∫ sin x

1

1
1− t2 dt = 1

1−sin2 x
cos x = cos x

cos2 x = sec x. (use the identity cos2 x+ sin2 x = 1)

(6) d
dx

∫ x

−x
cos (t2 +1) dt = cos (x2 +1)+ cos (x2 +1) = 2cos (x2 +1).

(7) d
dx

∫ x2

−x

1
t2 +1

dt = 2x
x4+1 +

1
x2+1 .

(8) d
dx

∫ sin x

cos x

√
1+ t4 dt =

√
1+ sin4 x cos x+

√
1+ cos4 x sin x.

Example 2.19 If F(x) = (x2−2)
∫ x

2

(
t +3F ′(t)

)
dt, find F ′(2).

Solution:
F ′(x) = 2x

∫ x

2

(
t +3F ′(t)

)
dt +(x2−2)

(
x+3F ′(x)

)
Letting x = 2 gives

F ′(2) = 4
∫ 2

2

(
t +3F ′(t)

)
dt +(4−2)

(
2+3F ′(2)

)
⇒ F ′(2) = 2

(
2+3F ′(2)

)
.
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Hence, −5F ′(2) = 4⇒ F ′(2) =− 4
5 .

Exercise 2.4

1 - 10 Evaluate the integral.

1
∫ 3

0
(2− x+ x2) dx

2
∫ 1

−1
(x2 +3x+1) dx

3
∫ 10

0
(x

3
2 +1) dx

4
∫ 2

1

2√
x

dx

5
∫

π

0
cos x dx

6
∫ π

4

0
(sin x+ cos x) dx

7
∫ π

3

π

4

sec x (tan x+ sec x) dx

8
∫ 2

0
| x−1 | dx

9
∫ 1

−1
| 3x+1 | dx

10
∫ π

2

π

3

1
sin2 x

dx

11 - 16 Verify that the function f satisfies the hypotheses of the Mean Value Theorem on the given interval. Then, find all
numbers z that satisfy the conclusion of the Mean Value Theorem.

11 f (x) = (x+1)3,

12 f (x) = 1− x3,

13 f (x) =
√

x,

14 f (x) = 2√
x ,

15 f (x) = sin x,

16 f (x) = cos x,

[−1,1]

[−2,0]

[1,4]

[1,4]

[0,π]

[0, π

2 ]

17 - 20 Find the average value of the function f on the given interval.
17 f (x) = x3 + x2−1,

18 f (x) = 3
√

x,

[0,2]

[−1,3]

19 f (x) = 1
x3 ,

20 f (x) = sin x,

[1,5]

[0, π

6 ]

21 - 28 Find the derivative.

21 d
dx

∫ sin x

cos x

√
t +1 dt

22 d
dx

∫ √x

x

1
t2 +1

dt

23 d
dx

∫ x

1
(t−1) dt

24 d
dx

∫ 3(x−1)

x+1

1
t−1

dt

25 d
dx
(

sin x
∫ x

1

√
t dt
)

26 d
dx

∫ x

−2x
sin (t +1) dt

27 d
dx

∫
π

x3

1
t4 +1

dt

28 d
dx

∫ sec x

tan x

√
1+ t4 dt

29 - 32 Find the derivative at the indicated value.

29 F(x) =
∫ x

2

√
3t2 +1 dt, F(2), F ′(2) and F ′′(2).

30 G(x) =
∫ 0

x

sin t
t +1

dt, G(0), G′(0) and G′′(0).

31 H(x) =
∫ x2

x

5
√

t +1 dt, H ′(2).
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32 F(x) = sinx
∫ x

0

(
1+F ′(t)

)
dt, F(0) and F ′(0).

�

2.5 Numerical Integration

Sometimes we face definite integrals that cannot be solved even if the integrands are continuous functions such as
√

1+ x3 and ex2
. In

our discussion in this book so far, we are not able to evaluate such integrals. We exploit this to show the reader a new technique to
approximate the definite integrals.

2.5.1 Trapezoidal Rule

As discussed in Section 2.2, if f is a defined and positive function on a closed interval [a,b], a Riemann sum approximates the area
underneath the graph of f from x = a to x = b as follows. Assume P is a regular partition of [a,b]. We divide the interval [a,b] by the
partition P into n subintervals : [x0,x1], [x1,x2], [x2,x3], ..., [xn−1,xn]. Then, we find the length of the subintervals: ∆xk =

b−a
n . Using

Riemann sum, we have ∫ b

a
f (x) dx≈

n

∑
k=1

f (ωk)∆xk =
b−a

n

n

∑
k=1

f (ωk) ,

where ω = (ω1,ω2, ...,ωn) is a mark on the partition P.

As shown in Figure 2.4, we take the mark as follows:

1. The left-hand endpoint. We choose ωk = xk−1 in each subinterval. Then,∫ b

a
f (x) dx≈ b−a

n

n

∑
k=1

f (xk−1).

2. The right-hand endpoint. We choose ωk = xk in each subinterval. Then,∫ b

a
f (x) dx≈ b−a

n

n

∑
k=1

f (xk).

3. The average of the previous two approximations is more accurate,

b−a
2n

[ n

∑
k=1

f (xk−1)+
n

∑
k=1

f (xk)
]
.

Trapezoidal Rule

Let f be continuous on [a,b]. If P = {x0,x1, ...,xn} is a regular partition of [a,b], then∫ b

a
f (x) dx≈ b−a

2n

[
f (x0)+2 f (x1)+2 f (x2)+ ...+2 f (xn−1)+ f (xn)

]
.

Error Estimation

Although the numerical methods give an approximated value of a definite integral, there is a possibility that an error occurs. The
numerical method and the number of subintervals play a role in determining the error. The way of estimating the error under the
trapezoidal rule is given without proof in the following theorem.

Theorem 2.11 Suppose that f ′′ is continuous on [a,b] and M is the maximum value for f ′′ over [a,b]. If ET is the error in

calculating
∫ b

a
f (x) dx under the trapezoidal rule, then

| ET |≤
M(b−a)3

12 n2 .
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Figure 2.4: Approximation of a definite integral by using the trapezoidal rule.

Example 2.20 By using the trapezoidal rule with n = 4, approximate the integral
∫ 2

1

1
x

dx. Then, estimate the error.

Solution:

(1) We approximate the integral
∫ 2

1

1
x

dx by the trapezoidal rule.

(a) Find a regular partition P = {x0,x1,x2, ...,xn} where ∆x = (b−a)
n and xk = x0 + k∆x.

We divide the interval [1,3] into four subintervals where the length of each subinterval is ∆x = 2−1
4 = 1

4 as follows:

x0 = 1
x1 = 1+ 1

4 = 1 1
4

x2 = 1+2( 1
4 ) = 1 1

2

x3 = 1+3( 1
4 ) = 1 3

4
x4 = 1+4( 1

4 ) = 2

The partition is P = {1,1.25,1.5,1.75,2}.

(b) Approximate the integral by using the following table:

k xk f (xk) mk mk f (xk)
0 1 1 1 1
1 1.25 0.8 2 1.6
2 1.5 0.6667 2 1.3334
3 1.75 0.5714 2 1.1428
4 2 0.5 1 0.5

Sum =
4
∑

k=1
mk f (xn) 5.5762

Hence, ∫ 2

1

1
x

dx≈ 1
8
[
5.5762

]
= 0.697.

(2) We estimate the error by using Theorem 2.11.

f (x) =
1
x
⇒ f ′(x) =

−1
x2 ⇒ f ′′(x) =

2
x3 ⇒ f ′′′(x) =− 6

x4 .

Since f ′′(x) is a decreasing function on the interval [1,2], then f ′′(x) is maximized at x = 1.
Hence, M =| f ′′(1) |= 2 and

| ET |≤
2(2−1)3

12(4)2 =
1
96

= 0.0104.

Remark 2.2 By knowing the error, we can determine the number of the subintervals n before starting approximating.
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Example 2.21 Find the minimum number of subintervals to approximate the integral
∫ 2

1

1
x

dx such that the error is less than 10−3.

Solution:

From the previous example, we had M = 2. Therefore, | ET |≤ 2(2−1)3

12n2 ≤ 10−3.

This implies that

n2 ≥ 2(2−1)3

12
103 =

103

6
⇒ n≥

√
500

3
= 12.91.

Therefore, n = 13.

2.5.2 Simpson’s Rule

Simpson’s rule is another numerical method to approximate the definite integrals. The question that can be raised here is that how the
trapezoidal method differs from Simpson’s method? The trapezoidal method depends on building trapezoids from the subintervals, then
taking the average of the left and right endpoints. The Simpson’s rule is built on approximating the area of the graph in each subinterval
with area of some parabola (Figure 4.1).

Figure 2.5: Approximation of a definite integral by using Simpson’s rule.

First, let P be a regular partition of the interval [a,b] to generate n subintervals such that | P |= (b−a)
n and n is an even number.

Now, take three points lying on the parabola as shown
in the next figure. Assume for simplicity that x0 =−h,
x1 = 0 and x2 = h. Since the equation of a parabola is

y = ax2 +bx+ c

, then from the figure, the area under the graph bounded
by [−h,h] is∫ h

−h
(ax2 +bx+ c) dx =

h
3
(2ah2 +6c).

Figure 2.6
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Thus, since the points P0, P1 and P2 lie on the parabola, then

y0 = ah2−bh+ c

y1 = c

y2 = ah2 +bh+ c.

Some computations lead to 2ah2 +6c = y0 +4y1 + y2. Therefore,∫ h

−h
(ax2 +bx+ c) dx =

h
3
(y0 +4y1 + y2) =

h
3
(

f (x0)+4 f (x1)+ f (x2)
)
.

Generally, for any three points Pk−1, Pk and Pk+1, we have

h
3
(yk−1 +4yk + yk+1) =

h
3
(

f (xk−1)+4 f (xk)+ f (xk+1)
)
.

By summing the areas of all parabolas, we have∫ b

a
f (x) dx =

h
3
(

f (x0)+4 f (x1)+ f (x2)
)

+
h
3
(

f (x2)+4 f (x3)+ f (x4)
)

...

+
h
3
(

f (xn−2)+4 f (xn−1)+ f (xn)
)

=
b−a

3n

[
f (x0)+4 f (x1)+2 f (x2)+4 f (x3)+ ...+2 f (xn−2)+4 f (xn−1)+ f (xn)

]

Simpson’s Rule

Let f be continuous on [a,b]. If P = {x0,x1, ...,xn} is a regular partition of [a,b] where n is even, then∫ b

a
f (x) dx≈ (b−a)

3n

[
f (x0)+4 f (x1)+2 f (x2)+4 f (x3)+ ...+2 f (xn−2)+4 f (xn−1)+ f (xn)

]
.

Error Estimation

The estimation of the error under Simpson’s method is given by the following theorem.

Theorem 2.12 Suppose f (4) is continuous on [a,b] and M is the maximum value for f (4) on [a,b]. If ES is the error in

calculating
∫ b

a
f (x) dx under Simpson’s rule, then

| ES |≤
M(b−a)5

180 n4 .

Example 2.22 By using Simpson’s rule with n = 4, approximate the integral
∫ 3

1

√
x2 +1 dx. Then, estimate the error.

Solution:

1. We approximate the integral
∫ 3

1

√
x2 +1 dx under Simpson’s rule.

(a) Find the partition P = {x0,x1,x2, ...,xn} where ∆x = (b−a)
n and xk = x0 + k∆x.

We divide the interval [1,3] into four subintervals where the length of each subinterval is ∆x = 3−1
4 = 1

2 as follows:
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x0 = 1
x1 = 1+ 1

2 = 1 1
2

x2 = 1+2( 1
2 ) = 2

x3 = 1+3( 1
2 ) = 2 1

2
x4 = 1+4( 1

2 ) = 3

The partition is P = {1,1.5,2,2.5,3}.

(b) Approximate the integral by using the following table:

k xk f (xk) mk mk f (xk)

0 1 1.4142 1 2
1 1.5 1.8028 4 7.2112
2 2 2.2361 2 4.4722
3 2.5 2.6926 4 10.7704
4 3 3.1623 1 10

Sum =
4
∑

k=1
mk f (xk) 27.0302

Hence,
∫ 3

1

√
x2 +1 dx≈ 2

12
[
27.0302

]
= 4.5050.

2. We estimate the error by using Theorem 2.12.
Since f (5)(x) =−(15x(4x2−3))/

√
(x2 +1)9, then f (4)(x) is a decreasing function on the interval [1,3]. Therefore, f (4)(x) is

maximized at x = 1. Then, M =| f (4)(1) |= 0.7955 and

| Es |<
(0.7955)(3−1)5

180(4)4 = 5.5243×10−4.

Example 2.23 Find the minimum number of subintervals to approximate the integral
∫ 3

1

√
x2 +1 dx such that the error is less than

10−2.

Solution:

From the previous example, we know that M = 0.7955. Thus, | ES |< (0.7955)(3−1)5

180n4 < 10−2. This implies that

n4 >
(0.7955)(32)

180
102⇒ n > 14.14.

Therefore, n = 14.

Exercise 2.5

1 - 4 By using the trapezoidal rule, approximate the definite integral for the given n, then estimate the error.

1
∫ 1

−1

√
x2 +1 dx,

2
∫ 4

2

√
x dx,

3
∫ 4

0

x
x+1

dx,

4
∫

π

0
sin x dx,

n = 4

n = 5

n = 4

n = 4
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5 - 8 By using Simpson’s rule, approximate the definite integral for the given n, then estimate the error.

5 ln(2) =
∫ 2

1

1
x

dx,

6
∫ 1

0

x√
x4 +1

dx,

7
∫ 2

0

√
x3 +1 dx,

8
∫ 3

1

√
lnx dx,

n = 4

n = 6

n = 10

n = 4

9 - 10 Consider the function f , and the integral I( f ). What is the minimum number of points to be used to ensure an error
≤ 5×10−2.

9 f (x) = ex and I( f ) =
∫ 2

0
ex dx under the trapezoid rule.

10 f (x) = cos x2 and I( f ) =
∫ 2

0
cos x dx under Simpson’s rule.

�
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Review Exercises

1 - 4 Express the sum in terms of n.

1
n
∑

k=1
(k−1)

2
n
∑

k=1
(2k+1)

3
n
∑

k=1
(k2− k+1)

4
n
∑

k=1
(k3 +2k+1)

5 - 8 Evaluate the sum.

5
4
∑

k=1
(2k+1)

6
5
∑

j=1

1
j+1

7
3
∑

k=1
(k2 +2k)

8
4
∑

i=1
(i−1)2

9 - 12 For the partition P, find the norm ‖ P ‖.
9 P = {0,1.01,1.1,2.5,3.6,4,6}

10 P = {1,2.5,3,4,5.1,6}

11 P = {−3,−2.5,−1,0.5,1.2,2}

12 P = {0,1.04,1.09,2.15,3.7,4,5}
13 - 16 Find a Riemann sum RP for the given function f by choosing the mark ω,

(a) the left-hand endpoint,

(b) the right-hand endpoint,

(c) the midpoint,

13 f (x) = x+1, {1,2.5,3,3.5,4,5,6}

14 f (x) = 2x−1, {−1,0,1,1.5,2,3,3.5}

15 f (x) = x2 +1, {1,1.5,2,2.5,3,3.5,4}

16 f (x) = 1− x3, {−2,−1,0,1,3,5,6}
17 - 28 Find the area under the graph of f from a to b by taking the limit of a Riemann sum.

17 f (x) = x+3, a = 1, b = 3

18 f (x) = 3− x, a = 0, b = 1

19 f (x) = x2, a =−1, b = 1

20 f (x) = x2− x+1, a =−1, b = 3

21 f (x) = x
2 , a = 2, b = 4

22 f (x) = x3 + x+1, a = 0, b = 2

23 f (x) = x, a = 1, b = 3

24 f (x) = (1− x)2, a = 0, b = 1

25 f (x) = x
3 , a =−1, b = 1

26 f (x) = x(x−1), a = 0, b = 3

27 f (x) = 5x, a = 1, b = 3

28 f (x) = x2 +1, a = 0, b = 2
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29 - 42 Evaluate the integral.

29
∫ 4

−2
2 dx

30
∫ 5

0
(3− x) dx

31
∫ 4

−1
(2x2 + x−1) dx

32
∫ 2

2
(6x2 +3) dx

33
∫ 1

0
(x3−4x4) dx

34
∫ 1

−1
x
√

x2 +1 dx

35
∫ 5

0
| x−1 | dx

36
∫ 3

0
| 2x−3 | dx

37
∫ 3

1
(x−2)(x+3) dx

38
∫

π

0
cos x dx

39
∫ π

2

0
sin x dx

40
∫

π

0
sec x (tan x− sec x) dx

41
∫

π

0
x cos x2 dx

42
∫

π

π/4

csc2 √x√
x

dx

43 - 48 If
∫ b

a
f (x) dx = 2,

∫ c

b
f (x) dx = 2 and

∫ b

a
g(x) dx = 3 where c ∈ (a,b), evaluate the integral.

43
∫ a

b
f (x) dx

44
∫ c

a
f (x) dx

45
∫ b

a

(
2 f (x)+g(x)

)
dx

46
∫ a

b

(
5 f (x)−3g(x)

)
dx

47
∫ b

a

(1
3

f (x)+7g(x)
)

dx

48
∫ a

a

(
4 f (x)+g(x)

)
dx

49 - 54 Use the properties of the definite integrals to prove the inequality without evaluating the integrals.

49
∫ 1

0
x dx≥

∫ 1

0
x2 dx

50
∫ 3

0

x
x3 +2

dx≥
∫ 3

0
x dx

51
∫ 4

1
(2x+2) dx≥

∫ 4

1
(3x+1) dx

52
∫ 3

0
(x2−3x+4) dx≥ 0

53
∫ 2

1

√
5− x dx≥

∫ 2

1

√
x+1 dx

54 2 <
∫ 2

−1

√
1+ x2 dx

55 - 59 Find the average value of the function f on the given interval.
55 f (x) = x2, [1,4]

56 f (x) = 9− x2, [0,3]

57 f (x) = x− x2, [0,2]

58 f (x) = x3 +1, [−1,2]

59 f (x) = 6x2−2x+4, [−1,3]

60 - 63 Find the number z that satisfies the Mean Value Theorem for the function f on the given interval.
60 f (x) = 2+ x2, [0,4]

61 f (x) = x3, [−1,3]

62 f (x) =
√

x, [0,9]

63 f (x) = 4x3−1, [1,2]
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64 - 71 Find the derivative of the functions.
64

∫ x

0
sin
√

t dt

65
∫ x

1

1
t

dt

66
∫ x3

3x
sin (t3 +1)10 dt

67
∫ x+1

2

1
t2 +1

dt

68
∫ x

cosx
cos t2 dt

69
∫ x

0

√
t2 +1 dt

70
∫ 0

6x−1

3
√

2t +4 dt

71
∫ √x

3
tan t2 dt

72 - 75 By using the trapezoidal rule, approximate the definite integral for the given n, then estimate the error.

72
∫ 5

1
x3 dx, n = 4

73
∫ 2

1

1
x

dx, n = 10

74
∫ 1

0
ex dx, n = 4

75
∫ 3

1

√
1+ x3 dx, n = 6

76 - 79 By using Simpson’s rule, approximate the definite integral for the given n, then estimate the error.

76
∫

π

0

1
2− sin x

dx, n = 4

77
∫ 1

0
ln(1+ ex) dx, n = 6

78
∫ 2

1
ex dx, n = 6

79
∫

π

0
cos x2 dx, n = 4

80 - 81 Find the minimum number of subintervals to approximate the integral
∫ 3

1
x5 +1 dx by using the trapezoidal rule

such that the error is less than
80 10−2 81 10−4

82 - 83 Find the minimum number of subintervals to approximate the integral
∫ 3

1
x5 +1 dx by using Simpson’s rule such

that the error is less than
82 0.5 83 2.55

84 - 106 Choose the correct answer.

84 The sum
n2

∑
k=1

(k−1) is equal to

(a) n2(n−1)
2 (b) n(n−1)

2 (c) n2(n2+1)
2 (d) n2(n2−1)

2

85 The sum lim
n→∞

n
∑

k=1
( k

n2 ) is equal to

(a) 0 (b) ∞ (c) 2 (d) 1
2

86 If
n
∑

k=1
(k+α) = n2

2 (n≥ 1), then the value of α is equal to

(a) − n
2 (b) 1

2 (c) − 1
2 (d) 1
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87 If
4
∑

k=1
(k+a) = 14, then the value of a is equal to

(a) 1 (b) 4 (c) −4 (d) −1

88 If
5
∑

k=1
(αk2 + k−1) = 20, then the value of α is equal to

(a) 2
11 (b) −2

11 (c) 1
11 (d) −1

11

89 If
6
∑

k=1
(k2 +3k+2α) = 130, then the value of α is equal to

(a) 2 (b) −2 (c) 1 (d) 3

90 The average value of the function f (x) = 3
√

x+1 on [−2,0] is equal to
(a) 3 (b) 0 (c) −1 (d) −3

91 The average value of the function f (x) = sin xcos x on [0, π

4 ] is equal to
(a) − 1

π
(b) 1

4 (c) 1
π

(d) − 1
4

92 The average value of f (x) =| x−1 | on [0,1] is equal to
(a) − 1

2 (b) 3
2 (c) 0 (d) 1

2

93 The average value of f (x) = sin xcos x on [−π,π] is equal to
(a) 1

2π
(b) 1

π
(c) 1 (d) 0

94 If F(x) =
∫ x2

1
3
√

t4 +1 dt, the F ′(x) is equal to
(a) 3
√

x8 +1 (b) x2 3
√

x8 +1 (c) 2x 3
√

x8 +1 (d) 2x 3
√

x4 +1

95 The value of the integral
∫ 2

0
| x−1 | dx is equal to

(a) 0 (b) 1 (c) 1
2 (d) 2

96 If f (1) = 3, f (4) = 7, f (2) = 4 and f (14) = 23, the value of the integral
∫ 2

1
(x2 +1) f ′(x3 +3x) dx is equal to

(a) 1
3 (b) 16 (c) 1 (d) 16

3

97 If F(x) = x
∫ x
√

π

cos t2 dt, then F ′(
√

π) is equal to

(a) 0 (b)
√

π (c) −
√

π (d) 1

98 If F(x) =
∫ x2

2x
sin t3 dt, then F ′(x) is equal to

(a) 2xsin x6− sin 8x3

(b) 2xsin x6−2sin 8x3
(c) 2xsin x6−2sin 6x3

(d) 2xsin x6 +2sin 8x3

99 The number z that satisfies the Mean Value Theorem for f (x) = x2 on [0,2] is

(a)
√

8
3 (b) 8√

3
(c)
√

2
3 (d) 2√

3

100 The number z that satisfies the Mean Value Theorem for f (x) = 1+ x2 on [−3,0] is
(a) −

√
3 (b)

√
3 (c)

√
2 (d) −

√
2

101 If F(x) =
∫ x+1

x−1
tan(t2) dt, then F ′(x) is equal to

(a) tan (x2 +2x+1)+ tan (x2−2x+1)
(b) tan (x2 +2x+1)− tan (x2−2x+1)

(c) tan (x2 +1)− tan (x2−1)
(d) 0

102 If F(x) =
∫ x3

1

√
5+ t2 dt, then F ′(1) is equal to

(a) 0 (b) 3
√

6 (c)
√

6 (d) 2√
6
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103 If
∫ x2

0
f (
√

t) dt = x, then f (x) is equal to

(a) 1 (b) 1
2x (c) 1

x2 (d) 1
2

104 The value of the integral
∫ 1

−1
2 | x |3 dx

(a) 2 (b) 1 (c) 0 (d) −1

105 The derivative of the integral
∫ x

0

(
1+

d tan t
dt

)
dt is equal to

(a) 1+ tan x (b) 1− tan x (c) 1− sec2 x (d) 1+ sec2 x

106 If G(x) =
∫ x2

e

ln t
4

dt, then G′(e) is equal to

(a) 2e (b) 1 (c) e (d) 4e
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Chapter 3

Logarithmic and Exponential Functions

3.1 The Natural Logarithmic Function

In chapter 1, we found that
∫

xr dx = xr+1

r+1 + c (see Table 1.1). If r =−1, does the previous rule hold? The answer is no because the
denominator will become zero. The task now is to find a general antiderivative of the function 1

x ; meaning that we are looking for a
function F(x) such that F

′
(x) = 1

x .

Consider the function f (t) = 1
t . It is continuous on the interval (0,+∞) and this implies that the function is integrable on the interval

[1,x]. Figure 3.1 shows the graph of the function f (t) = 1
t from t = 1 to t = x where x > 0. The area of the region under the graph can

be expressed as

f (x) =
∫ x

1

1
t

dx

Figure 3.1: The area under the graph of the function f (t) = 1
t in the interval [1,x] where x > 0.

In the following definition, we introduce the antiderivative of the function f (t) = 1
t .

Definition 3.1 The natural logarithmic function is defined as follows:

ln : (0,∞)→ R ,

lnx =
∫ x

1

1
t

dt

for every x > 0.
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3.1.1 Properties of the Natural Logarithmic Function

1. From the Definition 3.1, the domain of the function lnx is (0,∞).
2. The range of the function lnx is R as follows:

y =


lnx > 0 : x > 1
lnx = 0 : x = 1
lnx < 0 : 0 < x < 1

To see this, let x = 1, then lnx =
∫ 1

1
1
t dt = 0. Now, since

∫ x
1

1
t dt =−

∫ 1
x

1
t dt, then for 0 < x < 1, the integral is the negative of

the area of the region under f (t) = 1
t from t = x to x = 1. This means that lnx is negative for 0 < x < 1 and positive for x > 1.

3. The function lnx is differentiable and continuous on the domain. From the fundamental theorem of calculus, we have

d
dx

(lnx) =
d
dx

∫ x

1

1
t

dt =
1
x
,∀x > 0.

Therefore, the function lnx is increasing on the interval (0,∞).
4. The second derivative d2

dx2 (lnx) = −1
x2 < 0 for all x ∈ (0,∞). Therefore, the function lnx is concave downward on the interval

(0,∞).
5. Rules of the natural logarithmic function:

Theorem 3.1 If a,b > 0 and r ∈Q, then
1. lnab = lna+ lnb.

2. ln a
b = lna− lnb.

3. lnar = r lna.

Proof. 1. Let f (x) = lnax and g(x) = lnx+ lna for all x ∈ (0,∞). Then,

f ′(x) =
1
ax

a =
1
x

and

g′(x) =
1
x
+0 =

1
x
.

Since f and g have the same derivative on the interval (0,∞), they differ by a constant (Theorem 1.1). By taking x = 1,
f (1) = lna and g(1) = lna. This implies that the constant they differ by is 0, that is f (x) = g(x).

2. From item (1), we have

lna = ln(
a
b

b) = ln
a
b
+ lnb.

This implies

ln
a
b
= lna− lnb.

3. Let f (x) = lnxr for all x > 0 and r ∈Q. Then,

f ′(x) =
1
xr r xr−1 =

r
x
.

Since d
dx (r lnx) = r

x , then there is a constant c such that

lnxr = r lnx+ c, ∀x > 0.

If x = 1, ln1r = r ln1+ c and this implies c = 0. Hence, lnxr = r lnx. Therefore, for any a > 0, we have

lnar = r lna.�

6. lim
x→∞

lnx = ∞ and lim
x→0+

lnx =−∞.
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To see this, the figure on the right shows the region of f (t) = 1
t

from t = 1 to t = x. The area A = (1)( 1
2 ) =

1
2 . From Definition 3.1,

ln2 =
∫ 2

1

1
t

dt > 1
2 = area of A.

Since lnx is increasing function, then

lnx > ln2m = m ln2 >
m
2
∀m ∈ N

where if m is sufficiently large, x≥ 2m. This implies lim
x→∞

lnx > m
2 ,

then lim
x→∞

lnx = ∞.

Now, let u = 1
x as x→ 0+, u→ ∞. Since x = 1

u ⇒ lnx = ln 1
u =− lnu. This implies

lim
x→0+

lnx = lim
x→∞

(− lnu) =− lim
x→∞

lnu =−∞.

From the previous properties, we have the graph of the function y = lnx.

1 2 3 4

−2

−1

1 y = lnx

x

y

Figure 3.2: The graph of the function y = lnx.

3.1.2 Differentiating and Integrating the Natural Logarithmic Function

From our discussion above, we found that
d
dx

lnx =
1
x

Hence,
d
dx

ln(−x) =
1
−x

(−1) =
1
x
.

Therefore,
d
dx

ln(| x |) = 1
x
∀x 6= 0.

In the following theorem, we generalize the previous result.

Theorem 3.2 If u = g(x) is differentiable, then
1. d

dx lnu = 1
u u′ if u > 0

2. d
dx ln | u | = 1

u u′ if u 6= 0

Proof. 1. If y = lnu where u = g(x) is differentiable, then from the chain rule and the previous result, we have

d
dx

lnu =
dy
dx

=
dy
du

du
dx

=
1
u

u′.
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2. If u > 0, then | u |= u. From the previous item, we have

d
dx

ln | u |= d
dx

lnu =
1
u

u′.

If u < 0, then | u |=−u > 0. This implies

d
dx

ln | u |= d
dx

ln(−u) =
1
−u

d
dx

(−u′) =
1
u

u′. �

Henceforth we will assume that the domain of the function u = g(x) is restricted to the domain of the natural logarithmic function.
Therefore, we sometimes do not put the function g(x) with the absolute value.

Example 3.1 Find the derivative of the function.
(1) f (x) = ln(x+1)

(2) g(x) = ln(x3 +2x−1)

(3) h(x) = ln
√

x2 +1

(4) y(x) =
√

lnx

(5) f (x) = lncos x

(6) g(x) =
√

x lnx

(7) h(x) = sin (lnx)

(8) y(x) = ln(x+ lnx)

Solution:
(1) f ′(x) = 1

x+1 .

(2) g′(x) = 3x2+2
x3+2x−1 .

(3) h′(x) = 1√
x2+1

2x
2
√

x2+1
= x

x2+1 .

(4) y′(x) = 1
2
√

lnx
1
x = 1

2x
√

lnx
.

(5) f ′(x) = −sin x
cos x =− tan x.

(6) g′(x) = 1
2
√

x lnx+
√

x 1
x = lnx

2
√

x +
√

x
x = lnx+2

2
√

x .

(7) h′(x) = cos (lnx)( 1
x ) =

cos (lnx)
x .

(8) y′(x) = 1
x+lnx (1+

1
x ) =

x+1
x(x+lnx) .

In the following, we present a simple application of the natural logarithmic function. We know that the derivative of composite functions
takes an effort and time. This problem can be solved by using the differentiation of the natural logarithmic function. Specifically, we use
the derivative of the natural logarithmic function and Theorem 3.1 to simplify the differentiation of the composite functions.

Example 3.2 Find the derivative of the function y = 5
√

x−1
x+1 .

Solution:
We can solve this example using the derivative rules. However, for simplicity, we use the natural logarithmic function.
By Taking the logarithm function of each side, we have

ln | y |= ln
∣∣∣ 5

√
x−1
x+1

∣∣∣= 1
5

(
ln |x−1|− ln |x+1|

)
.

By differentiating both sides with respect to x, we have
y′

y
=

1
5

( 1
x−1

− 1
x+1

) ( d
dx

lny =
y′

y

)
By multiplying both sides by y, we obtain

y′ =
1
5

( 1
x−1

− 1
x+1

)
y

⇒ y′ =
1
5

( 1
x−1

− 1
x+1

)
5

√
x−1
x+1

.
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Example 3.3 Find the derivative of the function y =
√

xcos x
(x+1)sin x

.

Solution:
Take the natural logarithm of each side. This implies

ln | y |= ln
∣∣∣ √xcos x
(x+1)sin x

∣∣∣= ln
√

x+ ln |cos x|− ln |x+1|− ln |sin x|.

By differentiating both sides, we have
y′

y
=

1
2x
− sin x

cos x
− 1

x+1
− cos x

sin x
.

Multiply both sides by y to have

y′ =
( 1

2x
− tan x− 1

x+1
− cot x

) √xcos x
(x+1)sin x

.

Recall, d
dx ln | u |= u′

u where u = g(x) is a differentiable function. By integrating both sides, we have

∫ u′

u
dx =

∫ d
dx

ln | u | dx

= ln | u |+c.

This can be stated as follows: ∫ u′

u
dx = ln | u |+c

If u = x, we have the following special case ∫ 1
x

dx = ln | x |+c

Example 3.4 Evaluate the integral.

(1)
∫ 2x

x2 +1
dx

(2)
∫ 6x2 +1

4x3 +2x+1
dx

(3)
∫ e

2

dx
x lnx

(4)
∫ 4

1

dx√
x (1+

√
x)

(5)
∫

tan x dx

(6)
∫

cot x dx

(7)
∫

sec x dx

(8)
∫

csc x dx

Solution:
(1)

∫ 2x
x2 +1

dx = ln(x2 +1)+ c.

(2)
∫ 6x2 +1

4x3 +2x+1
dx = 1

2

∫ 12x2 +2
4x3 +2x+1

dx = 1
2 ln | 4x3 +2x+1 |+c.

(3) Let u = lnx, then du = 1
x dx. By substitution, we obtain

∫ 1
u

du = ln | u |.

By returning the evaluation to the initial variable x, we have
∫ dx

x lnx
= ln(lnx). Hence,

∫ e

2

dx
x lnx

=
[

ln(lnx)
]e

2
= ln(lne)− ln(ln2) = ln(1)− ln(ln2) =− ln(ln2).

(4) For
∫ dx√

x (1+
√

x)
, let u = 1+

√
x, then du = 1

2
√

x dx. By substitution, we have 2
∫ 1

u
du = 2ln | u |.
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By returning the evaluation to the initial variable x, we have
∫ dx√

x (1+
√

x)
= ln | 1+

√
x |. Hence,

∫ 4

1

dx√
x (1+

√
x)

= 2
[

ln | 1+
√

x |
]4

1
= 2(ln3− ln2).

(5) We know that tan x = sin x
cos x . Therefore,

∫
tan x dx =

∫ sin x
cos x

dx =−
∫ −sin x

cos x
dx

=− ln | cos x |+c = ln | sec x |+c. (sec x = 1
cos x )

(6)
∫

cot x dx =
∫ cos x

sin x
dx = ln | sin x |+c =− ln | csc x |+c (csc x = 1

sin x )

(7)
∫

sec x dx =
∫ sec x (sec x+ tan x)

(sec x+ tan x)
dx =

∫ sec2 x+ sec x tanx
sec x+ tan x

dx = ln | sec x+ tan x |+c.

(8)
∫

csc x dx =
∫ csc x (csc x− cot x)

(csc x− cot x)
dx =

∫ csc2 x− csc x cot x
csc x− cot x

dx = ln | csc x− cot x |+c.

Exercise 3.1
1 - 20 Find the derivative of the function.

1 y = ln(x+1)

2 y = ln(x3 +2x−4)

3 y = ln(
√

x)

4 y = ln( 3
√

x2)

5 y = ln( 1
x )

6 y = ln(sin x+ x+1)

7 y = ln(sec x+ x2)

8 y = ln(cos2 x)

9 y = ln(sin2 x)

10 y = ln(cos2 x)

11 y = ln(sin2 x)

12 y = ln(sec x tan x)

13 y = cscx lnx

14 y = 3
√

x2 ln(x3 +1)

15 y = ln
(√ x2−1

x+2
)

16 y = ln
(
(x2 +1)(x−1)

)
17 y = ln(

√
x+1−

√
x)

18 y = x
lnx2

19 y = ln(x3 +1)

20 y = ln
(

ln(sin x)
)

21 - 26 Find the derivative of the function.
21 y = 5

√
2x+1
3x−1

22 y = (x−1)(
√

x3+2x+1)
x3+2x2+x−1

23 y = x2
√

7x+3
(1+x2)3

24 y = 3
√

tan2 x sin x cos x√
x3

25 y = ( x sec x2
√

x(x+1) )
7
2

26 y =
3√x+1cos2 x
(x+1)2 cos 3x

27 - 38 Evaluate the integral.

27
∫ 3x

x2 +1
dx

28
∫ π

3

π

4

sec2 x
tan x

dx

29
∫ 1

x lnx2 dx

30
∫ π

4

0
sec x dx

31
∫ csc2 x

1+ cot x
dx

32
∫ 4

−1

x
x2 +1

dx

33
∫

csc x dx

34
∫ cos

(√
x+1

)
√

x+1
dx

35
∫ √lnx2

x
dx

36
∫ 2

1

x+3
x2 dx

37
∫ cos (lnx)

x
dx

38
∫ 3

2

1
x (lnx)5 dx

�
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3.2 The Natural Exponential Function

Since the natural logarithmic function ln : (0,∞)−→ R is a strictly increasing function (see Figure 3.3), it is one-to-one. The function
ln is also onto and this implies that the natural logarithmic function has an inverse function. The inverse function is called the natural
exponential function.

Definition 3.2 The natural exponential function is
defined as follows:

exp : R−→ (0,∞) ,

y = exp x⇔ lny = x 1

y = ex

x

y

Figure 3.3: The graph of the function y = ex.

3.2.1 Properties of the Natural Exponential Function

1. From the definition, the domain of the function exp x is R.

2. The range of the function exp x is (0,∞) as follows:

y =


exp x > 1 : x > 0
exp x = 1 : x = 0
exp x < 1 : x < 0

3. Usually, the symbol exp x is written as ex, so exp (1) = e≈ 2.71828. From Definition 3.2, we have lne = 1 and lner = r lne =
r ∀ r ∈Q.

4. The function ex is continuous and differentiable on the domain. From Definition 3.2, we have

y = ex⇒ lny = x.

By differentiating both sides, we have
d
dx

lny =
y′

y
= 1⇒ y′ = y.

Hence,
d
dx

ex = ex ∀x ∈ R.

Therefore, the function ex is increasing on the domain R.

5. The second derivative d2

dx2 ex = ex > 0 for all x ∈ R. Hence, the function ex is concave upward on the domain R.

6. lim
x→∞

ex = ∞ and lim
x→−∞

ex = 0.

7. Since ex and lnx are inverse functions, then
lnex = x, ∀x ∈ R ,

elnx = x, ∀x ∈ (0,∞).

8. Rules of the natural exponential function:
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Theorem 3.3 If a,b > 0 and r ∈Q, then
(a) eaeb = ea+b

(b)
ea

eb = ea−b

(c) (ea)r = ear

Proof. (a) From the properties of the natural logarithmic function, we have

ln(eaeb) = lnea + lneb = a lne+b lne = a+b , and

lnea+b = a+b.

Since the function ln is injective, then eaeb = ea+b.

(b) From the properties of the natural logarithmic function, we have

ln
(ea

eb

)
= a lne−b lne = lnea− lneb = a−b , and

lnea−b = a−b.

Since the function ln is injective, then
ea

eb = ea−b.

(c) Since ln(ea)r = r lnea = ra and lne(ar) = a r, then (ea)r = ear. �

Example 3.5 Solve for x.
(1) lnx = 2

(2) ln(lnx) = 0

(3) (x−1)e− ln 1
x = 2

(4) xe2lnx = 8

Solution:
(1) lnx = 2⇒ elnx = e2⇒ x = e2. (take exp of both sides)

(2) ln(lnx) = 0⇒ eln(lnx) = e0⇒ lnx = 1⇒ elnx = e1⇒ x = e. (take exp twice)

(3) (x−1)e− ln 1
x = 2⇒ (x−1)eln(x−1)−1

= 2⇒ (x−1)elnx = 2. This implies

x(x−1) = 2⇒ x2− x−2 = 0⇒ (x+1)(x−2) = 0⇒ x =−1 or x = 2.

We have to ignore x =−1 since the domain of the natural logarithmic function is (0,∞).

(4) xe2lnx = 8⇒ xelnx2
= 8⇒ x3 = 8⇒ x = 2.

Example 3.6 Simplify the expressions.
(1) ln(e

√
x)

(2) e
1
3 lnx

(3) (x+1) ln(ex−1)

(4) e(
√

x+2lnx)

Solution:
(1) ln(e

√
x) =

√
x.

(2) e
1
3 lnx = eln 3√x = 3

√
x.

(3) (x+1) ln(ex−1) = (x+1)(x−1) = x2−1.

(4) e(
√

x+2lnx) = e
√

xelnx2
= x2e

√
x.

3.2.2 Differentiating and Integrating the Natural Exponential Function

From the discussion above, we found that
d
dx

ex = ex
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Generally, assume that y = eu where u = g(x) is differentiable. By using the chain rule, we have

d
dx

eu =
dy
dx

=
dy
du

du
dx

= euu′.

Theorem 3.4 If u = g(x) is differentiable, then
d
dx

eu = euu′.

Example 3.7 Find the derivative of the function.
(1) y = e

3√x+1

(2) y = e−5x2

(3) y = e3cos x−4x2

(4) y = e
1
x − 1

ex

(5) y = elnsin x

(6) y = ln(e2x +
√

1− ex)

Solution:
(1) y′ = e

3√x+1( 1
3(x+1)2/3 ).

(2) y′ = e−5x2
(−10x).

(3) y′ = e3cos x−4x2
(−3sin x−8x).

(4) y′ = e
1
x (−1

x2 )− (−e−x) = 1
ex − e

1
x

x2 .

(5) y′ = elnsin x ( cos x
sin x ) = cos x.

(6) y′ = 1
e2x+
√

1−ex (2e2x− ex

2
√

1−ex ).

Recall that d
dx eu = euu′ where u = g(x) is a differentiable function. By integrating both sides, we have

∫
euu′ dx =

∫ d
dx

eu dx = eu + c.

This can be stated as follows: ∫
euu′ dx = eu + c

If u = x, we have the following special case ∫
ex dx = ex + c

Example 3.8 Evaluate the integral.

(1)
∫

xe−x2
dx

(2)
∫ ln5

0
ex(3−4ex) dx

(3)
∫ ex + e−x

ex− e−x dx

(4)
∫ etan x

cos2 x
dx

Solution:
(1) Let u =−x2, then du =−2x dx. We substitute that into the integral to obtain

−1
2

∫
eu du =

−1
2

eu + c =
−1
2

e−x2
+ c.
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(2) Let u = 3−4ex and this implies du =−4ex dx. By substitution, we have

−1
4

∫
u du =−u2

8
+ c.

Return the evaluation to the initial variable x to obtain
∫

ex(3−4ex) dx =− 1
8 (3−4ex)2. Hence,

∫ ln5

0
ex(3−4ex) dx =−1

8

[
(3−4ex)2

]ln5

0
=−1

8
[
(−17)2− (−1)2]=−36.

(3) Let u = ex− e−x, then du = ex + e−x dx. By substitution, we have∫ 1
u

du = ln | u |+c = ln | ex− e−x |+c.

(4) Let u = tan x, then du = sec2 x dx. By substitution, we have∫
eu du = eu + c = etanx + c (sec2 x =

1
cos2 x

)

Exercise 3.2
1 - 4 Simplify the expressions.

1 sin2 x+ e2lncos x

2 lne
5√x

3 (x+2)eln(x−2)

4 ln(e3+2lnx)

5 - 8 Solve for x.
5 lnx2 = 4

6 ln(lnx) = 1

7 x elnx = 27

8 lnex(x+2) = 3
9 - 18 Find the derivative of the function.

9 y = esin x−3x2

10 y = x ex
√

x

11 y = ex cos (lnx)

12 y = e
1
x lnx

13 y = ln(e−x +
√

x e−x)

14 y = e
3√x sin x

15 y = ln(tan ex)

16 y =
√

ex

17 y = (ex +1)(
√

e−x +1)

18 y = sec2 (e3x)

19 - 28 Evaluate the integral.

19
∫ 1

0
e2x+1 dx

20
∫ e

√
x
√

x
dx

21
∫ esin x

sec x
dx

22
∫

(1−2
√

xsin x) e
√

x+cos x
√

x
dx

23
∫ e

1
x

x2 dx

24
∫

π/4

0

esec x sin x
cos2 x

dx

25
∫ 1
√

x e
√

x
dx

26
∫ ex

(1+ ex)5 dx

27
∫

elncos x dx

28
∫ 2

1

ex

ex +1
dx

�

3.3 General Exponential and Logarithmic Functions

3.3.1 General Exponential Function

In Section 3.2, we defined the natural exponential function ax when a = e. In the following, we define the general exponential function
ax with a > 0.
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Definition 3.3 The general exponential function is defined as follows:

ax : R→ (0,∞) ,

ax = ex lna for every a > 0.

Since lnax = x lna ∀x ∈Q, then by taking the natural exponential function of both sides, we can write

ax = ex lna.

The function ax is called the general exponential function with base a.

1

y = ax

x

y

Figure 3.4: The function y = ax for a > 1.

1

y = ax

x

y

Figure 3.5: The function y = ax for a < 1.

Properties of the General Exponential Function

Let f (x) = ax ∀x ∈ R.
1. From Definition 3.3, the domain of f (x) is R and the range is (0,∞) where

y =


ax > 1 : x > 0
ax = 1 : x = 0
ax < 1 : x < 0

2. If a > 1, lna > 0 and this implies that x lna and f (x) are increasing functions as shown in Figure 3.4.

3. If a < 1, lna < 0 and this implies that x lna and f (x) are decreasing functions (see Figure 3.5).

4. Rules of the general exponential function:

Theorem 3.5 If a,b > 0 and x,y ∈ R, then
a. axay = ax+y

b. ax

ay = ax−y

c. (ax)y = ax y

d. (ab)x = axbx

Proof. We prove this theorem by using Definition 3.3 and the properties of the functions ex and lnx.
a. axay = ex lnaey lna = ex lna+y lna = e(x+y) lna = elna(x+y)

= ax+y.

b. ax

ay =
ex lna

ey lna = ex lna−y lna = e(x−y) lna = elna(x−y)
= ax−y.

c. (ax)y = ey lnax
= elnax y

= ax y.

d. (ab)x = ex lnab = ex(lna+lnb) = ex lnaex lnb = axbx.
Note that the previous result generalizes Theorem 3.3. �
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Differentiating and Integrating the General Exponential Function

Since ax = ex lna, then

d
dx

ax =
d
dx

ex lna

= ex lna lna

= ax lna.

This can be stated as follows:

d
dx

ax = ax lna

The following theorem generalizes the previous result.

Theorem 3.6 If u = g(x) is differentiable, then
d
dx

au = au lnau′.

Proof. From Definition 3.3 and the chain rule, we have

d
dx

au =
d
dx

eu lna

= eu lnau′ lna

= auu′ lna.

Note that by applying the previous theorem for a = e, we have Theorem 3.4. �

Example 3.9 Find the derivative of the function.
(1) y = 2

√
x

(2) y = 3x2 sin x

(3) y = sin 3x

(4) y = x(7−3x)

(5) y = ln(tan 5x)

(6) y = (10x +10−x)10

Solution:
(1) y′ = 2

√
x ln2 1

2
√

x = 2
√

x ln2
2
√

x .

(2) y′ = 3x2 sin x ln3 (2x sin x+ x2 cos x).

(3) y′ = cos (3x)
(
3x ln3

)
=
(
3x ln3

)
cos 3x.

(4) y′ = 7−3x + x
(
(−3ln7) 7−3x)= 7−3x(1− (3ln7) x

)
.

(5) y′ = sec2 5x (5x ln5)
tan 5x =

(5x ln5) sec2 5x

tan 5x .

(6) y′ = 10 (10x +10−x)9 (10x ln10−10−x ln10) = 10 ln10 (10x +10−x)9 (10x−10−x).

Example 3.10 Find the derivative of the function y = (sin x)x.

Solution:
Take the natural logarithm of both sides to have lny = x ln(sin x). By differentiating both sides, we have

y′

y
= ln(sin x)+

x cos x
sin x

⇒ y′ =
(

ln(sin x)+ xcot x
)
(sin x)x.
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From Theorem 3.6, we have ∫
au u′ dx =

1
lna

au + c

Example 3.11 Evaluate the integral.

(1)
∫

x3−x2
dx

(2)
∫

5x√5x +1 dx

(3)
∫

3x sin 3x dx

(4)
∫ 2x

2x +1
dx

Solution:
(1) Let u =−x2, then du =−2x dx. By substitution, we have

−1
2

∫
3u du =

−1
2ln3

3u + c =
−1

2ln3
3−x2

+ c.

(2) Let u = 5x +1, then du = 5x ln5 dx. By substitution, we obtain

1
ln5

∫
u

1
2 du =

1
ln5

u
3
2

3/2
+ c =

2(5x +1)
3
2

3ln5
+ c.

(3) Let u = 3x, then du = 3x ln3 dx. By substitution, we have

1
ln3

∫
sin u du =− 1

ln3
cos u+ c =− 1

ln3
cos 3x + c.

(4) Let u = 2x +1, then du = 2x ln2 dx. By substituting that into the integral, we have

1
ln2

∫ 1
u

du =
1

ln2
ln | u |+c =

1
ln2

ln(2x +1)+ c.

3.3.2 General Logarithmic Function

We know that if a 6= 1, the function ax is strictly increasing or decreasing, depending on the value of a. In any case, the function ax is
one-to-one and onto and this implies that the function ax has an inverse function. The inverse function is called the general logarithmic
function loga x with base a.

Definition 3.4 The general logarithmic function is defined as follows:

loga : (0,∞)→ R ,

x = ay⇔ y = loga x.

1

y = loga x
x

y

Figure 3.6: The function y = loga x for a > 1.

1
y = loga x

x

y

Figure 3.7: The function y = loga x for a < 1.



57

Properties of the General Logarithmic Function

1. The general logarithmic function loga x = lnx
lna .

To verify this, from Definition 3.4, we have y = loga x⇒ x = ay.
By taking the natural logarithm of both sides, we have

lnx = lnay = y lna⇒ y =
lnx
lna

.

2. If a > 1, the function loga x is increasing while if 0 < a < 1, the function loga x is decreasing (see Figures 3.6 and 3.7).

3. The natural logarithmic function lnx = loge x.

4. The general logarithmic function log10 x = logx.

5. The general logarithmic function loga a = 1.

6. Rules of the general logarithmic function:

Theorem 3.7 If x,y > 0 and r ∈ R, then
a. loga xy = loga x+ loga y

b. loga
x
y = loga x− loga y

c. loga xr = r loga x

Proof. To prove the theorem, we use the formula loga x = lnx
lna and the properties of the natural logarithmic function.

a. loga xy = lnxy
lna = lnx

lna +
lny
lna = loga x+ loga y. (lna b = lna+ lnb)

b. loga
x
y =

ln( x
y )

lna = lnx
lna −

lny
lna = loga x− loga y. (ln a

b = lna− lnb)

c. loga xr = lnxr

lna = r lnx
lna = r loga x. (lnar = r lna)

The previous result generalizes Theorem 3.1. �

Differentiating and Integrating the General Logarithmic Function

Since loga x = lnx
lna , then

d
dx

(
loga x

)
=

d
dx

( lnx
lna

)
=

1
x lna

.

By integrating both sides, we have ∫ 1
x lna

dx = loga |x|+ c.

Theorem 3.8 If u = g(x) is differentiable, then

d
dx

(
loga |u|

)
=

d
dx

( ln |u|
lna

)
=

1
u lna

u′

From the previous theorem, we have ∫ 1
u lna

u′ dx = loga |u|+ c

Note that ∫ 1
u lna

u′ dx =
1

lna

∫ u′

u
dx =

ln |u|
lna

= loga |u|+ c .

Example 3.12 Find the derivative of the function.
(1) y = log3 sin x (2) y = log

√
x
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Solution:
(1) y′ = 1

ln3
cos x
sin x = cot x

ln3 .

(2) y′ = 1
(2ln10) x .

Example 3.13 Evaluate the integral.

(1)
∫ 1

x logx
dx (2)

∫ 1
x log2

√
x

dx

Solution:
(1) Let u = logx⇒ du = dx

x ln10 . By substitution, we have

ln10
∫ 1

u
du = ln10 ln | u |+c = ln10 ln | logx |+c.

(2) Let u = log2
√

x⇒ du = dx
2ln2

√
x . By substitution, we have

2ln2
∫ 1

u
du = 2ln2 ln | u |+c = 2ln2 ln | log2

√
x |+c.

Exercise 3.3
1 - 10 Find the derivative of the function.

1 y = 3x

2 y = 2sin x cos x

3 y = ln2x

4 y = log2 cos x

5 y = log 3
√

x+1

6 y = 5
√

x tan x

7 y = x 4−2x

8 y = log(x+1)

9 y = ln(sec 5x+1)

10 y = log5 x
3
2

11 - 14 Find the derivative of the function.

11 y = (sin x)x

12 y =exx

13 y = xex

14 y = (x2− x)lnx

15 - 20 Evaluate the integral.

15
∫

x25x3
dx

16
∫

2x cos (2x +1) dx

17
∫ 1

x logx2 dx

18
∫ 3x
√

3x +1
dx

19
∫

73x
√

73x +1 dx

20
∫ log2 sin x

tan x
dx

�
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Review Exercises

1 - 6 Solve for x.
1 x = eln2

2 lnx = 1

3 lnx = ln3−2ln8

4 lnx2 = ln4+ ln2

5 lnx = ln(x+1)+ ln(x−1)

6 e2x +2ex−8 = 0
7 - 12 Find each limit if it exists.

7 lim
x→0

lncos x

8 lim
x→∞

1
1+lnx

9 lim
x→∞

e−x +1

10 lim
x→∞

lnex

11 lim
x→∞

log2 x+ ex

12 lim
x→0+

lnsin x

13 - 44 Find the derivative of the function.
13 f (x) = lnx2

14 f (x) = ln(x2 +3x+1)

15 f (x) = lncos3 x

16 f (x) = lnsin x2

17 f (x) = ln
√

x3 + x−1

18 f (x) = ln(
√

x−
√

x−1)

19 f (x) = sin x lncos x

20 f (x) = ln( x2 sin x√
x+1

)

21 f (x) = 1
lnx + ln( 1

x )

22 f (x) = (lnx3)2

23 f (x) =
√

x ln(x2 + x−2)

24 f (x) = ex sec x

25 f (x) = elnx2+x−1

26 f (x) = ex+1 sin3 x

27 f (x) = e
x

x+1

28 f (x) = ln(sin ex)

29 f (x) = e2x+1

30 f (x) = esin x

31 f (x) = esec2 x

32 f (x) = sin(e2x3+x−1)

33 f (x) = e2x+1

34 f (x) = ex

x+1

35 f (x) = ex

lnx

36 f (x) = ex tan x

37 f (x) = ex lnx

38 f (x) = x2e
√

x

39 f (x) = πcos x

40 f (x) = 2sin2 x

41 f (x) = 103x

42 f (x) = tan(2sin x)

43 f (x) = log3(
6x+1
2x−1 )

44 f (x) = log(lnx)
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45 - 50 Find the derivative of the function.
45 y = (tan x)tan x

46 y = xx

47 y = x
√

x

48 y = x4x

49 y = xsin x

50 y = (lnx)tan x

51 - 72 Evaluate the integral.

51
∫ x2

x3 +2
dx

52
∫ sin x

cos x
dx

53
∫ x+1

x2 +2x
dx

54
∫ √lnx

x
dx

55
∫ 1

0

x
x2 +1

dx

56
∫ 0

−2

x
x2 +3

dx

57
∫ cos (lnx)

x
dx

58
∫
(
√

x+
1√
x
)2 dx

59
∫ 1

x(lnx)2 dx

60
∫ sin x− cos x

sin x+ cos x
dx

61
∫

x3−x2
dx

62
∫

2xex2
dx

63
∫ ex− e−x

ex + e−x dx

64
∫ cos x eln(sin x)

sin x
dx

65
∫

etan x sec2 x dx

66
∫ 5

√
x

√
x

dx

67
∫ ln2

0
ex(2−3ex) dx

68
∫ x3

x4 +1
dx

69
∫

43x dx

70
∫ 3

0
x3−x2

dx

71
∫

x10x2+1 dx

72
∫ a

√
x+1

√
x+1

dx where a > 0

73 - 89 Choose the correct answer.
73 If f (x) = log2

x
x−1 = 1, then x is equal to

(a) 1 (b) 2 (c) 1
2 (d) −1

74 The value of the integral
∫ 1

0
5x dx is equal to

(a) 4ln5
5 (b) ln5

4 (c) 4
ln5 (d) 5ln5

4

75 If f (x) = xx+1, then f ′(x) is equal to
(a) (1+ 1

x + lnx)xx+1 (b) (lnx+ 1
x )x

x+1 (c) (1+ lnx)xx+1 (d) (1+ 1
x + lnx)xx

76 lim
x→∞

ex+e2x

1+e2x is equal to
(a) ∞ (b) 1 (c) 0 (d) None of these

77 The integral
∫

tan 2x dx is equal to
(a) −1

2 ln | sec 2x |+c (b) 1
2 sec2 2x+ c (c) −1

2 ln | cos 2x |+c (d) 2sec2 2x+ c

78 The integral
∫

ln(2sin x) dx is equal to

(a) 1
2 ln(2)sin x+ c (b) 2−sin x cos x+ c (c) −sin x+ c (d) − ln2cos x+ c

79 The integral
∫ 1

0

ex

(ex +1)2 dx is equal to
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(a) e−1
2(1+e) (b) 0 (c) −1 (d) 1

(1+e)2

80 If f (x) = xlnx then f ′(e) is equal to
(a) 2 (b) 2e (c) 0 (d) e

81 lim
x→0+

sinx
lnx is equal to

(a) ∞ (b) 0 (c) 1 (d) −∞

82 If f (x) = ln(lnx) then f ′(x) is equal to
(a) 1

lnx (b) 1
x lnx (c) − 1

(lnx)2 (d) − 1
x lnx

83 The integral
∫

2sin x cos x dx is equal to

(a) 2sin x + c (b) (ln2)2sin x + c (c) 2sin x

ln2 + c (d) − 2sin x

ln2 + c

84 The integral
∫ tan2 x

sec x
dx is equal to

(a) ln | sec x+ tan x |+sin x+ c (b) ln | sec x+ tan x | −cos x+ c
(c) ln | sec x+ tan x | −sin x+ c (d) ln | sec x | −sin x+ c

85 The value of the integral
∫ 1

0
3x dx is equal to

(a) 2
ln3 (b) 3

ln3 (c) 3 (d) 2

86 If f (x) = xx, then f ′(1) is equal to
(a) 0 (b) e (c) 1 (d) 1

e

87 The value of the integral
∫ 1

0
(7x)7x2

dx is equal to

(a) 21
ln7 (b) 21ln7 (c) 49

ln7 (d) 7
ln7

88 If F(x) = x
1
x , the F ′(e) is equal to

(a) 0 (b) e (c) e
1
e (d) e

1
e

e2

89 If log2
x−1

x = 2, then x is equal to
(a) −1 (b) 1

3 (c) − 1
3 (d) 1
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Chapter 4

Inverse Trigonometric and Hyperbolic
Functions

4.1 Inverse Trigonometric Functions

The inverse trigonometric functions are the inverse functions of the trigonometric functions: sine, cosine, tangent, cotangent, secant,
and cosecant. While the trigonometric functions give trigonometric ratios, the inverse trigonometric functions give angles from the
angle trigonometric ratios. The most common notations to name the inverse trigonometric functions are arcsinx, arccosx, arctanx, etc.
However, the notations sin−1 x,cos−1 x, tan−1 x, etc. are often used as well. In this book, we use the latter notations to denote to the
inverse trigonometric functions.1

To find the inverse of any function, we need to show that the function is bijective (i.e., is it one-to-one and onto?). From your
knowledge, none of the six trigonometric functions are bijective. Therefore, in order to have inverse trigonometric functions, we should
consider subsets of their domains. In the following, we show the graph of the inverse trigonometric functions, and their domains and
ranges.

The inverse sine function
sin y = x⇔ y = sin−1 x
Domain: [−1,1] Range: [−π

2 ,
π

2 ]

The inverse cosine function
cos y = x⇔ y = cos−1 x
Domain: [−1,1] Range: [0,π]

-1 1

−π/2

π/2
y = sin−1 x

x

y

-1 1

π/2

y = cos−1 x
x

y

1Common mistake: some students write sin−1 x = (sin x)−1 = 1
sin x and this is not true.
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The inverse tangent function
tan y = x⇔ y = tan−1 x
Domain: R
Range: (− π

2 ,
π

2 )
-1 1

−π/2

π/2

y = tan−1 x

x

y

The inverse cotangent function
cot y = x⇔ y = cot−1 x
Domain: R Range: (0,π)

The inverse secant function
secy = x⇔ y = sec−1 x
Domain: R\ (−1,1) Range: [0, π

2 )∪ (
π

2 ,π]

-8 8

π/2

π

y = cot−1 x
x

y

-5 5

π/2

π

y = sec−1 x

x

y

The inverse cosecant function
csc y = x⇔ y = csc−1 x
Domain: R\ (−1,1)
Range: [− π

2 ,0)∪ (0,
π

2 ]
-5 5

−π/2

π/2

y = csc−1 x

x

y

Differentiating and Integrating the Inverse Trigonometric Functions

In the following theorem, we list the derivatives of the inverse trigonometric functions. Then, we list the integration rules.



64

Theorem 4.1 If u = g(x) is a differentiable function, then
1. d

dx sin−1 u = 1√
1−u2 u′

2. d
dx cos−1 u = −1√

1−u2 u′

3. d
dx tan−1 u = 1

u2+1 u′

4. d
dx cot−1 u = −1

u2+1 u′

5. d
dx sec−1 u = 1

u
√

u2−1
u′

6. d
dx csc−1 u = −1

u
√

u2−1
u′

Proof. For simplicity, we assume u = x.
1. From the differentiation rule of the inverse functions, y = sin−1 x is differentiable if x ∈ (−1,1). By differentiating sin y = x

implicitly, we have

cos y
dy
dx

= 1⇒ dy
dx

=
1

cos y
⇒ d

dx
sin−1 x =

1√
1− sin2 y

.

This implies
d
dx

sin−1 x =
1√

1− x2
.

2. The function cos−1 x is differentiable if x ∈ (−1,1). We know that

y = cos−1 x⇔ cosy = x.

By using the implicit differentiation, we obtain

−sin y
dy
dx

= 1⇒ dy
dx

=
−1

sin y
⇒ d

dx
cos−1 x =

−1√
1− cos2 y

.

This implies
d
dx

cos−1 x =
−1√
1− x2

.

3. The function tan−1 x is differentiable if x ∈ R. Since

y = tan−1 x⇔ tany = x ,

we use the implicit differentiation to have

sec2 y
dy
dx

= 1⇒ dy
dx

=
1

sec2 y
⇒ d

dx
tan−1 x =

1
1+ tan2 y

.

Hence,
d
dx

tan−1 x =
1

1+ x2 .

4. This item can be proved in a similar way to item 3.
5. The function sec−1 x is differentiable if x ∈ (−∞,−1)∪ (1,∞). Since

y = sec−1 x⇔ secy = x ,

we use the implicit differentiation to have

sec y tan y
dy
dx

= 1⇒ dy
dx

=
1

sec y tan y
⇒ d

dx
sec−1 x =

1

x
√

sec2 y−1
.

Hence,
d
dx

sec−1 x =
1

x
√

x2−1
.

6. This item can be proved in a similar way to item 5. �

Example 4.1 Find the derivative of the function.
(1) y = sin−1 5x

(2) y = tan−1 ex

(3) y = sec−1 2x

(4) y = sin−1 (x−1)
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Solution:
(1) y′ = 5√

1−(5x)2
= 5√

1−25x2 .

(2) y′ = ex

(ex)2+1 = ex

e2x+1 .

(3) y′ = 2
2x
√

4x2−1
= 1

x
√

4x2−1
.

(4) y′ = 1√
1−(x−1)2

= 1√
2x−x2 .

From the list of the derivatives of the inverse trigonometric functions, we have the following integration rules:

1.
∫ 1√

1− x2
dx = sin−1 x+ c

2.
∫ 1

1+ x2 dx = tan−1 x+ c

3.
∫ 1

x
√

x2−1
dx = sec−1 x+ c

The following theorem generalizes the previous integration rules.

Theorem 4.2 For a > 0,

1.
∫ 1√

a2− x2
dx = sin−1 x

a + c

2.
∫ 1

a2 + x2 dx = 1
a tan−1 x

a + c

3.
∫ 1

x
√

x2−a2
dx = 1

a sec−1 x
a + c

Proof. We prove item 1 and the others can be done in a similar way.
For simplicity, we assume u = x. ∫ 1√

a2− x2
dx =

∫ 1√
a2(1− x2

a2 )
dx =

∫ 1

a
√

1−
( x

a
)2

dx.

Let v = x
a , then dv = dx

a . By substitution, we have

1
a

∫ 1√
1− v2

a dv =
∫ 1√

1− v2
dv = sin−1 v+ c = sin−1 x

a
+ c. �

Example 4.2 Evaluate the integral.

(1)
∫ 1√

4−25x2
dx.

(2)
∫ 1

x
√

x6−4
dx.

(3)
∫ 1

9x2 +5
dx.

(4)
∫ 1√

e2x−1
dx.

Solution:
(1)

∫ 1√
4−25x2

dx =
∫ 1√

4− (5x)2
dx.

Let u = 5x, then du = 5dx⇒ dx = du
5 . By substitution, we have

1
5

∫ 1√
4−u2

du =
1
5

sin−1 u
2
+ c =

1
5

sin−1 5x
2
+ c.

(2)
∫ 1

x
√

x6−4
dx =

∫ 1

x
√

(x3)2−4
dx.

Let u = x3, then du = 3x2dx. By substitution, we obtain

1
3

∫ 1

u
√

u2−4
du =

1
3

1
2

sec−1 u
2
+ c =

1
6

sec−1 x3

2
+ c.
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(3)
∫ 1

9x2 +5
dx =

∫ 1
(3x)2 +5

dx.

Let u = 3x, then du = 3dx. By substitution, we have

1
3

∫ 1
u2 +5

du =
1
3

1√
5

tan−1 u√
5
+ c =

1
3
√

5
tan−1 3x√

5
+ c.

(4)
∫ 1√

e2x−1
dx =

∫ 1√
(ex)2−1

dx.

Let u = ex, du = exdx. After substitution, we have

∫ 1

u
√

u2−1
du = sec−1 u+ c = sec−1 ex + c.

Exercise 4.1
1 - 8 Find the derivative of the function.

1 y = sin−1 lnx

2 y = cos−1 (4x2)

3 y = tan−1 √x

4 y = csc−1 5x
3

5 y = sin−1 (x2 + x−1)

6 y = tan−1 1
x

7 y = cot−1 e
1
x

8 y = sec−1 (ln 3
√

x)
9 - 16 Evaluate the integral.

9
∫ 1√

9− x2
dx

10
∫ 1

x2 +81
dx

11
∫ 1√

e2x−4
dx

12
∫ 1

sec x (sin2 x+1)
dx

13
∫ 1

x
√

x8−9
dx

14
∫ ex

e2x +1
dx

15
∫ 1

x
√

1− (lnx)2
dx

16
∫ cot x

cos2 x
√

tan2 x−3
dx

�

4.2 Hyperbolic Functions

In this section, we define the hyperbolic functions. They are based on the natural exponential function and this indicates that the
properties and the rules of the differentiation of the former functions depend on the latter function.

Definition 4.1 The hyperbolic sine function (sinh) and the hyperbolic cosine function (cosh) are defined as follows:

sinh x =
ex− e−x

2
, ∀x ∈ R ,

cosh x =
ex + e−x

2
, ∀x ∈ R.

Other hyperbolic functions can be defined from the hyperbolic sine and the hyperbolic cosine as follows:



67

tanh x =
sinh x
cosh x

=
ex− e−x

ex + e−x , ∀x ∈ R

coth x =
cosh x
sinh x

=
ex + e−x

ex− e−x , ∀x ∈ R\{0}

sech x =
1

cosh x
=

2
ex + e−x , ∀x ∈ R

csch x =
1

sinh x
=

2
ex− e−x , ∀x ∈ R\{0}

4.2.1 Properties of the Hyperbolic Functions

1. The graph of the hyperbolic functions depends on the natural exponential functions ex and e−x (as shown in Figure 4.2).

2. The hyperbolic sine function is an odd function (i.e., sinh(−x) =−sinhx); whereas the hyperbolic cosine is an even function
(i.e., cosh(−x) = coshx). Therefore, the functions tanh, coth and csch are odd functions and the function sech is an even function.
This in turn indicates that the graphs of the functions sinh, tanh, coth and csch are symmetric with respect to the original point;
whereas the graph of the functions cosh and sech are symmetric around the y-axis.

3. cosh2 x− sinh2 x = 1, ∀x ∈ R.
To verify this item, we have from Definition 4.1 that

cosh x− sinh x = e−x and cosh x+ sinh x = ex.

Hence,

(cosh x− sinh x)(cosh x+ sinh x) = cosh2 x− sinh2 x = e−xex = e0 = 1.

4. Since cos2 t + sin2 t = 1 for any t ∈ R, then the point P(cos t,sin t) is located on the unit circle x2 + y2 = 1. However, for any
t ∈ R, the point P(cosh t,sinh t) is located on the hyperbola x2− y2 = 1. Figure 4.1 illustrates this item.

Figure 4.1: sinh x and cosh x versus sin x and cos x.
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y = sech x

−2 −1 1 2

−1

1

x

y

y = csch x

−2 −1 1 2

−1

1

x

y

Figure 4.2: The graph of the hyperbolic functions.

1/2

y = ex

2

y = −e−x

2

y = sinh x

x

y

1/2

1

y = ex

2y = e−x

2

y = cosh x

x

y

y = tanh x

−2 −1 1 2

−1

1

x

y

y = coth x

−2 −1 1 2

−1

1

x

y



69

Theorem 4.3
1. sinh (x± y) = sinh x cosh y± cosh x sinh y
2. cosh (x± y) = cosh x cosh y± sinh x sinh y
3. sinh 2x = 2sinh xcosh x
4. cosh 2x = 2cosh2 x−1 = 2sinh2 x+1 = cosh2 x+ sinh2 x
5. 1− tanh2 x = sech2 x
6. coth2 x−1 = csch2 x

7. tanh (x± y) =
tanh x± tanh y

1± tanh x tanh y

8. tanh 2x =
2tanh x

1+ tanh2 x

Proof. 1. From the definition of cosh x and sinh x, we have

sinh x cosh y+ cosh x sinh y =
ex− e−x

2
ey + e−y

2
+

ex + e−x

2
ey− e−y

2

=
1
4

(
ex+y + ex−y− e−x+y− e−(x+y)+ ex+y− ex−y + e−x+y− e−(x+y)

)
=

1
4

(
2e(x+y)−2e−(x+y)

)
=

e(x+y)− e−(x+y)

2
= sinh (x+ y).

sinh x cosh y− cosh x sinh y =
ex− e−x

2
ey + e−y

2
− ex + e−x

2
ey− e−y

2

=
1
4

(
ex+y + ex−y− e−x+y− e−(x+y)− ex+y + ex−y− e−x+y + e−(x+y)

)
=

1
4

(
2e(x−y)−2e−x+y

)
=

e(x−y)− e−(x−y)

2
= sinh (x− y).

2. cosh x cosh y+ sinh x sinh y =
ex + e−x

2
ey + e−y

2
+

ex− e−x

2
ey− e−y

2

=
1
4

(
ex+y + ex−y + e−x+y + e−(x+y)+ ex+y− ex−y− e−x+y + e−(x+y)

)
=

1
4

(
2e(x+y)+2e−(x+y)

)
=

e(x+y)+ e−(x+y)

2
= cosh (x+ y).

cosh x cosh y− sinh x sinh y =
ex + e−x

2
ey + e−y

2
− ex− e−x

2
ey− e−y

2

=
1
4

(
ex+y + ex−y + e−x+y + e−(x+y)− ex+y + ex−y + e−x+y− e−(x+y)

)
=

1
4

(
2e(x−y)+2e−x+y

)
=

e(x−y)+ e−(x−y)

2
= cosh (x− y).

3. 2sinh x cosh x = 2
(ex− e−x

2
ex + e−x

2
)

=
1
2

(
e2x +1−1− e−2x

)
=

e2x− e−2x

2
= sinh 2x.
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4. We prove that cosh 2x = 2cosh2 x−1 and the other equalities can be proven similarly.

2cosh2 x−1 = 2
(ex + e−x

2

)2
−1

=
e2x +2+ e−2x

2
−1

=
e2x + e−2x

2
= cosh 2x.

5. From the identity cosh2 x− sinh2 x = 1, divide both sides by cosh2 x. The result is 1− tanh2 x = sech2 x.

6. From the identity cosh2 x− sinh2 x = 1, divide both sides by sinh2 x. The result is coth2 x−1 = csch2 x.

7. From items 1 and 2 in this theorem, we have

tanh (x± y) =
sinh (x± y)
cosh (x± y)

=
sinh xcosh y± cosh xsinh y
cosh xcosh y± sinh xsinh y

.

By dividing the numerator and denominator by cosh x cosh y, we obtain

tanh (x± y) =
tanh x± tanh y

1± tanh x tanh y
.

8. We prove this item by using items 3 and 4.

tanh 2x =
sinh 2x
cosh 2x

=
2sinh x cosh x

cosh2 x+ sinh2 x
.

By dividing the numerator and denominator by cosh2 x, we have

tanh 2x =
2tanh x

1+ tanh2 x
. �

4.2.2 Differentiating and Integrating the Hyperbolic Functions

Theorem 4.4 lists the differentiation rules of the hyperbolic functions.

Theorem 4.4 If u = g(x) is differentiable function, then
1. d

dx sinh u = cosh u u′

2. d
dx cosh u = sinh u u′

3. d
dx tanh u = sech2 u u′

4. d
dx coth u =−csch2 u u′

5. d
dx sech u =−sech u tanh u u′

6. d
dx csch u =−csch u coth u u′

Proof. For simplicity, we consider the case u = x.
1. d

dx (sinh x) = d
dx (

ex−e−x

2 ) = ex+e−x

2 = cosh x.

2. d
dx (cosh x) = d

dx (
ex+e−x

2 ) = ex−e−x

2 = sinh x.

3. d
dx (tanh x) = d

dx (
sinh x
cosh x ) =

cosh x cosh x−sinh x sinh x
cosh2 x

= cosh2 x−sinh2 x
cosh2 x

= 1
cosh2 x

= sech2 x.

4. d
dx (coth x) = d

dx (
cosh x
sinh x ) =

sinh x sinh x−cosh x cosh x
sinh2 x

= sinh2 x−cosh2 x
sinh2 x

= −1
sinh2 x

=−csch2 x.

5. d
dx (sech x) = d

dx (
1

cosh x ) =
−sinh x
cosh2 x

=−sech x tanh x.

6. d
dx (csch x) = d

dx (
1

sinh x ) =
−cosh x
sinh2 x

=−csch x coth x. �

Example 4.3 Find the derivative of the functions.
(1) y = sinh (x2)

(2) y =
√

x cosh x

(3) y = esinh x

(4) y = (x+1) tanh2 (x3)
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Solution:
(1) y′ = 2x cosh (x2).

(2) y′ = 1
2
√

x cosh x+
√

x sinh x.

(3) y′ = esinh x cosh x.

(4) y′ = tanh2 (x3)+6x2(x+1) tanh (x3) sech2 (x3).

Example 4.4 Find dy
dx if y = xcosh x.

Solution: Take the natural logarithm of each side to have

lny = cosh x lnx.

By differentiating both sides, we obtain y′
y = sinh x lnx+ cosh x

x .Therefore,

y′ =
[

sinh x lnx+
cosh x

x

]
xcosh x.

Theorem 4.5
•

∫
sinh x dx = cosh x+ c

•
∫

cosh x dx = sinh x+ c

•
∫

sech2 x dx = tanh x+ c

•
∫

csch2 x dx =−coth x+ c

•
∫

sech x tanh x dx =−sech x+ c

•
∫

csch x coth x dx =−csch x+ c

Example 4.5 Evaluate the integral.

(1)
∫

sinh2 x cosh x dx

(2)
∫

ecosh x sinh x dx

(3)
∫

tanh x dx

(4)
∫

ex sech x dx

Solution:
(1) Let u = sinh x, then du = cosh x dx. By substitution, we have

∫
u2 du = u3/3+ c. Hence,

∫
sinh2 x cosh x dx =

sinh3 x
3

+ c.

(2) Let u = cosh x, then du = sinh x dx. By substitution, we have
∫

eu du = eu + c. Hence,

∫
ecosh x sinh x dx = ecosh x + c.

(3) We know that tanh x = sinh x
cosh x , so

∫
tanh x dx =

∫ sinh x
cosh x

dx.

Let u = cosh x, then du = sinh x dx. By substitution, we have
∫ 1

u
du = ln | u |+c.

This implies ∫
tanh x dx = lncosh x+ c.

(4)
∫

ex sech x dx =
∫ 2ex

ex + e−x dx =
∫ 2e2x

e2x +1
dx.

Let u = e2x, then du = 2e2x dx. By substitution, we have
∫ 1

u+1
du = ln | u+1 |+c = ln

(
e2x +1

)
+ c.
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Exercise 4.2
1 - 10 Find the derivative of the functions.

1 y = sinh (
√

x3)

2 y = tanh 5x

3 y = e−x cosh x

4 y = esinh2x

5 y = ln(coth x)

6 y =
√

csch x

7 y = sinh (tan x)

8 y = cosh (e
√

x)

9 y = tanh (lnx)

10 y =
√

x+1 csch x

11 - 20 Evaluate the integral.

11
∫ sinh (

√
x)√

x
dx

12
∫ cosh (lnx)

x
dx

13
∫

ex tanh ex dx

14
∫
(1+ tanh x)3sech2 x dx

15
∫ esinh x

sech x
dx

16
∫ sech x tanh x

1+ sech x
dx

17
∫ √

3+ cosh x sinh x dx

18
∫ tanh

√
x
(
sech

√
x+1

)
√

x
dx

19
∫ 1

cosh2 x tanh x
dx

20
∫

ln(coth x) sech x csch x dx
�

4.3 Inverse Hyperbolic Functions

4.3.1 Properties the Inverse Hyperbolic Functions

The function sinh : R→ R is bijective, so it has
an inverse function

sinh−1 : R→ R

sinh y = x⇔ y = sinh−1 x

The function cosh is injective on [0,∞), so cosh :
[0,∞) → [1,∞) is bijective on [0,∞). It has an
inverse function

cosh−1 : [1,∞)→ [0,∞)

cosh y = x⇔ y = cosh−1 x

y = sinh−1 x

−3 −2 −1 1 2 3

−2

2

x

y

y = cosh−1 x

−3 −2 −1 1 2 3

−2

2

x

y
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The function tanh : R→ (−1,1) is bijective, so
it has an inverse function

tanh−1 : (−1,1)→ R

tanh y = x⇔ y = tanh−1 x

The function coth : R \ {0} → R \ [−1,1] is
bijective, so it has an inverse function

coth−1 : R\ [−1,1]→ R\{0}

coth y = x⇔ y = coth−1 x

y = tanh−1 x

−1 −0.5 0.5 1

−2

−1

1

2

x

y

-1 1

y = coth−1 x
x

y

The function sech is bijective on [0,∞), so sech :
[0,∞)→ (0,1] has an inverse function

sech−1 : (0,1]→ [0,∞)

sech y = x⇔ y = sech−1 x

The function csch : R \ {0} → R \ {0} is
bijective. The inverse function is

csch−1 : R\{0}→ R\{0}

csch y = x⇔ y = csch−1 x

y = sech−1x

−1 −0.5 0.5 1 1.5 2

−1

1

2

3

x

y

y = csch−1x x

y
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The following theorem shows that the inverse hyperbolic functions can be formalized as functions depend on the natural logarithmic
function.

Theorem 4.6
1. sinh−1 x = ln(x+

√
x2 +1), ∀x ∈ R

2. cosh−1 x = ln(x+
√

x2−1), ∀x ∈ [1,∞)

3. tanh−1 x = 1
2 ln
( 1+x

1−x
)
, ∀x ∈ (−1,1)

4. coth−1 x = 1
2 ln
( x+1

x−1
)
, ∀x ∈ R\ [−1,1]

5. sech−1 x = ln
( 1+

√
1−x2

x
)
, ∀x ∈ (0,1]

6. csch−1 x = ln
( 1+

√
x2+1
x

)
, ∀x ∈ R\{0}

Proof. 1. Let y = sinh−1 x, then

x = sinh y =
ey− e−y

2
⇒ ey−2x− e−y = 0.

The last expression can be rewritten as quadratic equation

e2y−2xey−1 = 0 ,

where x represents an unknown variable. By using the discriminant method, we have

ey =
2x±

√
4x2 +4
2

= x±
√

x2 +1.

Since
√

x2 +1 > x and ey > 0, then ey = x+
√

x2 +1. By taking the natural logarithm of both sides, we have

y = sinh−1 x = ln(x+
√

x2 +1).

2. If y = cosh−1 x, we have x = cosh y = ey+e−y

2 , then e2y−2xey +1 = 0. By using the discriminant method, we have

ey =
2x±

√
4x2−4
2

= x±
√

x2−1.

Since
√

x2−1 > x and ey > 0, then ey = x+
√

x2−1. Take the natural logarithm of both sides to obtain

y = cosh−1 x = ln(x+
√

x2−1).

3. Let y = tanh−1 x, then

x = tanh y =
ey− e−y

ey + e−y ⇒ e2y− xe2y = 1+ x⇒ e2y =
1+ x
1− x

.

By taking the natural logarithm of both sides, we have

y = tanh−1 x =
1
2

ln
(1+ x

1− x

)
.

4. Let y = coth−1 x, then

x = coth y =
ey + e−y

ey− e−y .

Therefore, xe2y− x = e2y +1 and then e2y = x+1
x−1 . By taking the natural logarithm of both sides, we obtain

y = coth−1 x =
1
2

ln
(x+1

x−1
)
.

5. Let y = sech−1 x, then

x = sech y =
2

ey + e−y ⇒ xe2y−2ey + x = 0.
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By using the discriminant method, we have

ey =
2±
√

4−4x2

2x
⇒ ey =

1+
√

1− x2

x
.

By taking the natural logarithm of both sides, we obtain y = sech−1 x = ln( 1+
√

1−x2

x ).

6. Put y = csch−1 x, this implies x = csch y = 2
ey−e−y , then xe2y−2ey− x = 0. By using the discriminant method, we have

ey =
2±
√

4+4x2

2x
⇒ ey =

1+
√

1+ x2

x
.

Take the natural logarithm of both sides to obtain y = csch−1 x = ln
( 1+

√
1+x2

x
)
. �

4.3.2 Differentiating and Integrating the Inverse Hyperbolic Functions

In this section, we list the derivatives of the inverse hyperbolic functions. To prove the results, we can use either the derivative of the
hyperbolic functions or Theorem 4.6.

Theorem 4.7 If u = g(x) is differentiable function, then
1. d

dx sinh−1 u = 1√
u2+1

u′

2. d
dx cosh−1 u = 1√

u2−1
u′, ∀u ∈ (1,∞)

3. d
dx tanh−1 u = 1

1−u2 u′, ∀u ∈ (−1,1)

4. d
dx coth−1 u = 1

1−u2 u′, ∀u ∈ R\ [−1,1]

5. d
dx sech−1 u = −1

u
√

1−u2 u′, ∀u ∈ (0,1)

6. d
dx csch−1 u = −1

|u|
√

u2+1
u′, ∀u ∈ R\{0}

Proof. For simplicity, we prove the theorem for the case u = x.
1. Let y = sinh−1 x, then x = sinh y. By using the implicit differentiation, we have

1 = cosh y y′⇒ y′ =
1

cosh y
.

We know that cosh2 y = 1+ sinh2 y = 1+ x2. This implies cosh y =
√

1+ x2 since cosh y≥ 1. Hence

d
dx

sinh−1 x =
1√

x2 +1
.

2. If y = cosh−1 x, then x = cosh y. By differentiating both sides, we have

1 = sinh y y′⇒ y′ =
1

sinh y
.

We know that sinh2 y = cosh2 y−1 = x2−1. Since y≥ 0,sinhy≥ 0, then sinh y =
√

x2−1. Hence

d
dx

cosh−1 x =
1√

x2−1
.

3. We can prove this item by using Theorem 4.6.

tanh−1 x =
1
2

ln
(1+ x

1− x

)
=

1
2

ln | 1+ x | −1
2

ln | 1− x | .

Hence,
d
dx

tanh−1 x =
1

2(1+ x)
+

1
2(1− x)

=
1

1− x2 .
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4. From Theorem 4.6,

coth−1 x =
1
2

ln
(x+1

x−1

)
=

1
2

ln | x+1 | −1
2

ln | x−1 | .

Thus,

d
dx

coth−1 x =
1

2(x+1)
− 1

2(x−1)
=
−1

x2−1
=

1
1− x2 .

5. Since sech−1 x = ln( 1+
√

1−x2

x ) = ln(1+
√

1− x2)− lnx, then

d
dx

sech−1 x =
−x√

1− x2(1+
√

1− x2)
− 1

x
=

−(1+
√

1− x2)

x
√

1− x2(1+
√

1− x2)
=

−1

x
√

1− x2
.

6. Since csch−1 x = ln( 1+
√

x2+1
x ) = ln(1+

√
x2 +1)− lnx, then

d
dx

csch−1 x =
x

(1+
√

x2 +1)
√

x2 +1
− 1

x
=

−(1+
√

x2 +1)

x
√

x2 +1(1+
√

x2 +1)
=

−1

| x |
√

x2 +1
. �

Example 4.6 Find the derivative of the functions.
(1) y = sinh−1 √x

(2) y = tanh−1 ex

(3) y = cosh−1 (4x2)

(4) y = ln(sinh−1 x)

(5) y = csch−1 4x

(6) y = x tanh−1 1
x

(7) y = (tanh−1 x)2

(8) y = ex sech−1 x

Solution:
(1) y′ = 1√

(
√

x)2+1
1

2
√

x = 1
2
√

x(x+1)
.

(2) y′ = ex

1−(ex)2 = ex

1−e2x .

(3) y′ = 8x√
(4x2)2−1

= 8x√
16x4−1

.

(4) y′ = 1
sinh−1 x

1√
x2+1

= 1√
x2+1 sinh−1 x

.

(5) y′ = −4
|4x|
√

16x2+1
= −1
|x|
√

16x2+1
.

(6) y′ = tanh−1( 1
x )+ x ( 1

1−( 1
x )

2 )(
−1
x2 ) = tanh−1( 1

x )−
x

x2−1 .

(7) y′ = 2(tanh−1 x) 1
1−x2 = 2tanh−1 x

1−x2

(8) y′ = ex sech−1x− ex

x
√

1−x2

From Theorem 4.7, we have the following list of integrals:

•
∫ 1√

x2 +1
dx = sinh−1 x+ c

•
∫ 1√

x2−1
dx = cosh−1 x+ c, x > 1

•
∫ 1

1− x2 dx = tanh−1 x+ c, | x |< 1

•
∫ 1

1− x2 dx = coth−1 x+ c, | x |> 1

•
∫ 1

x
√

1− x2
dx =−sech−1 | x |+c, | x |< 1

•
∫ 1

x
√

x2 +1
dx =−csch−1 | x |+c, | x |> 1

Theorem 4.8 generalizes the previous result.
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Theorem 4.8

1.
∫ 1√

x2 +a2
dx = sinh−1 x

a + c

2.
∫ 1√

x2−a2
dx = cosh−1 x

a + c, x > a

3.
∫ 1

a2− x2 dx = 1
a tanh−1 x

a + c, | x |< a

4.
∫ 1

a2− x2 dx = 1
a coth−1 x

a + c, | x |> a

5.
∫ 1

x
√

a2− x2
dx =− 1

a sech−1 |x|
a + c, | x |< a

6.
∫ 1

x
√

x2 +a2
dx =− 1

a csch−1 |x|
a + c, | x |> a

Example 4.7 Evaluate the integral.

(1)
∫ 1√

x2−4
dx

(2)
∫ 1√

4x2 +9
dx

(3)
∫ 1√

e2x +9
dx

(4)
∫ 1

x
√

1− x6
dx

(5)
∫ 1

0

1
16− x2 dx

(6)
∫ 7

5

1
16− x2 dx

Solution:
(1)

∫ 1√
x2−4

dx = cosh−1 x
2 + c.

(2)
∫ 1√

4x2 +9
dx =

∫ 1√
(2x)2 +9

dx.

Let u = 2x, then du = 2dx. By substitution, we have

1
2

∫ 1√
u2 +9

du =
1
2

sinh−1 u
3
+ c =

1
2

sinh−1 2x
3
+ c.

(3)
∫ 1√

e2x +9
dx =

∫ 1√
(ex)2 +9

dx.

Let u = ex, then du = exdx. By substituting that into the integral, we have

∫ 1

u
√

u2 +9
du =−1

3
csch−1 | u |

3
+ c =−1

3
csch−1 ex

3
+ c.

(4)
∫ 1

x
√

1− x6
dx =

∫ 1

x
√

1− (x3)2
dx.

Let u = x3, then du = 3x2dx. By substitution, we obtain

1
3

∫ 1

u
√

1−u2
du =−1

3
sech−1 | u |+c =−1

3
sech−1 | x3 |+c.

(5) Since the interval of the integral is subinterval of (−4,4), then the value of the integral is tanh−1. Hence,

∫ 1

0

1
16− x2 dx =

1
4

[
tanh−1 x

4

]1

0
=

1
4

[
tanh−1(

1
4
)− tanh−1(0)

]
=

1
4

[1
2

ln(
5
3
)− 1

2
ln(1)

]
=

1
8

ln(
5
3
).

(6) The interval of the integral is not subinterval of (−4,4), so the value of the integral is coth−1. This implies

∫ 7

5

1
16− x2 dx =

1
4

[
coth−1 x

4

]7

5
=

1
4

[
coth−1 7

4
− coth−1 5

4

]
=

1
8

[
ln(11)−3ln(3)

]
.
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Exercise 4.3
1 - 6 Find the derivative of the functions.

1 y = sinh−1 (tanx)

2 y = cosh−1 (e
√

x)

3 y = tanh−1 (lnx)

4 y =
√

x+1 csch−1 x

5 y = tan x tanh−1 x

6 y = (2x−1)3 sinh−1 √x

7 - 14 Evaluate the integral.

7
∫ 1√

2x2−2
dx

8
∫ ex

1− e2x dx

9
∫ 1

x
√

1− x4
dx

10
∫ 1√

x2 +25
dx

11
∫ 1√

x2−25
dx

12
∫ 1

sec x (1− sin2 x)
dx

13
∫ 1

x
√

x6 +2
dx

14
∫ 1√

4− e2x
dx

�
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Review Exercises

1 - 18 Find the derivative.
1 y = sin−1 (3x+1)

2 y = cos−1 √x

3 y = tan−1 2
3 x

4 y = sec−1 3x

5 y = sinh (4x+1)

6 y = cosh ex

7 y =
√

x tanh
√

x

8 y = e3x cosh 2x

9 y =
√

sinh 3x+ cosh 5x

10 y = tan−1 (sinh x)

11 y = esech x cosh (cosh x)

12 y = sinh x
cosh x

13 y = sech−1 3x

14 y = coth−1 √x

15 y = x4 cosh−1 x

16 y = ex tanh−1 3
√

x

17 y = sinh−1 (tanh x)

18 y = tanh−1 ( 1−x
1+x )

19 - 22 Find each limit if it exists.
19 lim

x→∞

1
sinh x

20 lim
x→−∞

cosh x

21 lim
x→∞

ex tanh x

22 lim
x→∞

esech x

23 - 42 Evaluate the integral.

23
∫

sinh3 xcosh x dx

24
∫

tanh4 xsech2 x dx

25
∫

esinh x cosh x dx

26
∫

excsch x dx

27
∫ cosh

√
x√

x
dx

28
∫

x sech x2 tanh x2 dx

29
∫ 1

sech 3x
dx

30
∫

tanh x dx

31
∫ 1

3+ x2 dx

32
∫ 1

x
√

x4−4
dx

33
∫ 1√

e2x−1
dx

34
∫ x−1√

4− x2
dx

35
∫ x+1

x
√

25− x2
dx

36
∫ 1

x
√

x8−16
dx

37
∫ 1√

1+4x2
dx

38
∫ 1

4−9x2 dx

39
∫ 8

4

x
x4−16

dx

40
∫ 3

2

1√
x2−1

dx

41
∫ 1√

25+9x2
dx

42
∫ 1√

e2x−16
dx

43 - 55 Choose the correct answer.
43 The derivative of the function f (x) = tan−1 (sinhx) is equal to

(a) sech x (b) csch x (c) tanh x (d) −sech x

44 The value of the integral
∫ 1

−1
sinh x dx is equal to

(a) 0 (b) 2e (c) 2e−1 (d) 1
2 e

45 If f (x) = cosh−1 √x, then f ′(x) is equal to
(a) 1

2
√

x2−x
(b) 1

2
√

x−x2 (c) 1
2
√

x2+x
(d) None of these
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46 The integral
∫ x−2

x
√

x2−25
dx, is equal to

(a) cosh−1 x
5 −2sec−1 x

5 + c (b) cosh−1 x
5 −

2
5 sec−1 x+ c

(c) cosh−1 x
5 −

2
5 sec−1 x

5 + c (d) None of these

47 If f (x) = tanh−1 (cos 3x), then f ′(x) is equal to
(a) 3csc 3x (b) −3csc 3x (c) −3sin 3x

1+cos2 3x (d) 0

48 The integral
∫ cos x

1+ sin2 x
dx, is equal to

(a) 1
1+sin x + c (b) tan−1(sin x)+ c (c) 1

1+cos x + c (d) tanh−1 (sinx)+ c

49 The value of the integral
∫ dx√

16−25x2
is

(a) − cos−1 x
16

25 + c (b) cos−1 x
16

25 + c (c) sin−1 5x
4

5 + c (d) − sin−1 5x
4

5 + c

50 The value of the integral
∫ 1√

x2 +2
dx is

(a) sin−1 x+ c (b) sinh−1 x+ c (c) sinh−1 x√
2
+ c (d) sin−1 x√

2
+ c

51 The integral
∫ cosh x

1− sinh2 x
dx is equal to

(a) − tan−1 (sinh x)+ c (b) tan−1 (sinhx)+ c
(c) 1

1+cosh x + c (d) tanh−1 (sinh x)+ c

52 If F(x) = tan−1 x+ tan−1( 1
x ) where x 6= 0, then F ′(x) is equal to

(a) 2
1+x2 (b) −1

1+x2 (c) 0 (d) x2

1+x2

53 The derivative of the function f (x) = tan−1 (sinh x) is equal to
(a) 1

1+sinh2 x
(b) sec2 (sinh x) (c) 1

cosh x (d) cosh x
1−sinh2 x

54 The value of the integral
∫ 1√

4+ x2
dx is equal to

(a) sinh−1 x
2 + c (b) sin−1 x

2 + c (c) 1
2 sinh−1 x

2 + c (d) 1
2 sin−1 x

2 + c

55 The value of the integral
∫ 1

−1
cosh x dx is equal to

(a) 0 (b) 2e (c) 2e−1 (d) e− e−1
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Chapter 5

Techniques of Integration

5.1 Integration by Parts

Integration by parts is a method to transfer the original integral to an easier one that can be evaluated. Practically, the integration by parts
divides the original integral into two parts u and dv, then we find the du by deriving u and v by integrating dv.

Theorem 5.1 If u = f (x) and v = g(x) such that f ′ and g′ are continuous, then∫
u dv = uv−

∫
v du.

Proof. We know that d
dx
(

f (x)g(x)
)
= f (x)g′(x)+ f ′(x)g(x). Thus, f (x)g′(x) = d

dx
(

f (x)g(x)
)
− f ′(x)g(x).

By integrating both sides, we obtain

∫
f (x)g′(x) dx =

∫ d
dx

(
f (x)g(x)

)
dx−

∫
f ′(x)g(x) dx

= f (x)g(x)−
∫

f ′(x)g(x) dx.

Since u = f (x) and v = g(x), then du = f ′(x) dx and dv = g′(x) dx. Therefore,

∫
u dv = uv−

∫
v du. �

Theorem 5.1 shows that the integration by parts transfers the integral
∫

u dv into the integral
∫

v du that should be easier than the

original integral. The question here is, what we choose as u and what we choose as dv = v′ dx. It is useful to choose u as a function that
can be easily differentiated, and to choose dv as a function that can be easily integrated. This statement is clearly explained through the
following examples.

Example 5.1 Evaluate the integral
∫

x cos x dx.

Solution:
Let I =

∫
x cos x dx. Let u = x and dv = cos x dx. Hence,

u = x⇒ du = dx ,

dv = cos x dx⇒ v =
∫

cos x dx = sin x.

Try to choose
u = cos x and dv = x dx
Do you have the same result?

From Theorem 5.1, we have

I = x sin x−
∫

sin x dx = x sin x+ cos x+ c.
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Example 5.2 Evaluate the integral
∫

x ex dx.

Solution:
Let I =

∫
x ex dx. Let u = x and dv = ex dx. Hence,

u = x⇒ du = dx ,

dv = ex dx⇒ v =
∫

ex dx = ex.

From Theorem 5.1, we have

I = x ex−
∫

ex dx = x ex− ex + c.

Try to choose u = ex and dv = x dx
We will obtain

I =
x2

2
ex−

∫ x2

2
ex dx.

However, the integral
∫ x2

2
ex dx is more

difficult than the original one
∫

xex dx.

Remark 5.1
1. Remember that when we consider the integration by parts, we want to obtain an easier integral. As we saw in Example

5.2, if we choose u = ex and dv = x dx, we have
∫ x2

2 ex dx which is more difficult than the original one.

2. When considering the integration by parts, we have to choose dv a function that can be integrated (see Examples 5.3 and
5.6).

3. Sometimes we need to use the integration by parts twice as in Examples 5.4 and 5.5.

Example 5.3 Evaluate the integral
∫

lnx dx.

Solution: Let I =
∫

lnx dx. Let u = lnx and dv = dx. Hence,

u = lnx⇒ du =
1
x

dx ,

dv = dx⇒ v =
∫

1 dx = x.

From Theorem 5.1, we obtain I = x lnx−
∫

x
1
x

dx = x lnx−
∫

1 dx = x lnx− x+ c .

Example 5.4 Evaluate the integral
∫

ex cos x dx.

Solution: Let I =
∫

ex cos x dx. Let u = ex and dv = cos x dx.

u = ex⇒ du = ex dx ,

dv = cos x dx⇒ v =
∫

cos x dx = sin x.

Hence, I = ex sin x−
∫

ex sin x dx.

The integral
∫

ex sin x dx cannot be evaluated. Therefore, we use the integration by parts again where we assume J =
∫

ex sin x dx. Let

u = ex and dv = sin x dx. Hence,

u = ex⇒ du = ex dx ,

dv = sin x dx⇒ v =
∫

sin x dx =−cos x.

Hence, J =−ex cos x+
∫

ex cos x dx. By substituting the result of J into I, we have

I = ex sin x− J

= ex sin x+ ex cos x−
∫

ex cos x dx

⇒ I = ex sin x+ ex cos x− I.
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This implies

2I = ex sin x+ ex cos x⇒ I =
1
2
(ex sin x+ ex cos x)⇒

∫
ex cos x dx =

ex

2
(sin x+ cos x)+ c.

Example 5.5 Evaluate the integral
∫

x2ex dx.

Solution: Let I =
∫

x2ex dx. Let u = x2 and dv = ex dx. Hence,

u = x2⇒ du = 2x dx ,

dv = exdx⇒ v =
∫

ex dx = ex.

This implies, I = x2ex−2
∫

xex dx.

We use the integration by parts again for the integral
∫

xex dx. Let J =
∫

xex dx.

Let u = x and dv = ex dx. Hence,

u = x⇒ du = dx ,

dv = exdx⇒ v =
∫

ex dx = ex.

Therefore, J = xex−
∫

ex dx = xex− ex + c. By substituting the result into I, we have

I = x2ex−2(xex− ex)+ c = ex(x2−2x+2)+ c.

Example 5.6 Evaluate the integral
∫ 1

0
tan−1 x dx.

Solution:
Let I =

∫
tan−1 x dx. Let u = tan−1 x and dv = dx. Hence,

u = tan−1 x⇒ du =
1

x2 +1
dx ,

dv = dx⇒ v =
∫

1 dx = x.

By applying Theorem 5.1, we obtain

I = x tan−1 x−
∫ x

x2 +1
dx = x tan−1 x− 1

2
ln(x2 +1)+ c.

Therefore, ∫ 1

0
tan−1 x dx =

[
x tan−1 x− 1

2
ln(x2 +1)

]1

0
= (tan−1(1)− 1

2
ln2)− (0− 1

2
ln1) =

π

4
− ln
√

2.
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Exercise 5.1
1 - 16 Evaluate the integral.

1
∫

x3 lnx dx

2
∫

π/3

0
sin x ln(cos x) dx

3
∫

sin−1 x dx

4
∫

x3
√

4− x2 dx

5
∫

x sin x dx

6
∫

x2 cos x dx

7
∫

ex sin 2x dx

8
∫ 1√

3

0
tan−1 x dx

9
∫

e2x cos x dx

10
∫
(lnx)2 dx

11
∫ lnx

x2 dx

12
∫

x sin x cos x dx

13
∫ 1

x(lnx)3 dx

14
∫ 1

0
x2 ex dx

15
∫

x tan−1 x dx

16
∫

x e−x dx
�

5.2 Trigonometric Functions

5.2.1 Integration of Powers of Trigonometric Functions

In this section, we evaluate integrals of forms
∫

sinn x cosm x dx,
∫

tann x secm x dx and
∫

cotn x cscm x dx. Students need the

trigonometric relationships that are provided in the beginning of this book on page 179.

Form 1:
∫

sinn x cosm x dx .

This form is treated as follows:

1. If n is an odd integer, write
sinn x cosm x = sinn−1 x cosm x sin x

Then, use the identity sin2 x = 1− cos2 x and the substitution u = cos x.

2. If m is an odd integer, write
sinn x cosm x = sinn x cosm−1 x cos x

Then, use the identity cos2 x = 1− sin2 x and the substitution u = sin x.

3. If m and n are even, use the identities cos2 x = 1+cos 2x
2 and sin2 x = 1−cos 2x

2 .

Example 5.7 Evaluate the integral.

(1)
∫

sin3 x dx

(2)
∫

cos4 x dx

(3)
∫

sin5 x cos4 x dx

(4)
∫

sin2 x cos2 x dx

Solution:
(1) Write sin3 x = sin2 x sin x = (1− cos2 x) sin x. Hence,∫

sin3 x dx =
∫
(1− cos2 x) sin x dx.

Let u = cos x, then du =− sin x dx. By substitution, we have

−
∫
(1−u2) du =−u+

u3

3
+ c.
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This implies ∫
sin3 x dx =−cos x+

1
3

cos3 x+ c.

(2) Write cos4 x = (cos2 x)2 = ( 1+cos 2x
2 )2. Hence,

∫
cos4 x dx =

∫ (1+ cos 2x
2

)2
dx

=
1
4

∫
(1+2cos 2x+ cos2 2x) dx

=
1
4

(∫
1 dx+

∫
2cos 2x dx+

∫
cos2 2x dx

)
=

1
4

(
x+ sin 2x+

1
2

∫
(1+ cos 4x) dx

)
=

1
4

(
x+ sin 2x+

1
2
(
x+

sin 4x
4

))
+ c.

(3) Write sin5 x cos4 x = sin4 x cos4 x sin x = (1− cos2 x)2 cos4 x sin x.
Let u = cos x, then du =−sin x dx. Thus, the integral becomes

−
∫
(1−u2)2u4 du =−

∫
(u4−2u6 +u8) du =−

(u5

5
− 2u7

7
+

u9

9
)
+ c.

This implies
∫

sin5 x cos4 x dx =− cos5 x
5 + 2cos7 x

7 − cos9 x
9 + c.

(4) The integrand sin2 x cos2 x = ( 1−cos 2x
2 )( 1+cos 2x

2 ) = 1−cos2 2x
4 = sin2 2x

4 = 1
4 (

1−cos 4x
2 ). Hence,

∫
sin2 x cos2 x dx =

1
8

∫
(1− cos 4x) dx =

1
8
(
x− sin 4x

4
)
+ c.

Form 2:
∫

tann x secm x dx .

This form is treated as follows:

1. If n = 0, write
secm x = secm−2 x sec2 x

a. If m > 1 is odd, use the integration by parts.
b. If m is even, use the identity sec2 x = 1+ tan2 x and the substitution u = tan x.

2. If m = 0 and n is odd or even, write
tann x = tann−2 x tan2 x

Then, use the identity tan2 x = sec2 x−1 and the substitution u = tan x.

3. If n is even and m is odd, use the identity tan2 x = sec2 x−1 to reduce the power m and then use the integration by parts.

4. If m≥ 2 is even, write
tann x secm x = tann x secm−2 x sec2 x

Then, use the identity sec2 x = 1+ tan2 x and the substitution u = tan x. Alternatively, write

tann x secm x = tann−1 x secm−1 x tan x sec x

Then, use the identity tan2 x = sec2 x−1 and the substitution u = sec x.

5. If n is odd and m≥ 1, write
tann x secm x = tann−1 x secm−1 x tan x sec x

Then, use the identity tan2 x = sec2 x−1 and the substitution u = sec x.
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Example 5.8 Evaluate the integral.

(1)
∫

tan5 x dx

(2)
∫

tan6 x dx

(3)
∫

sec3 x dx

(4)
∫

tan5 x sec4 x dx

(5)
∫

tan4 x sec4 x dx

Solution:
(1) Write tan5 x = tan3 x tan2 x = tan3 x (sec2 x−1). Thus,∫

tan5 x dx =
∫

tan3 x (sec2 x−1) dx

=
∫

tan3 x sec2 x dx−
∫

tan3 x dx

=
tan4 x

4
−

∫
tan x (sec2 x−1) dx

=
tan4 x

4
−

∫
tan x sec2 x dx+

∫
tan x dx

=
tan4 x

4
− tan2 x

2
+ ln | sec x |+c.

(2) Write tan6 x = tan4 x tan2 x = tan4 x (sec2 x−1). The integral becomes∫
tan6 x dx =

∫
tan4 x (sec2 x−1) dx

=
∫

tan4 x sec2 x dx−
∫

tan4 x dx

=
tan5 x

5
−

∫
tan2 x (sec2 x−1) dx

=
tan5 x

5
−

∫
tan2 x sec2 x dx+

∫
tan2 x dx

=
tan5 x

5
− tan3 x

3
+

∫
(sec2 x−1) dx

=
tan5 x

5
− tan3 x

3
+ tan x− x+ c.

(3) Write sec3 x = sec x sec2 x and let I =
∫

sec x sec2 x dx.

We use the integration by parts to evaluate the integral as follows:

u = sec x⇒ du = sec x tan x dx ,

dv = sec2 x dx⇒ v =
∫

sec2 x dx = tan x.

Hence,

I = sec x tan x−
∫

sec x tan2 x dx

= sec x tan x−
∫
(sec3 x− sec x) dx

= sec x tan x− I + ln | sec x+ tan x |

I =
1
2
(sec x tan x+ ln | sec x+ tan x |)+ c.

(4) Express the integrand tan5 x sec4 x as follows

tan5 x sec4 x = tan5 x sec2 x sec2 x = tan5 x (tan2 x+1) sec2 x.
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This implies

∫
tan5 x sec4 x dx =

∫
tan5 x (tan2 x+1) sec2 x dx

=
∫
(tan7 x+ tan5 x) sec2 x dx

=
tan8 x

8
+

tan6 x
6

+ c.

(5) Write tan4 x sec4 x = tan4 x (tan2 x+1) sec2 x. The integral becomes

∫
tan4 x sec4 x dx =

∫
tan4 x (tan2 x+1) sec2 x dx

=
∫
(tan6 x+ tan4 x) sec2 x dx

=
tan7 x

7
+

tan5 x
5

+ c.

Form 3:
∫

cotn x cscm x dx .

The treatment of this form is similar to the integral
∫

tann x secm x dx, except we use the identity

cot2 x+1 = csc2 x.

Example 5.9 Evaluate the integral.

(1)
∫

cot3 x dx

(2)
∫

cot4 x dx

(3)
∫

cot5 x csc4 x dx

Solution:
(1) Write cot3 x = cot x (csc2 x−1). Then,

∫
cot3 x dx =

∫
cot x (csc2 x−1) dx

=
∫
(cot x csc2 x− cot x) dx

=
∫

cot x csc2 x dx−
∫

cot x dx

=−1
2

cot2 x− ln | sin x |+c.

(2) The integrand can be expressed as cot4 x = cot2 x (csc2 x−1). Thus,

∫
cot4 x dx =

∫
cot2 x (csc2 x−1) dx

=
∫

cot2 x csc2 x dx−
∫

cot2 x dx

=−cot3 x
3
−

∫
(csc2 x−1) dx

=−cot3 x
3

+ cot x+ x+ c.
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(3) Write cot5 x csc4 x = csc3 x cot4 x csc x cot x. This implies

∫
cot5 x csc4 x dx =

∫
csc3 x cot4 x csc x cot x dx

=
∫

csc3 x (csc2 x−1)2 csc x cot x dx

=
∫
(csc7 x−2csc5 x+ csc3 x) csc x cot x dx

=−csc8 x
8

+
csc6 x

3
− csc4 x

4
+ c.

5.2.2 Integration of Forms sin ux cos vx, sin ux sin vx and cos ux cos vx

We deal with these integrals by using the following formulas:

sin ux cos vx =
1
2
(

sin (u− v) x+ sin (u+ v) x
)

sin ux sin vx =
1
2
(

cos (u− v) x− cos (u+ v) x
)

cos ux cos vx =
1
2
(

cos (u− v) x+ cos (u+ v) x
)

Example 5.10 Evaluate the integral.

(1)
∫

sin 5x sin 3x dx

(2)
∫

sin 7x cos 2x dx

(3)
∫

cos 5x sin 2x dx

(4)
∫

cos 6x cos 4x dx

Solution:
(1) From the previous formulas, we have sin 5x sin 3x = 1

2
(

cos 2x− cos 8x
)
. Hence,

∫
sin 5x sin 3x dx =

1
2

∫
(cos 2x− cos 8x) dx

=
1
4

sin 2x− 1
16

sin 8x+ c.

(2) Since sin 7x cos 2x = 1
2
(

sin 5x+ sin 9x
)
, then

∫
sin 7x cos 2x dx =

1
2

∫
(sin 5x+ sin 9x) dx

=− 1
10

cos 5x− 1
18

cos 9x+ c.

(3) Since cos 5x sin 2x = 1
2
(

sin 3x+ sin 7x
)
, then

∫
cos 5x sin 2x dx =

1
2

∫
(sin 3x+ sin 7x) dx

=−1
6

cos 3x− 1
14

cos 7x+ c.

(4) Since cos 6x cos 4x = 1
2
(

cos 2x+ cos 10x
)
, then

∫
cos 6x cos 4x dx =

1
2

∫
(cos 2x+ cos 10x) dx

=
1
4

sin 2x+
1
20

sin 10x+ c.
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Exercise 5.2
1 - 18 Evaluate the integral.

1
∫

sin2 x cos6 x dx

2
∫

sin5 x cos2 x dx

3
∫

sin3 x cos3 x dx

4
∫

cos6 4x dx

5
∫

tan4 x dx

6
∫

cot5 x dx

7
∫ sin2 √x√

x
dx

8
∫

cot2 x csc3 x dx

9
∫

cot4 x csc2 x dx

10
∫

tan3 x sec3 x dx

11
∫

tan2 x sec2 x dx

12
∫

tan2 x sec3 x dx

13
∫

sec5 x dx

14
∫

tan6 x dx

15
∫

sin 7x cos 3x dx

16
∫

cos 4x cos 3x dx

17
∫

sin 5x sin 3x dx

18
∫

sin 3x cos 5x dx

�

5.3 Trigonometric Substitutions

In this section, we are going to study integrals containing the following expressions
√

a2− x2,
√

a2 + x2 and
√

x2−a2 where a > 0. To
get rid of the square roots, we convert them using substitutions involving trigonometric functions. In the following, we explain the
conversion of the square roots:

√
a2− x2 = a cos θ if x = a sin θ.

If x = a sin θ where θ ∈ [−π/2,π/2], then√
a2− x2 =

√
a2−a2 sin2

θ

=

√
a2(1− sin2

θ)

=
√

a2 cos2 θ

= a cos θ.

√
a2− x2

x
a

θ

If the expression
√

a2− x2 is in a denominator, then we assume − π

2 < θ < π

2 .

√
a2 + x2 = a sec θ if x = a tan θ.

If x = a tan θ where θ ∈ (−π/2,π/2), then√
a2 + x2 =

√
a2 +a2 tan2 θ

=
√

a2(1+ tan2 θ)

=
√

a2 sec2 θ

= a sec θ.

a

x

√
a2 + x2

θ
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√
x2−a2 = a tan θ if x = asec θ.

If x = a sec θ where θ ∈ [0,π/2)∪ [π,3π/2), then√
x2−a2 =

√
a2 sec2 θ−a2

=
√

a2(sec2 θ−1)

=
√

a2 tan2 θ

= a tan θ.

a

√
x2−a2

x

θ

The previous discussion can be summarized in the following table:

Expression Substitution Identity
√

a2− x2 x = a sin θ, − π

2 ≤ θ≤ π

2 1− sin2
θ = cos2 θ

√
a2 + x2 x = a tan θ, − π

2 < θ < π

2 1+ tan2 θ = sec2 θ

√
x2−a2 x = a sec θ, 0≤ θ < π

2 or π≤ θ < 3π

2 sin2
θ−1 = tan2 θ

Table 5.1: Table of the trigonometric substitutions.

Example 5.11 Evaluate the integral.

(1)
∫ x2
√

1− x2
dx

(2)
∫ 6

5

√
x2−25

x4 dx

(3)
∫ √

x2 +9 dx

Solution:
(1) Let x = sin θ where θ ∈ (−π/2,π/2), thus dx = cos θ dθ. By substitution, we have

∫ x2
√

1− x2
dx =

∫ sin2
θ√

1− sin2
θ

cos θ dθ

=
∫ sin2

θcos θ

cos θ
dθ

=
∫

sin2
θ dθ

=
1
2

∫
(1− cos 2θ) dθ

=
1
2
(
θ− 1

2
sin 2θ

)
+ c

=
1
2
(
θ− sin θ cos θ

)
+ c.

√
1− x2

x
1

θ

Now, we must return to the original variable x:

∫ x2
√

1− x2
dx =

1
2
(sin−1 x− x

√
1− x2)+ c.

(2) Let x = 5 sec θ where θ ∈ [0,π/2)∪ [π,3π/2), thus dx = 5 sec θ tan θ dθ. After substitution, the integral becomes
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∫ √25 sec2 θ−25
625 sec4 θ

5sec θ tan θ dθ =
1

25

∫ tan2 θ

sec3 θ
dθ

=
1

25

∫
sin2

θ cos θ dθ

=
1

75
sin3

θ+ c. 5

√
x2−25

x

θ

We must

return to the original variable x: ∫ √x2−25
x4 dx =

(x2−25)3/2

75x3

Hence, ∫ 6

5

√
x2−25

x4 dx =
1
75

[ (x2−25)3/2

x3

]6

5
=

1
600

.

(3) Let x = 3tan θ where θ ∈ (−π/2,π/2). This implies dx = 3sec2 θ dθ. By substitution, we have

∫ √
x2 +9 dx =

∫ √
9tan2 θ+9 (3sec2

θ) dθ

= 9
∫

sec3
θ dθ

=
9
2
(

sec θ tan θ+ ln
∣∣sec θ+ tan θ

∣∣).
This implies∫ √

x2 +9 dx =
9
2

(x
√

x2 +9
9

+ ln
∣∣∣√x2 +9+ x

3

∣∣∣)+ c.

3

x

√
x2 +9

θ

Exercise 5.3
1 - 16 Evaluate the integral.

1
∫ 1

x2
√

x2−16
dx

2
∫ √

9− x2 dx

3
∫ 1

(9x2−1)
3
2

dx

4
∫ 1√

9+ x2
dx

5
∫ 1

x2
√

x2 +4
dx

6
∫ x2

(16− x2)2 dx

7
∫ x3
√

1− x8
dx

8
∫ sec2 x√

9+ tan2 x
dx

9
∫ 1

x4 +2x2 +1
dx

10
∫ √

x2−16 dx

11
∫ √

e2x−25 dx

12
∫ cosx√

2− sin2 x
dx

13
∫ 1√

1+ x2
dx

14
∫ 1

(1− x2)
5
2

dx

15
∫

ex
√

1− e2x dx

16
∫ √9− x2

x2 dx

�



92

5.4 Integrals of Rational Functions

In this section, we study rational functions of form q(x) = f (x)
g(x) where f (x) and g(x) are polynomials. The previous techniques are not

suitable to evaluate some integrals that consist of rational functions. Therefore, we need to introduce a new technique to integrate the
rational functions. This technique is called decomposition of rational functions into a sum of partial fractions.
The practical steps to evaluate integrals of the rational functions can be summarized as follows:

ä Step 1: If the degree of g(x) is less than the degree of f (x), we do polynomial long-division; otherwise we move to step 2.

From the long division shown on the right side, we
have

q(x) =
f (x)
g(x)

= h(x)+
r(x)
g(x)

,

where h(x) is the quotient and r(x) is the remainder.

h(x)
g(x)

)
f(x)

- ...
...

r(x)

ä Step 2: Factor the denominator g(x) into irreducible polynomials where the factors are either linear or irreducible quadratic
polynomials.1

ä Step 3: Find the partial fraction decomposition. This step depends on the result of step 2 where the fraction f (x)
g(x) or r(x)

g(x) can be
written as a sum of partial fractions:

q(x) = P1(x)+P2(x)+P3(x)+ ...+Pn(x) ,

each Pk(x) =
Ak

(ax+b)n ,n ∈ N or Pk(x) =
Akx+Bk

(ax2+bx+c)n if b2− 4ac < 0. The constants Ak and Bk are real numbers and computed
later.

ä Step 4: Integrate the result of step 3.

Example 5.12 Evaluate the integral
∫ x+1

x2−2x−8
dx.

Solution:
Step 1: This step can be skipped since the degree of f (x) = x+1 is less than the degree of g(x) = x2−2x−8.
Step 2: Factor the denominator g(x) into irreducible polynomials

g(x) = x2−2x−8 = (x+2)(x−4).

Step 3: Find the partial fraction decomposition.

x+1
x2−2x−8

=
A

x+2
+

B
x−4

=
Ax−4A+Bx+2B
(x+2)(x−4)

.

We need to find the constants A and B.

Coefficients of the numerators:

A+B = 1→ 1

−4A+2B = 1→ 2

By doing some calculation, we obtain A = 1
6 and B = 5

6 .

Illustration

Multiply equation 1 by 4 and add the

result to equation 2

4A+4B = 4

−4A+2B = 1

−−−−−−−−−
6B = 5

Step 4: Integrate the result of step 3.∫ x+1
x2−2x−8

dx =
∫ 1/6

x+2
dx+

∫ 5/6
x−4

dx =
1
6

ln | x+2 |+5
6

ln | x−4 |+c.

Example 5.13 Evaluate the integral
∫ 2x3−4x2−15x+5

x2 +3x+2
dx.

1For this step, see quadratic equations on page 177.
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Solution:
Step 1: Do the polynomial long-division.
Since the degree of the denominator g(x) is less than the degree of
the numerator f (x), we do the polynomial long-division given on
the right side. Then, we have

q(x) = (2x−10)+
11x+25

x2 +3x+2
.

2x −10
x2 +3x+2

)
2x3 −4x2 −15x +5
−(2x3 +6x2 +4x)

(−10x2 −19x +5
−(−10x2 −30x −20)

11x +25
Step 2: Factor the denominator g(x) into irreducible polynomials

g(x) = x2 +3x+2 = (x+1)(x+2).

Step 3: Find the partial fraction decomposition.

q(x) = (2x−10)+
11x+25

x2 +3x+2
= (2x−10)+

A
x+1

+
B

x+2
= (2x−10)+

Ax+2A+Bx+B
(x+1)(x+2)

.

We need to find the constants A and B.
Coefficients of the numerators:

A+B = 11→ 1

2A+B = 25→ 2

By doing some calculation, we have A = 14 and B =−3.

Illustration

−2× 1 + 2

−2A−2B =−22

2A+B = 25

−−−−−−−−−
−B = 3

Step 4: Integrate the result of step 3. ∫
q(x) dx =

∫
(2x−10) dx+

∫ 14
x+1

dx+
∫ −3

x+2
dx

= x2−10x+14ln | x+1 | −3ln | x+2 |+c.

Remark 5.2
1. The number of constants A,B,C,etc. is equal to the degree of the denominator g(x). Therefore, in the case of repeated

factors of the denominator, we have to check the number of the constants and the degree of g(x).

2. If the denominator g(x) contains irreducible quadratic factors, the numerators of the partial fractions should be
polynomials of degree one (see step 3 on page 92).

Example 5.14 Evaluate the integral
∫ 2x2−25x−33

(x+1)2(x−5)
dx.

Solution:
Steps 1 and 2 can be skipped in this example.
Step 3: Find the partial fraction decomposition.
Since the denominator g(x) has repeated factors, then

2x2−25x−33
(x+1)2(x−5)

=
A

x+1
+

B
(x+1)2 +

C
x−5

=
A(x2−4x−5)+B(x−5)+C(x2 +2x+1)

(x+1)2(x−5)
.

Coefficients of the numerators:

A+C = 2→ 1

−4A+B+2C =−25→ 2

−5A−5B+C =−33→ 3

Illustration

5× 2 + 3 =

−25A+11C =−158→ 4

25× 1 + 4 =

36C =−108⇒C =−3
By solving the system of equations, we have A = 5, B = 1 and C =−3.
Step 4: Integrate the result of step 3.
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∫ 2x2−25x−33
(x+1)2(x−5)

dx =
∫ 5

x+1
dx+

∫ 1
(x+1)2 dx+

∫ −3
x−5

dx

= 5ln | x+1 |+
∫
(x+1)−2 dx−3ln | x−5 |

= 5ln | x+1 | − 1
(x+1)

−3ln | x−5 |+c.

Example 5.15 Evaluate the integral
∫ x+1

x(x2 +1)
dx.

Solution:
Steps 1 and 2 can be skipped in this example.
Step 3: Find the partial fraction decomposition.

x+1
x(x2 +1)

=
A
x
+

Bx+C
x2 +1

=
Ax2 +A+Bx2 +Cx

x(x2 +1)
.

Coefficients of the numerators:

A+B = 0→ 1

C = 1→ 2

A = 1→ 3

We have A = 1, B =−1 and C = 1.
Step 4: Integrate the result of step 3.

∫ x+1
x(x2 +1)

dx =
∫ 1

x
dx+

∫ −x+1
x2 +1

dx

= ln | x | −
∫ x

x2 +1
dx+

∫ 1
x2 +1

dx

= ln | x | −1
2

ln(x2 +1)+ tan−1 x+ c.
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Exercise 5.4
1 - 20 Evaluate the integral.

1
∫ 1

x(x−1)
dx

2
∫ 2

0

1
x2 +4x+3

dx

3
∫ 1

x2−4
dx

4
∫ 1

x2− x−2
dx

5
∫ x+1

x2 +8x+12
dx

6
∫ x

x2 +7x+12
dx

7
∫ 5

1

x2−1
x2 +3x−4

dx

8
∫ x3

x2−25
dx

9
∫ x

x2 +7x+6
dx

10
∫ 1

x2 +3x+9
dx

11
∫ 1

(x−1)(x2 +1)
dx

12
∫ x+2

(x+1)(x2−4)
dx

13
∫ x3 +2x+1

x2−3x−10
dx

14
∫ 1

x2 +1
dx

15
∫ 3x2 +3x−1

x3 + x2− x
dx

16
∫

π/2

0

sin x
cos2 x− cos x−2

dx

17
∫ 2− x

x3 + x2 dx

18
∫ 1

0

1
1+ ex dx

19
∫ ex

e2x−2ex−15
dx

20
∫ 1

x4− x2 dx
�

5.5 Integrals Involving Quadratic Forms

In this section, we provide a new technique for integrals that contain irreducible quadratic expressions ax2 +bx+ c where b 6= 0. This
technique is completing square method: a2±2ab+b2 = (a±b)2. Before presenting this method, we explain the word irreducible and
show the reader how to complete the square.

Notes:
If a quadratic polynomial has real roots, it is called reducible; otherwise it is called irreducible.

For the expression ax2 +bx+ c, if b2−4ac < 0, then the quadratic expression is irreducible.
To complete the square, we need to find

( b
2a
)2, then add and subtract it.

Example 5.16 For the quadratic expression x2− 6x+ 13, we have a = 1,b = −6 and c = 13. Since b2− 4ac = −16 < 0, then the
quadratic expression is irreducible. To complete the square, we find ( b

2a )
2 = 9, then we add and substrate it as follows:

x2−6x+13 = x2−6x+9︸ ︷︷ ︸
=(x−3)2

−9+13︸ ︷︷ ︸
=4

Hence, x2−6x+13 = (x−3)2 +4.

In the following, we use the previous idea to evaluate some integrals.

Example 5.17 Evaluate the integral
∫ 1

x2−6x+13
dx.

Solution:
The quadratic expression x2−6x+13 is irreducible. By completing the square, we have from the previous example∫ 1

x2−6x+13
dx =

∫ 1
(x−3)2 +4

dx.



96

Let u = x−3, then du = dx. By substitution,∫ 1
u2 +4

du =
1
2

tan−1 u
2
+ c =

1
2

tan−1 (x−3
2
)
+ c.

Example 5.18 Evaluate the integral
∫ x

x2−4x+8
dx.

Solution:
For the quadratic expression x2− 4x+ 8, we have b2− 4ac < 0. Therefore, the quadratic expression x2− 4x+ 8 is irreducible. By
completing the square, we obtain

x2−4x+8 = (x2−4x+4)+8−4

= (x−2)2 +4.

Hence ∫ x
x2−4x+8

dx =
∫ x

(x−2)2 +4
dx.

Let u = x−2, then du = dx. By substitution,∫ u+2
u2 +4

du =
∫ u

u2 +4
du+

∫ 2
u2 +4

du

=
1
2

ln | u2 +4 |+ tan−1 u
2

=
1
2

ln
(
(x−2)2 +4

)
+ tan−1 (x−2

2
)
+ c

=
1
2

ln
(
x2−4x+8

)
+ tan−1 (x−2

2
)
+ c.

Example 5.19 Evaluate the integral
∫ 1√

2x− x2
dx.

Solution:
By completing the square, we have 2x− x2 =−(x2−2x) =−(x2−2x+1−1) = 1− (x−1)2. Hence∫ 1√

2x− x2
dx =

∫ 1√
1− (x−1)2

dx.

Let u = x−1, then du = dx. By substitution, the integral becomes∫ 1√
1−u2

du = sin−1 u+ c = sin−1 (x−1)+ c.

Example 5.20 Evaluate the integral
∫ √

x2 +2x−1 dx.

Solution:
By completing the square, we have x2 +2x−1 = (x2 +2x+1)−1−1 = (x+1)2−2. Hence,∫ √

x2 +2x−1 dx =
∫ √

(x+1)2−2 dx.

Let u = x+1, then du = dx. The integral becomes
∫ √

u2−2 du.

Use the trigonometric substitutions, in particular let

u =
√

2 sec θ⇒ du =
√

2 sec θ tan θ dθ

where θ ∈ [0,π/2)∪ [π,3π/2). By substitution, we have

2
∫

tan2
θ sec θ dθ = 2

∫
(sec3

θ− sec θ) dθ.
√

2

√
u2−2

u

θ

From Example 5.8, we have

2
∫
(sec3

θ− sec θ) dθ = sec θ tan θ− ln
∣∣sec θ+ tan θ

∣∣+ c.
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By returning to the variable u and then to x,

∫ √
u2−2 du =

u
√

u2−2
2

− ln
∣∣∣u+√u2−2√

2

∣∣∣+ c =
(x+1)

√
(x+1)2−2
2

− ln
∣∣∣x+1+

√
(x+1)2−2√

2

∣∣∣+ c.

Exercise 5.5
1 - 12 Evaluate the integral.

1
∫ 1

0

1
x2 +4x+5

dx

2
∫ 1

x2−6x+1
dx

3
∫ 2x+3

x2 +2x−3
dx

4
∫ x2−2x+5

2x− x2 dx

5
∫ 0

−1

1√
8+2x− x2

dx

6
∫ 1

x2 +8x−9
dx

7
∫ 5√

1−4x− x2
dx

8
∫ ex

e2x +2ex−1
dx

9
∫ 1√

6−6x−2x2
dx

10
∫ √

x(2− x) dx

11
∫ sec2 x

tan2 x−6tan x+12
dx

12
∫ √

8−2x− x2 dx
�

5.6 Miscellaneous Substitutions

In this section, we study three more important substitutions used in some cases. The first substitution is applied for integrals consisting
of rational expressions in sin x and cos x. The second and third substitutions are applied to integrals of fractional powers.

5.6.1 Fractional Functions in sin x and cos x

The integrals that consist of rational expressions in sin x and cos x are treated by using the substitution u = tan (x/2), −π < x < π. This

implies that du =
sec2 (x/2)

2 dx and since sec2 x = tan2 x+1, then du = u2+1
2 dx. Also,

sin x = sin 2(
x
2
) = 2 sin

x
2

cos
x
2
= 2

sin x
2

cos x
2

cos
x
2

cos
x
2

= 2tan
x
2

cos2 x
2

=
2tan x

2
sec2 x

2

=
2u

u2 +1
.

(multiply and divide by cos x
2 )

(cos x = 1
sec x )

For cos x, we have

cos x = cos 2(
x
2
) = cos2 x

2
− sin2 x

2

We can find that

cos
x
2
=

1√
u2 +1

and sin
x
2
=

u√
u2 +1

.
(use the identities sec2 x

2 = tan2 x
2 + 1 and

cos2 x
2 + sin2 x

2 = 1)
This implies

cos x =
1−u2

1+u2 .

The previous discussion can be summarized in the following theorem:
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Theorem 5.2 For an integral that contains a rational expression in sinx and cosx, we assume

sin x =
2u

1+u2 , and cos x =
1−u2

1+u2 .

to produce a rational expression in u where u = tan (x/2), and du = 1+u2

2 dx.

Example 5.21 Evaluate the integral.

(1)
∫ 1

1+ sin x
dx

(2)
∫ 1

2+ cos x
dx

(3)
∫ 1

1+ sin x+ cos x
dx

Solution:
(1) Let u = tan x

2 , then du = 1+u2

2 dx and sinx = 2u
1+u2 . By substituting that into the integral, we have

∫ 1
1+ 2u

1+u2

.
2

1+u2 du = 2
∫ 1

u2 +2u+1
du

= 2
∫
(u+1)−2 du

=
−2

u+1
+ c

=
−2

tan x/2+1
+ c.

(2) Let u = tan x
2 , then du = 1+u2

2 dx and cos x = 1−u2

1+u2 . By substitution, we have

∫ 1

2+ 1−u2

1+u2

.
2

1+u2 du = 2
∫ 1

u2 +3
du

=
2√
3

tan−1 u√
3
+ c

=
2√
3

tan−1 ( tan x/2√
3

)
+ c.

(3) Let u = tan x
2 , this implies du = 1+u2

2 dx, sin x = 2u
1+u2 and cos x = 1−u2

1+u2 . By substitution, we have

∫ 1

1+ 2u
1+u2 +

1−u2

1+u2

.
2

1+u2 du =
∫ 2

2+2u
du

=
∫ 1

1+u
du

= ln | 1+u |+c

= ln
∣∣∣1+ tan

x
2

∣∣∣+ c.

5.6.2 Integrals of Fractional Powers

In the case of an integrand that consists of fractional powers, it is better to use the substitution u = x
1
n where n is the least common

multiple of the denominators of the powers. In the following, we provide an example.

Example 5.22 Evaluate the integral
∫ 1√

x+ 4
√

x
dx.
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Solution:
Let u = x

1
4 , we find x = u4 and dx = 4u3du. Therefore, x

1
2 = (x

1
4 )2 = u2.

By substitution, we have ∫ 1
u2 +u

4u3 du = 4
∫ u2

u+1
du

= 4
∫
(u−1) du+4

∫ 1
1+u

du

= 2u2−4u+4ln | u+1 |+c

= 2
√

x−4 4
√

x+4ln | 4
√

x+1 |+c.

5.6.3 Integrals of Form n
√

f (x)

If the integrand is of from n
√

f (x), it is useful to assume u = n
√

f (x). This case differs from that given in the substitution method in
Chapter 1 i.e., n

√
f (x) f ′(x) and the difference lies on the existence of the derivative of f (x).

Example 5.23 Evaluate the integral
∫ √

ex +1 dx.

Solution:
Let u =

√
ex +1, we obtain du = ex

2
√

ex+1
dx and u2 = ex +1. By substitution, we have

∫ 2u2

u2−1
du =

∫
2 du+2

∫ 1
u2−1

du

= 2u+
∫ 1

u−1
du+

∫ 1
u+1

du

= 2u+ ln | u−1 | − ln | u+1 |+c

= 2
√

ex +1+ ln(
√

ex +1−1)− ln(
√

ex +1+1)+ c.

Exercise 5.6
1 - 12 Evaluate the integral.

1
∫ 1√

x+ 4
√

x
dx

2
∫ x1/2

1+ x3/5
dx

3
∫ 1√

cos x+1
dx

4
∫ √

x√
x+4

dx

5
∫ 1

1+3sin x
dx

6
∫ 1

3− cos x
dx

7
∫ 1√

x+ 3
√

x
dx

8
∫ x1/2

1+ x1/4
dx

9
∫ 1√

e2x +1
dx

10
∫ 1

x1/2− x3/5
dx

11
∫ 1

1−2cos x
dx

12
∫ 1

sin x+ cos x
dx

�
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Review Exercises
1 - 46 Evaluate the integral.

1
∫

x e2x dx

2
∫

x ex2
dx

3
∫

x sin x dx

4
∫

x cos 4x dx

5
∫ √

x lnx dx

6
∫

cos−1 x dx

7
∫

x sec2 x dx

8
∫

x e−4x dx

9
∫ 2

1

x√
x2 +1

dx

10
∫
(lnx)3 dx

11
∫

sin2 x cos5 x dx

12
∫

sin4 x cos4 x dx

13
∫

tan x sec3 x dx

14
∫

tan3 x sec3 x dx

15
∫

cot2 x csc3 x dx

16
∫

cot4 x csc4 x dx

17
∫

sin 3x sin x dx

18
∫

cos 7x sin 3x dx

19
∫

cos 4x cos 2x dx

20
∫ √

25− x2 dx

21
∫ 1√

25− x2
dx

22
∫ √x2−16

x
dx

23
∫ x

(16− x2)2 dx

24
∫ x3

(3+ x2)
5
2

dx

25
∫ 3

0
x2
√

9− x2 dx

26
∫ 1

x2−2x
dx

27
∫ x

x2−4x+8
dx

28
∫ 3x+1

x2−6x+13
dx

29
∫ 1

x2 +3x−4
dx

30
∫ 1

x3 + x2− x
dx

31
∫ 2x−1

x2 + x−2
dx

32
∫ 7

3

x2

x2− x−2
dx

33
∫ 3x2−10

x2−4x+4
dx

34
∫ x2−9

x−1
dx

35
∫ 2x4−3x3−10x2 +2x+11

x3− x2−5x−3
dx

36
∫ 1

1+ ex dx

37
∫ x2

(x−3)(x+2)2 dx

38
∫ x+1

(x2 + x+2)2 dx

39
∫ 2x3−18x2 +29x−4

(x+1)(x−2)3 dx

40
∫ x5
√

x3 +1
dx

41
∫ 1

x
√

x3−1
dx

42
∫ √

x√
x+1

dx

43
∫ 1

3+ cos x
dx

44
∫ 1

1− sin x
dx

45
∫ sec x

4−3tan x
dx

46
∫ π

2

π

3

1
1+ sin x− cos x

dx

47 - 72 Choose the correct answer.
47 The partial fraction decomposition of 1

x4−1 takes the form
(a) A

x−1 +
B

x+1 +
C

x2+1 (b) A
x2−1 +

Bx+C
x2+1 (c) A

x−1 +
B

x+1 +
Cx+D
x2+1 (d) None of these

48 The integral
∫ 1√

x2 +2x+5
dx is equal to

(a) sinh−1 ( x+1
4 )+ c (b) sinh−1 ( x+1

2 )+ c (c) 1
2 sinh−1 ( x+1

4 )+ c (d) None of these
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49 The integral
∫

x sin 2x dx is equal to

(a) x2

2 cos 2x+ c
(c) − x

2 cos 2x+ 1
4 sin 2x+ c

(b) x
2 cos 2x− 1

2 sin 2x+ c
(d) None of these

50 The integral
∫ √

1+
√

x dx is equal to

(a) 4
5 (1+

√
x)

5
2 − 4

3 (1+
√

x)
3
2 + c

(c) 4
3 (1+

√
x)

3
2 + c

(b) 4
5 (1+

√
x)

5
2 + c

(d) None of these

51 To evaluate the integral
∫ 1

3
√

x−
√

x
dx

(a) u =
√

x (b) u = 4
√

x (c) x = 6
√

u (d) u = 6
√

x

52 The integral
∫ 2

x2−4x+3
dx is equal to

(a) ln(x2−4x+3)+ c (b) ln | x+1
x+3 |+c (c) ln | x−3

x−1 |+c (d) ln | x−1
x−3 |+c

53 The integral
∫ 1

1+ ex dx is equal to

(a) x− ln(x+1)+ c
(c) x2

2 − ln(ex +1)+ c
(b) x− ln(ex +1)+ c
(d) ln( x2

2 )− ln(x+1)+ c

54 The integral
∫ 1√

4x− x2
dx is equal to

(a) sinh−1 ( x−2
2 )+ c (b) sin−1 ( x−2

2 )+ c (c) 1
2 sin−1 ( x−2

2 )+ c (d) sin−1 ( x+2
2 )+ c

55 The integral
∫ 1√

x2 +2x+2
dx is equal to

(a) sinh−1 (x+1)+ c (b) sinh−1 ( x+1
2 )+ c (c) 1

2 sinh−1 ( x+1
2 )+ c (d) None of these

56 If
∫ x

1
2

6(x
1
3 −1)

dx =
∫ u8

u2−1
du, then

(a) x = u2 (b) x = u3 (c) x = u6 (d) x = u8

57 The substitution used to evaluate the integral
∫

tan5 x sec5 x dx is

(a) u = tan2 x (b) u = tan x (c) u = sec x (d) u = sin x

58 To evaluate the integral
∫ √

x
1+ 3
√

x
dx, we use the substitution

(a) u =
√

x (b) u = 4
√

x (c) x = 6
√

u (d) u = 6
√

x

59 To evaluate the integral
∫ √x2−25

x
dx, we use the substitution

(a) x = 5sec θ (b) x = 25sec θ (c) x = 5tan θ (d) x = 25tan θ

60 The value of the integral
∫ π

3

0
sec2 x dx is equal to

(a) π2

18 (b)
√

3 (c) 3
2 (d) −π2

18

61 To evaluate the integral
∫

x3
√

2x2 +8 dx, we use the substitution

(a) x = 2sec θ (b) x = 2
√

2tan θ (c) x = 2
√

2sec θ (d) x = 2tan θ
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62 To evaluate the integral
∫ 1

x
2
3 + x

4
3

dx, we use the substitution

(a) x = u2 (b) x = u3 (c) x = u4 (d) x = u
2
3

63 To evaluate the integral
∫ 1

x2
√

x2 +4
dx, we use the substitution

(a) x = 2tan θ (b) θ = 2tan x (c) x = 2sec θ (d) x = 2sin θ

64 The value of the integral
∫

x sin x dx is equal to

(a) sin x+ xcos x+ c
(b) −sin x+ xcos x+ c

(c) sin x− xcos x+ c
(d) −sin x− xcos x+ c

65 The value of the integral
∫ 1

x2 +2x+5
dx is equal to

(a) 1
2 tan−1 ( x+1

2 )+ c
(b) tanh−1 ( x+1

2 )+ c
(c) tan−1 ( x+1

2 )+ c
(d) 1

2 tanh−1 ( x+1
2 )+ c

66 The value of the integral
∫ π

2

0
sin4 x cos x dx is equal to

(a) 1
2 (b) 1

5 (c) ( π

2 )
5 (d) 1

5 (
π

2 )
5

67 The value of the integral
∫ 1√

x2−8x+25
dx is equal to

(a) sinh−1 ( x−4
3 )+ c

(b) sinh−1 (x−4)+ c
(c) sin−1 ( x−4

3 )+ c
(d) 1

3 sinh−1 ( x−4
3 )+ c

68 The value of the integral
∫ sinh x

9+ cosh2 x
dx is equal to

(a) tan( cosh x
3 )+ c

(b) ln(9+ cosh2 x)+ c
(c) 1

3 tan−1 ( cosh x
3 )+ c

(d) tan−1 ( cosh x
3 )+ c

69 The value of the integral
∫

sin5 x cos3 x dx is equal to

(a) 1
6 sin6 x− 1

8 sin8 x+ c
(b) 1

5 sin5 x− 1
3 sin3 x+ c

(c) 1
3 sin5 x− 1

2 sin2 x+ c
(d) 1

3 sin5 x− 1
8 sin8 x+ c

70 The value of the integral
∫ π

2

0
cos5 x sin x dx is equal to

(a) 0 (b) 1
3 (c) 3 (d) 1

6

71 The value of the integral
∫

tan3 x sec x dx is equal to

(a) 1
3 sec3 x+ sec x+ c

(b) − 1
3 sec3 x− sec x+ c

(c) − 1
3 sec3 x+ sec x+ c

(d) 1
3 sec3 x− sec x+ c

72 The value of the integral
∫ x−2

x
√

x2−25
dx is equal to

(a) cosh−1 x
5 −2sec−1 x

5 + c
(b) cosh−1 x

5 −
2
5 sec−1 x+ c

(c) cosh−1 x
5 −

2
5 sec−1 x

5 + c
(d) cosh−1 x

5 +2sec−1 x
5 + c
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Chapter 6

Indeterminate Forms and Improper
Integrals

6.1 Indeterminate Forms

In the beginning of this section, we define the limit of functions and list the rules of the limits.

Definition 6.1 Let f be a defined function on an open interval I and c ∈ I where f may not be defined at c. Then,

lim
x→c

f (x) = L, L ∈ R

means for every ε > 0, there is δ > 0 such that if 0 < |x− c|< δ, then | f (x)−L|< ε.

The following theorem presents the general rules of the limits.

Theorem 6.1 If lim
x−→c

f (x) and lim
x−→c

g(x) both exist, then

(1) Sum Rule: lim
x−→c

(
f (x)+g(x)

)
= lim

x−→c
f (x)+ lim

x−→c
g(x).

(2) Difference Rule: lim
x−→c

(
f (x)−g(x)

)
= lim

x−→c
f (x)− lim

x−→c
g(x).

(3) Product Rule: lim
x−→c

(
f (x).g(x)

)
= lim

x−→c
f (x)× lim

x−→c
g(x).

(4) Constant Multiple Rule: lim
x−→c

(
k f (x)

)
= k lim

x−→c
f (x).

(5) Quotient Rule: lim
x−→c

( f (x)
g(x)

)
=

lim
x−→c

f (x)

lim
x−→c

g(x) .

(6) Power Rule: lim
x−→c

(
f (x)

)m/n
=
(

lim
x−→c

f (x)
)m/n.

Example 6.1 Find each limit if it exists.
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(1) lim
x→1

x

(2) lim
x→8

√
x

(3) lim
x→0

(x2−2x+1)

(4) lim
x→π

sin x cos x

(5) lim
x→3+

1
(x−3)

(6) lim
x→1

x
(x2+1)

Solution:

(1) lim
x→1

x = 1

(2) lim
x→8

√
x = 2

√
2

(3) lim
x→0

(x2−2x+1) = lim
x→0

x2−2 lim
x→0

x+ lim
x→0

1 = 1.

(4) lim
x→π

sin x cos x = lim
x→π

sin x lim
x→π

cos x = 0

(5) lim
x→3+

1
(x−3) =

limx→3+ 1
limx→3+ (x−3) = ∞

(6) lim
x→1

x
(x2+1) =

limx→1 x
limx→1(x2+1) =

1
2

In the following, we examine several situations where a function is built up from other functions, but the limits of these functions are not
sufficient to determine the overall limit. These situations are called indeterminate forms. The following example shows these forms
without finding the final result.

Example 6.2
(1) lim

x→0
sin x

x = 0
0

(2) lim
x→∞

ex

x = ∞

∞

(3) lim
x→0+

x2 lnx = 0.∞

(4) lim
x→1+

( 1
x−1 −

1
lnx
)
= ∞−∞

In the following table, we categorize the indeterminate forms:

Case Indeterminate Form

Quotient 0
0 and ∞

∞

Product 0.∞ and 0.(−∞)

Sum & Difference (−∞)+∞ and ∞−∞

Exponent 00, 1∞, 1−∞ and ∞0

Table 6.2: List of the indeterminate forms.

The following theorem examines the indeterminate forms 0
0 and ∞

∞
.

Theorem 6.2 Suppose f and g are differentiable on an interval I and c ∈ I where f and g may not be differentiable at c. If f (x)
g(x)

has the form 0
0 or ∞

∞
at x = c and g′(x) 6= 0 for x 6= c, then

lim
x→c

f (x)
g(x)

= lim
x→c

f
′
(x)

g′(x)

if lim
x→c

f
′
(x)

g′ (x)
exists or equals to ∞.

Proof. The theorem is proved for the indeterminate form 0
0 at x = c. Assume lim

x→c
f
′
(x)

g′ (x)
= L ∈ R and we want to prove that lim

x→c
f (x)
g(x) = L.

Define two functions F and G on the interval I as follows:

F(x) =
{

f (x) : x 6= c
0 : x = c

and g(x) =
{

g(x) : x 6= c
0 : x = c

Since lim
x→c

F(x) = lim
x→c

f (x) = 0 and lim
x→c

G(x) = lim
x→c

g(x) = 0, then F and G are continuous on the interval I. Also, we have F ′(x) = f ′(x)
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and G′(x) = g′(x) for x 6= c. From Cauchy’s formula for the two functions F and G on the interval between x and c,1 there exists a
number z belong to the open interval between c and x such that

F ′(z)
G′(z)

=
F ′(x)−F(c)
G′(z)−G(c)

=
F(x)
G(x)

.

Since z→ c when x→ c, then

lim
x→c

f (x)
g(x)

= lim
x→c

F(x)
G(x)

= lim
z→c

F ′(z)
G′(z)

= lim
z→c

f ′(z)
g′(z)

= L. �

Remark 6.1
1. L’Hôpital’s rule works if c =±∞ or when x→ c+ or x→ c−.

2. When applying L’Hôpital’s rule, we should calculate the derivatives of f (x) and g(x) separately.

3. Sometimes, we need to apply L’Hôpital’s rule twice.

Example 6.3 Use L’Hôpital’s rule to find each limit if it exists.
(1) lim

x→5

√
x−1−2
x2−25

(2) lim
x→0

sin x
x

(3) lim
x→∞

lnx√
x

(4) lim
x→∞

ex

x

Solution:
(1) Since lim

x→5

√
x−1−2 = 0 and lim

x→5
x2−2 = 0, we have the indeterminate form 0

0 . By applying L’Hôpital’s rule, we have

lim
x→5

√
x−1−2
x2−25

= lim
x→5

1
4x
√

x−1
=

1
40

.

(2) The quotient has the indeterminate form 0
0 . We apply L’Hôpital’s rule to have

lim
x→0

sin x
x

= lim
x→0

cos x
1

= 1.

(3) The indeterminate form is ∞

∞
. Apply L’Hôpital’s rule to obtain

lim
x→∞

lnx√
x
= lim

x→∞

2√
x
= 0.

(4) The indeterminate form is ∞

∞
. By applying L’Hôpital’s rule, we have

lim
x→∞

ex

x
= lim

x→∞

ex

1
= ∞.

Before considering examples of other indeterminate forms, we provide techniques to find the limits.

Techniques for finding the limits of other indeterminate forms:

Indeterminate form 0.∞.
1. Write f (x) g(x) as f (x)

1/g(x) or g(x)
1/ f (x) .

2. Apply L’Hôpital’s rule to the resulting indeterminate form 0
0 or ∞

∞
.

Indeterminate form ∞−∞.
1. Write the form as a quotient or product.

1Let f and g be continuous on [a,b] and differentiable on (a,b). If g′(x) 6= 0 for every x in (a,b), then exists number z∈ (a,b) such that f (b)− f (a)
g(b)−g(a) =

f ′(z)
g′(z) .
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2. Apply L’Hôpital’s rule to the resulting indeterminate form 0
0 or ∞

∞
.

Indeterminate forms 00, 1∞, 1−∞ or ∞0.
1. Let y = f (x)g(x)

2. Take the natural logarithm lny = ln f (x)g(x) = g(x) ln f (x).

3. Apply L’Hôpital’s rule to the resulting indeterminate form 0
0 or ∞

∞
.

Example 6.4 Find each limit if it exists.
(1) lim

x→0+
x2 lnx

(2) lim
x→ π

4

(1− tan x) sec 2x

(3) lim
x→1+

( 1
x−1 −

1
lnx
)

(4) lim
x→0

(1+ x)
1
x

Solution:
(1) The indeterminate form is 0.(−∞), so we cannot apply L’Hôpital’s rule. We need to rearrange the expression in a way that enables

us to apply L’Hôpital’s rule. By using the previous techniques, we obtain

x2 lnx =
lnx

1
x2

.

The limit of the new expression is of the form ∞

∞
. Therefore, we can apply L’Hôpital’s rule:

lim
x→0+

lnx
1
x2

= lim
x→0+

x2

−2
= 0.

Hence, lim
x→0+

x2 lnx = 0.

(2) The indeterminate form is 0.∞, so we try to rewrite the function to apply L’Hôpital’s rule. We know that sec x = 1/cos x, thus

(1− tan x)sec 2x =
(1− tan x)

cos 2x
.

Now, the limit of the new expression is of the form 0
0 . From L’Hôpital’s rule, we have

lim
x→ π

4

(1− tan x)
cos 2x

= lim
x→ π

4

sec2 x
2sin 2x

(L’Hôpital’s rule)

=
(
√

2)2

2
= 1.

Hence, lim
x→ π

4

(1− tan x) sec 2x = 1.

(3) The indeterminate form is ∞−∞. To treat this form, we write the function as a single fraction

1
x−1

− 1
lnx

=
lnx− x+1
(x−1) lnx

.

The new expression takes the indeterminate form 0
0 . From L’Hôpital’s rule,

lim
x→1+

lnx− x+1
(x−1) lnx

= lim
x→1+

1− x
x lnx+ x−1

.

We have the indeterminate form 0
0 . We apply L’Hôpital’s rule again to have

lim
x→1+

1− x
x lnx+ x−1

= lim
x→1+

−1
lnx+2

=
−1
2

.

Hence, lim
x→1+

( 1
x−1 −

1
lnx
)
=− 1

2 .
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(4) The limit is of the form 1∞. To treat this form, let y = (1+ x)
1
x . By taking the natural logarithm of both sides, we have

lny =
1
x

ln(1+ x)

⇒ lim
x→0

lny = lim
x→0

1
x

ln(1+ x)

= lim
x→0

ln(1+ x)
x

.

The indeterminate form is 0
0 . By applying L’Hôpital’s rule, we obtain

lim
x→0

ln(1+ x)
x

= lim
x→0

1
1+x
1

= 1.

Hence,

lim
x→0

lny = 1⇒ elimx→0 lny = e1 (take the natural exponential function of both sides)

⇒ lim
x→0

e(lny) = e

⇒ lim
x→0

y = e

⇒ lim
x→0

(1+ x)
1
x = e.

Exercise 6.1
1 - 14 Find the limit if it exists.

1 lim
x→2

x2−4x+4
x−2

2 lim
x→3

x2−9
x−3

3 lim
x→π+

cos x + sin x
tan x

4 lim
x→0

1−ex

x

5 lim
x→π/2+

tan x

6 lim
x→0−

ex−1
x2

7 lim
x→0

(ex + x)
1
x

8 lim
x→∞

x+2
x−2

9 lim
x→0+

ex−ln(ex)
lnx

10 lim
x→π/2

1−sin x
cos x

11 lim
x→1

lnx
tan πx

12 lim
x→0

tan x
x

13 lim
x→∞

ln(lnx)√
x

14 lim
x→0

( 1
x2 )

x

�

6.2 Improper Integrals

In this section, we deal with integrals over infinite intervals or with integrals that involve discontinuous integrands. In such cases, the
integrals are called improper.

Definition 6.2 The integral
∫ b

a
f (x) dx is called a proper integral if

1. the interval [a,b] is finite and closed, and

2. f (x) is defined on [a,b].

If condition 1 or 2 is not satisfied, the integral is improper. In the following, we discuss the improper integrals.
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6.2.1 Infinite Intervals

In this section, we study integrals of forms
∫

∞

a
f (x) dx,

∫ b

−∞

f (x) dx,
∫ −∞

∞

f (x) dx where f is a continuous function.

Definition 6.3
1. Let f be a continuous function on [a,∞). The improper integral

∫
∞

a
f (x) dx is defined as follows:

∫
∞

a
f (x) dx = lim

t→∞

∫ t

a
f (x) dx if the limit exists.

2. Let f be a continuous function on (−∞,b]. The improper integral
∫ b

−∞

f (x) dx is defined as follows:

∫ b

−∞

f (x) dx = lim
t→−∞

∫ b

t
f (x) dx if the limit exists.

The previous integrals are convergent (or to converge) if the limit exists as a finite number. However, if the limit does not
exist or equals ±∞, the integral is called divergent (or to diverge).

3. Let f be a continuous function on R and a ∈ R. The improper integral
∫

∞

−∞

f (x) dx is defined as follows:

∫
∞

−∞

f (x) dx =
∫ a

−∞

f (x) dx+
∫

∞

a
f (x) dx.

The integral is convergent if both integrals on the right side are convergent; otherwise the integral is divergent.

Note:
1. If an improper integral is convergent, the value of the integral is the value of the limit.
2. If both integrals in item 3 converge, then the value of the improper integral is the sum of values of the two integrals.

Example 6.5 Determine whether the integral converges or diverges.

(1)
∫

∞

0

1
(x+2)2 dx (2)

∫
∞

0

x
1+ x2 dx (3)

∫
∞

−∞

1
1+ x2 dx

Solution:
(1)

∫
∞

0

1
(x+2)2 dx = lim

t→∞

∫ t

0

1
(x+2)2 dx.

The integral ∫ t

0

1
(x+2)2 dx =

∫ t

0
(x+2)−2 dx =

[ −1
x+2

]t

0
=−

( 1
t +2

− 1
2
)
.

Thus,

lim
t→∞

∫ t

0

1
(x+2)2 dx =− lim

t→∞

( 1
t +2

− 1
2
)
=−(0− 1

2
) =

1
2
.

This implies that the integral converges and has the value 1
2 .

(2)
∫

∞

0

x
1+ x2 dx = lim

t→∞

∫ t

0

x
1+ x2 dx.

The integral ∫ t

0

x
1+ x2 dx =

1
2

[
ln(1+ x2)

]t

0
=

1
2

ln(1+ t2)− 1
2

ln(1) =
1
2

ln(1+ t2).

Thus,

lim
t→∞

∫ t

0

x
1+ x2 dx =

1
2

lim
t→∞

ln(1+ t2) = ∞.

The improper integral diverges.

(3)
∫

∞

−∞

1
1+ x2 dx = lim

t→−∞

∫ 0

t

1
1+ x2 dx+ lim

t→∞

∫ t

0

1
1+ x2 dx.
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We know that
∫ 1

1+ x2 dx = tan−1 x+ c, so

lim
t→−∞

∫ 0

t

1
1+ x2 dx+ lim

t→∞

∫ t

0

1
1+ x2 = lim

t→−∞

[
0− tan−1(t)

]
+ lim

t→∞

[
tan−1 t−0

]
=− lim

t→−∞
tan−1 t + lim

t→∞
tan−1 t

=−(−π

2
)+

π

2
= π.

The integral is convergent and has the value π.

6.2.2 Discontinuous Integrands

Definition 6.4
1. If f is continuous on [a,b) and has an infinite discontinuity at b i.e., lim

x→b−
f (x) =±∞, then

∫ b

a
f (x) dx = lim

t→b−

∫ t

a
f (x) dx if the limit exists.

2. If f is continuous on (a,b] and has an infinite discontinuity at a i.e., lim
x→a+

f (x) =±∞, then

∫ b

a
f (x) dx = lim

t→a+

∫ a

t
f (x) dx if the limit exists.

In items 1 and 2, the integral is convergent if the limit exists as a finite number; otherwise the integral is divergent.

3. If f is continuous on [a,b] except at c ∈ (a,b) such that lim
x→c±

f (x) =±∞, the improper integral
∫ b

a
f (x) dx is defined as

follows: ∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx.

The integral is convergent if both integrals on the right side are convergent; otherwise the integral is divergent.

Example 6.6 Determine whether the integral converges or diverges.

(1)
∫ 4

0

1

(4− x)
3
2

dx (2)
∫ π

4

0

cosx√
sinx

dx (3)
∫ 1

−3

1
x2 dx

Solution:
(1) Since lim

x→4−
1

(4−x)
3
2
= ∞ and the integrand is continuous on [0,4), then from Definition 6.4,

∫ 4

0

1

(4− x)
3
2

dx = lim
t→4−

∫ t

0
(4− x)−

3
2 dx

= lim
t→4−

[ 2√
4− x

]t

0

= lim
t→4−

( 2√
4− t

−1
)

= ∞.

Illustration

∫
(4− x)−3/2 dx =−

∫
−(4− x)−3/2 dx

= 2(4− x)−1/2 + c

=
2√

4− x
+ c

Thus, the integral diverges.

(2) The limit lim
x→0+

cos x√
sin x

= ∞ and the integrand is continuous on (0, π

4 ], thus
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∫ π

4

0

cos x√
sin x

dx = lim
t→0+

∫ π

4

t

cos x√
sin x

dx

= 2 lim
t→0+

[√
sin x

] π

4

t

= 2 lim
t→0+

( 1
4
√

2
−
√

sin t
)

=
2
4
√

2
.

Illustration

∫ cos x√
sin x

dx =
∫

cos x sin−1/2 x dx

= 2sin1/2 x+ c

The integral converges and has the value 2
4√2

.

(3) Since lim
x→0−

1
x2 = lim

x→0+
1
x2 = ∞ and the integrand is continuous on [−3,0)∪ (0,1], then

∫ 1

−3

1
x2 dx =

∫ 0

−3

1
x2 dx+

∫ 1

0

1
x2 dx

= lim
t→0−

∫ t

−3

1
x2 + lim

t→0+

∫ 1

t

1
x2

=− lim
t→0−

[ 1
x

]t

−3
− lim

t→0+

[ 1
x

]1

t

=− lim
t→0−

[1
t
+

1
3

]
− lim

t→0+

[
1− 1

t

]
= ∞.

Figure 6.1
The integral diverges.

Exercise 6.2
1 - 16 Determine whether the integral converges or diverges.

1
∫

∞

1

1
x

dx

2
∫

∞

1

1
x2 dx

3
∫

∞

4

1√
x

dx

4
∫ 0

−∞

ex dx

5
∫

∞

0
ex dx

6
∫

∞

2

1
x−1

dx

7
∫ 2

1

1
1− x

dx

8
∫ 1

−1

1
x

dx

9
∫ 3

0

dx√
9− x2

10
∫

∞

0
(1− x)e−x dx

11
∫

∞

0

dx
x2 +4

12
∫

∞

−∞

1
ex + e−x dx

13
∫

∞

0

1
x−1

dx

14
∫

π

0
sec2 x dx

15
∫ 2

0

1
x2 +1

dx

16
∫

π/2

0
tanx dx

�
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Review Exercises

1 - 10 Find the limit if it exists.
1 lim

x→∞

2x−1
x

2 lim
x→0−

tan x
x2

3 lim
x→0

ex−x−1
sin x

4 lim
x→π−

sin x
1−cos x

5 lim
x→0

tan−1 x
x

6 lim
x→0

6x−2x

x

7 lim
x→1

lnx
x−1

8 lim
x→∞

x ln( x+1
x−1 )

9 lim
x→1

x1/(1−x)

10 lim
x→0

(ex + x)
1
x

11 - 18 Determine whether the integral converges or diverges.

11
∫

∞

0

1
2x2 +3x+1

dx

12
∫

∞

1

1

x
√

x2−1
dx

13
∫ 2

−∞

1
5−2x

dx

14
∫

∞

−∞

x
(x2 +3)2 dx

15
∫ 3

0

1
(x−2)2 dx

16
∫ 4

0

1
x2 + x−6

dx

17
∫ 4

2

x−2
x2−5x+4

dx

18
∫ 9

0

1√
x (x+9)

dx

19 - 35 Choose the correct answer.
19 lim

x→1
( 1

x−1 −
1

lnx ) is equal to

(a) ∞ (b) − 1
2 (c) 1

2 (d) 0

20 lim
x→0

2x−3x

x is equal to

(a) ∞ (b) ln 2
3 (c) ln 3

2 (d) −1

21 The improper integral
∫

∞

0

1
4+ x2 dx

(a) converges to π

4 (b) converges to π

2 (c) diverges (d) None of these

22 The improper integral
∫ π

2

0

cos x√
sin x

dx

(a) converges to −2 (b) converges to 1 (c) converges to 2 (d) diverges

23 The improper integral
∫

∞

0

1
1+ x2 dx

(a) converges to π (b) converges to π

2 (c) converges to ∞ (d) diverges

24 The improper integral
∫

∞

0

1
x2 +4

dx

(a) converges to 0 (b) converges to π

4 (c) converges to π

2 (d) diverges

25 The limit lim
x→0

( sin x−x
x3 ) is equal to

(a) ∞ (b) − 1
6 (c) 1

6 (d) 0
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26 The improper integral
∫ 2

0

2x
16− x4 dx

(a) converges to π

2 (b) converges to π

4 (c) converges to π (d) diverges

27 The limit lim
x→∞

( x2

x−1 −
x2

x+1 ) is equal to
(a) ∞ (b) 1 (c) 2 (d) 0

28 The improper integral
∫ 1

0
xα dx converges if and only if

(a) α > 1 (b) −2 < α <−1 (c) α >−1 (d) α <−2

29 lim
x→∞

( x√
x−1 −

x√
x+1 ) is equal to

(a) ∞ (b) 1 (c) 0 (d) 2

30 lim
x→0

(1+2x)
1
x is equal to

(a) 1 (b) e (c) e2 (d) ∞

31 lim
x→0

∫ x

0
et2

dt
x is equal to

(a) ∞ (b) 1 (c) 0 (d) −1

32 The limit lim
x→0

(1+3x)
1
x is equal to

(a) 1 (b) e (c) e3 (d) ∞

33 The improper integral
∫ 1

0

1

x
3
2

dx

(a) converges to 3 (b) converges to 2
3 (c) converges to 3

2 (d) diverges

34 The improper integral
∫ −1

0

1
3
√

x+1
dx

(a) converges to 1
2 (b) converges to 3

2 (c) converges to − 3
2 (d) diverges

35 The improper integral
∫

∞

e

1
x(lnx)2 dx

(a) converges to 0 (b) converges to 1 (c) converges to −1 (d) diverges



113

Chapter 7

Application of Definite Integrals

7.1 Areas

The definite integral can be used to calculate areas under graphs. In Chapter 2, we mentioned that if f is continuous and f ≥ 0 on [a,b],
the definite integral

∫ b
a f (x) dx is exactly the area of the region under the graph of f from a to b.

If y = f (x) is a continuous function on [a,b] and
f (x) ≥ 0 for every x ∈ [a,b], the area of the region
under the graph of f (x) from x = a to x = b is given
by the integral:

A =
∫ b

a
f (x) dx

xa b

R

y

y = f (x)

Figure 7.1: The area of the region under the graph of f over
[a,b].

If f and g are continuous functions and f (x) ≥
g(x) ∀x ∈ [a,b], then the area A of the region bounded
by the graphs of f (the upper boundary of R) and g (the
lower boundary of R) from x = a to x = b is subtracting
the area of the region under g(x) from the area of the
region under f (x). This can be stated as follows:

A =
∫ b

a

(
f (x)−g(x)

)
dx

a b

f (x)

g(x)

R

x

y

Figure 7.2: The area of the region bounded by the graphs of
f and g over [a,b].
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If x = f (y) is a continuous function on [c,d] and
f (y)≥ 0 ∀y ∈ [c,d], the area of the region bounded by
the graph of f (y) from y = c to y = d is given by the
integral:

A =
∫ d

c
f (y) dy

x

R

y

c

d
x = f (y)

Figure 7.3: The area of the region bounded by the graph of f
over [c,d].

If f and g are continuous functions and f (y) ≥
g(y) ∀y ∈ [c,d], then the area A of the region bounded
by the graphs of f (the right boundary of R) and g (the
left boundary of R) from y = c to y = d is subtracting
the area of the region bounded by g(x) from the area
of the region bounded by f (x). This can be stated as
follows:

A =
∫ d

c

(
f (y)−g(y)

)
dy

c

d

f (y)g(y)

R

x

y

Figure 7.4: The area of the region bounded by the graphs of
f and g over [c,d].

Example 7.1 Express the area of the shaded region as a definite integral then find the area.

(1)

x

R

1 3

y

f (x) = 2x+1

Figure 7.5

(2)

a c b

f

g

x

y

Figure 7.6

Solution:

(1) Area : A =
∫ 3

1
(2x+1) dx =

[
x2 + x

]3

1
=
[
(32 +3)− (12 +1)

]
= 12−2 = 10.
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(2) We have two regions:
Region (1) : in the interval [a,c].
Upper graph: y = g(x)
Lower graph: y = f (x)

Area: A1 =
∫ c

a

(
g(x)− f (x)

)
dx.

Region (2) : in the interval [c,b].
Upper graph: y = f (x)
Lower graph: y = g(x)

Area: A2 =
∫ b

c

(
f (x)−g(x)

)
dx.

The total area is A = A1 +A2.

Example 7.2 Sketch the region bounded by the graphs of y = x3 and y = x, then find its area.

Solution: The figure on the right shows the region bounded by the two functions.

The region is divided into two regions as follows:

Region (1): in the interval [−1,0]
Upper graph: y = x3

Lower graph: y = x

A1 =
∫ 0

−1
(x3−x) dx=

[x4

4
− x2

2

]0

−1
=
[
0−(1

4
− 1

2
)
]
=

1
4
.

Region (2): in the interval [0,1]
Upper graph: y = x
Lower graph: y = x3

A2 =
∫ 1

0
(x−x3) dx=

[x2

2
− x4

4

]1

0
=
[
(

1
2
− 1

4
)−0

]
=

1
4
.

-1 1

y = x3

y = x

x

y

Figure 7.7
The total area is A = A1 +A2 =

1
4 +

1
4 = 1

2 .

Example 7.3 Sketch the region determined by the graphs of y = sin x, y = cos x, x = 0 and x = π

4 , then find its area.

Solution: The figure on the right shows the region bounded by the two functions. Note that over the period [0, π

4 ], the two curves intersect
at π

4 .

Hence,

Area: A =
∫ π

4

0

(
cos x− sin x

)
dx

=
[

sin x+ cos x
] π

4

0

=
[( 1√

2
+

1√
2

)
−
(
1
)]

=
√

2−1.

π/4

y = sinx

y = cosx

x

y

Figure 7.8
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Example 7.4 Sketch the region bounded by the graph of x =
√

y from y = 0 to y = 1, then find its area.

Solution: The region bounded by the function x =
√

y from y = 0 to y = 1 is shown in the figure.

The area of the region is

A =
∫ 1

0

√
y dy

=
2
3

[
y3/2

]1

0

=
2
3
.

x

y

1

x =
√

y

Figure 7.9

Example 7.5 Sketch the region bounded by the graphs of x = 2y and x = y
2 +3, then find its area.

Solution:
First, we find the intersection points:

2y =
y
2
+3⇒ 4y = y+6⇒ y = 2.

The two curves intersect at (4,2).

Area: A =
∫ 2

0
(

y
2
+3−2y) dy

=
∫ 2

0
(−3

2
y+3) dy =

[
− 3

4
y2 +3y

]2

0
=−3+6 = 3.

1 2 3 4

0.5

1

1.5

2

x = 2y

x = y/2+3

x

y

Figure 7.10
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Exercise 7.1
1 - 27 Sketch the region bounded by the graphs of the equations, then find its area.

1 y = x2

2 , y = 0, x = 1, x = 3

2 y = x3, x = 0, x = 2

3 y = x+2, x = 1, x = 4

4 y = x2 +1, y = 0, x = 0, x = 2

5 y = x3 +1, y = 0, x = 0, x = 1

6 y = sin x, x = 0, x = π

7 y = tan x, x = π/4, x = π/3

8 y =−x, y = x+1, x = 0

9 y =
√

x, x+ y = 2, y = 0

10 y = x2, x = y−2, y = 0

11 x = y3, y = 0, y = 2, x = 0

12 x = y
3 , y = 1, y = 3, x = 0

13 x = (y+1)2, y = 2, y = 5, x = 0

14 y = x3−4x, y = 0, x =−2, x = 0

15 y = x3, y = 2

16 y = x, y = 2x, y =−x+2

17 y =
√

x+1, x = 1, y = 0

18 x = y, x = y−5, x = 0, x = 2

19 y =
√

x−1, y = x, x = 1, x = 2

20 y = ex, x =−2, x = 3

21 y = ex+1, x = 0, x = 1

22 y = lnx, x = 1, x = 5

23 x = sin y, y = 0, y = π/4

24 x = sin y, x = cos y, y = 0, y = π/4

25 y = sin x, y = cos x, x =−π/4, x = π/4

26 y = (x+1)2 +2, x =−2, x = 0

27 x = lny, x = 0, y = 1, y = e
�

7.2 Solids of Revolution

In this section, we introduce the solids of revolution.

Definition 7.1 If R is a plane region, the solid of revolution S is a solid generated from revolving R about a line in the same
plane where the line is called the axis of revolution.

In the following examples, we show some simple solids of revolution.
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Example 7.6 Let y = f (x)≥ 0 be continuous for every x ∈ [a,b]. Let R be a region bounded by the graph of f and the x-axis from x = a
to x = b. Revolution of the region R about the x-axis generates a solid given in Figure 7.11 (right).

Figure 7.11: Revolution of a region about the x-axis. The figure on the left shows the region under the continuous function y = f (x) on the interval [a,b].
The figure on the right shows the solid S generated by revolving the region about the x-axis.

Example 7.7 Let y = f (x) be a constant function from x = a to x = b, as in Figure 7.12. The region R is a rectangle and by revolving it
about the x-axis, we obtain a circular cylinder.

Figure 7.12: Revolution of a rectangular region about the x-axis. The figure on the left shows the region under the constant function f (x) = c on the
interval [a,b]. The figure on the right shows the circular cylinder generated by revolving the region about the x-axis.

Example 7.8 Consider the region R bounded by the graph of x = f (y) from y = c to y = d. Revolution of R about the y-axis generates a
solid given in Figure 7.13.

Figure 7.13: Revolution of a region about the y-axis. The figure on the left displays the region under the function x = f (y) on the interval [c,d]. The
figure on the right displays the solid S generated by revolving the region about the y-axis.
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Exercise 7.2
1 - 10 Sketch the region R bounded by the graphs of the given equations, then sketch the solid generated if R is revolved about the
specified axis.

1 y = x2, x = 1, y = 4 about the x-axis
2 y =

√
x, x = 0, x = 9 about the x-axis

3 y = lnx, x = 0.5, x = e3 about the x-axis
4 y = ex, x =−1, x = 5 about the x-axis
5 y = sin x, x = 0, x = π about the x-axis
6 y = cos y, y = 0, y = π/2 about the y-axis
7 y = e2x, y = 0, y = 3 about the y-axis
8 x = y+1, y =−1, y = 5 about the y-axis
9 y = x2, y = x about the x-axis

10 y =
√

x, y = x about the y-axis
�

7.3 Volumes of Solids of Revolution

One of the interesting applications of the definite integrals is to determine volumes of the revolution solids. In this section, we study three
methods to evaluate the volumes of the revolution solids known as disk method, washer method and method of cylindrical shells.

7.3.1 Disk Method

Let f be continuous on [a,b] and let R be the region bounded by the graph of f and the x-axis form x = a to x = b. Let S be the solid
generated by revolving R about the x-axis. Assume that P is a partition of [a,b] and ω = (ω1,ω2, ...,ωn) is a mark where ωk ∈ [xk−1,xk].
From each subinterval [xk−1,xk], we form a rectangle, its high and width are f (ωk) and ∆xk, respectively.

The revolution of the vertical rectangle about the x-axis generates a circular disk as shown in
Figure 7.15. Its radius and high are

r = f (ωk) , h = ∆xk.
Figure 7.14

V = πr2h

Figure 7.15: The volume by the disk method for a solid generated by revolving the region about the x-axis. The figure on the left shows the region R
bounded by a function f on an interval [a,b] and the figure on the right shows the solid S generated by revolving R about the x-axis.

From Figure 7.15, the volume of each circular disk is

Vk = π( f (ωk))
2
∆xk, k = 1,2, ...,n

The sum of volumes of the circular disks approximates the volume of the solid of revolution:

V =
n

∑
k=1

Vk = lim
‖P‖→0

n

∑
k=1

π
(

f (ωk)
)2

∆xk = π

∫ b

a

[
f (x)

]2
dx.
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Similarly, we can find the volume of the solid of revolution generated by revolving the region about the y-axis. Let f be continuous on
[c,d] and let R be the region bounded by the graph of f and the y-axis from y = c to y = d. Let S be the solid generated by revolving R
about the y-axis. Assume that P is a partition of [c,d] and ω = (ω1,ω2, ...,ωn) is a mark where ωk ∈ [yk−1,yk]. From each [yk−1,yk], we
form a rectangle, its high and width are f (ωk) and ∆yk, respectively.
The revolution of each horizontal rectangle about the y-axis generates a circular disk as shown in Figure 7.16. Its radius and high
are

r = f (ωk) , h = ∆yk.

Therefore, the volume of each circular disk is

Vk = π( f (ωk))
2
∆yk, k = 1,2, ...,n

Figure 7.16: The volume by the disk method for a solid generated by revolving the region about the y-axis. The figure on the left shows the region R
bounded by a function f on an interval [c,d] and the figure on the right shows the solid S generated by revolving R about the y-axis.

The volume of the solid of revolution given in Figure 7.16 (right) is approximately the sum of the volumes of circular disks:

V =
n

∑
k=1

Vk = lim
‖P‖→0

n

∑
k=1

π( f (ωk))
2
∆yk

= π

∫ d

c

[
f (y)

]2
dy.

These considerations can be summarized in the following theorem:

Theorem 7.1
1. If R is a region bounded by the graph of f on the interval [a,b], the volume of the solid of revolution determined by

revolving R about the x-axis is

V = π

∫ b

a

[
f (x)

]2
dx.

2. If R is a region bounded by the graph of f on the interval [c,d], the volume of the solid of revolution determined by
revolving R about the y-axis is

V = π

∫ d

c

[
f (y)

]2
dy.

Example 7.9 Sketch the region R bounded by the graphs of equations y =
√

x, x = 4 and y = 0. Then, find the volume of the solid
generated by revolving R about the x-axis.

Solution:
The figure shows the solid generated by revolving the region R about the x-axis.
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Figure 7.17

Since the revolution is about the x-axis, we have a vertical disk with radius y =
√

x and thickness dx.
Thus, the volume of the solid S is

V = π

∫ 4

0
(
√

x)2 dx = π

∫ 4

0
x dx =

π

2

[
x2
]4

0
=

π

2

[
16−0

]
= 8π.

Example 7.10 Sketch the region R bounded by the graphs of equations y = ex, y = e and x = 0. Then, find the volume of the solid
generated by revolving R about the y-axis.

Solution:

Figure 7.18

The figure shows the region R and the solid S generated by revolving the region about the y-axis. Since the revolution is about the y-axis,
then we need to rewrite the function to become x = f (y).

y = ex⇒ lny = lnex⇒ x = lny = f (y).

Now, we have a horizontal disk with radius x = lny and thickness dy. Thus, the volume of the solid S is

V = π

∫ e

1
(lny)2 dy=

[
2y+y (lny)2−2y lny

]e

1
= e−2. (use the integration by parts to evaluate the integral∫

(lny)2 dy)

Example 7.11 Sketch the region R bounded by the graph of the equation x = y2 on the interval [0,1]. Then, find the volume of the solid
generated by revolving R about the y-axis.

Solution:
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Figure 7.19

Since the revolution of R is about the y-axis, we have a horizontal disk with radius x = y2 and thickness dy. Thus, the volume of the solid
S is

V = π

∫ 1

0
(y2)2 dy =

π

5

[
y5
]1

0
=

π

5

[
1−0

]
=

π

5
.

Example 7.12 Sketch the region R bounded by the graph of the equation y = cos x from x = 0 to x = π

2 . Then, find the volume of the
solid generated by revolving R about the x-axis.

Solution:

Figure 7.20

The figure shows the region R and the solid S generated by revolving the region about the x-axis. Thus, the disk to evaluate the volume of
the generated solid S is vertical where the radius is y = cos x and the thickness is dx. Hence,

V = π

∫ π

2

0
cos2 x dx =

π

2

∫ π

2

0
(1+ cos 2x) dx =

π

2

[
x+

sin 2x
2

] π

2

0
=

π

2

[
π

2
−0
]
=

π2

4
.

7.3.2 Washer Method

The washer method is a generalization of the disk method for a region between two functions f and g. Let R be a region bounded by
the graphs of f and g from x = a to x = b such that f ≥ g on [a,b] as shown in Figure 7.21). The volume of the solid S generated by
revolving the region R about the x-axis can be found by calculating the difference between the volumes of the two solids generated by
revolving the regions under f and g about the x-axis as follows:
the outer radius: y1 = f (x)
the inner radius: y2 = g(x)
the thickness: dx
The volume of a washer is dV = π

[
(the outer radius)2− (the inner radius)2

]
. thickness.

This implies dV = π

[
( f (x))2− (g(x))2

]
dx.
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Hence, the volume of the solid over the period [a,b] is

V = π

∫ b

a

[(
f (x)

)2−
(
g(x)

)2
]

dx.

Figure 7.21: The volume by the washer method for a solid generated by revolving the region R about the x-axis.

Similarly, let R be a region bounded by the graphs of f and g such that f ≥ g on [c,d] as shown in Figure 7.22. The volume of the solid S
generated by revolving R about the y-axis is

V = π

∫ d

c

[(
f (y)

)2−
(
g(y)

)2
]

dy.

Figure 7.22: The volume by the washer method for a solid generated by revolving the region R about the y-axis.

Theorem 7.2 summarizes the washer method.

Theorem 7.2
1. If R is a region bounded by the graphs of f and g on the interval [a,b] such that f ≥ g, the volume of the solid of

revolution determined by revolving R about the x-axis is

V = π

∫ b

a

[(
f (x)

)2−
(
g(x)

)2
]

dx.

2. If R is a region bounded by the graphs of f and g on the interval [c,d] such that f ≥ g, the volume of the solid of
revolution determined by revolving R about the y-axis is

V = π

∫ d

c

[(
f (y)

)2−
(
g(y)

)2
]

dy.
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Example 7.13 Let R be a region bounded by the graphs of the functions y = x2 and y = 2x. Evaluate the volume of the solid generated
by revolving R about the x-axis.

Solution:
Let f (x) = x2 and g(x) = 2x. First, we find the intersection points:

f (x) = g(x)⇒ x2 = 2x

⇒ x2−2x = 0

⇒ x(x−2) = 0

⇒ x = 0 or x = 2.

Substituting x = 0 into f (x) or g(x) gives y = 0. Similarly, if we substitute x = 2 into the two functions, we have y = 2. Thus, the two
curves intersect in two points (0,0) and (2,4).

The figure shows the region R and the solid generated by revolving R about the x-axis. A vertical rectangle generates a washer
where
the outer radius: y1 = 2x,
the inner radius: y2 = x2 and
the thickness: dx.
The volume of the washer is

dV = π
[
2x− x2] dx.

Thus, the volume of the solid over the interval [0,2] is

V = π

∫ 2

0

(
(2x)2− (x2)2

)
dx = π

∫ 2

0
(4x2− x4) dx

= π

[4x3

3
− x5

5

]2

0

= π

[32
3
− 32

5

]
=

64
15

π.

Example 7.14 Consider a region R bounded by the graphs of the functions y =
√

x, y = 6− x and the x-axis. Revolve this region about
the y-axis and find the volume of the generated solid.

Solution:
Since the revolution is about the y-axis, we need to rewrite the functions in terms of y i.e., x = f (y) and x = g(y).

y =
√

x⇒ x = y2 = f (y)

y = 6− x⇒ x = 6− y = g(y).

Now, we find the intersection points:

f (y) = g(y)⇒ y2 = 6− y⇒ y2 + y−6 = 0⇒ y =−3 or y = 2.
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Since y =
√

x, we ignore the value y =−3. By substituting y = 2 into the two functions, we have x = 4. Thus, the two curves intersect in
one point (4,2). The solid S generated by revolving R about the y-axis is shown in the figure.
Since the revolution is about the y-axis, then we have a horizontal rectangle that generates a washer where
the outer radius: x1 = 6− y,
the inner radius: x2 = y2 and
the thickness: dy.
The volume of the washer is

dV = π
[
(6− y)2− (y2)2] dy.

Figure 7.23

The volume of the solid over the interval [0,2] is

V = π

∫ 2

0

[
(6− y)2− (y2)2] dy = π

[
− (6− y)3

3
− y5

5

]2

0

= π

[(
− 64

3
− 32

5
)
−
(
− 216

3
−0
)]

=
664
15

π.

Example 7.15 Consider the same region as in Example 7.14 enclosed by the graphs of y =
√

x, y = 6− x and the x-axis. Revolve this
region about the x-axis instead and find the volume of the generated solid.

Solution:
From the figure, we find that the solid is made up of two separate regions and each requires its own integral. Meaning that, we use the
disk method to evaluate the volume of the solid generated by revolving each curve.

Figure 7.24
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V = π

∫ 4

0
(
√

x)2 dx+π

∫ 6

4
(6− x)2 dx

= π

∫ 4

0
x dx+π

∫ 6

4
(6− x)2 dx

=
π

2

[
x2
]4

0
− π

3

[
(6− x)3

]6

4

=
π

2
(16−0)− π

3
(0−8)

=
32
3

π.

(we used the substitution method to do the
second integral with u = 6− x and du = dx)

The revolution of a region is not always about the x-axis or the y-axis. It could be about a line paralleled to the x-axis or the y-axis. If the
axis of revolution is a line y = y0, evaluating the volume of the generated solid is similar to the case when the region revolves about the
x-axis. Whereas, if the axis of revolution is a line x = x0, evaluating the volume of the generated solid is similar to the case when the
region revolves about the y-axis.

Example 7.16 Let R is a region bounded by graphs of the functions y = x2 and y = 4. Evaluate the volume of the solid generated by
revolving R about the given line.
(a) y = 4 (b) x = 2

Solution:
(a) We have a vertical circular disk:
the radius of the disk: 4− y = 4− x2, and
the thickness: dx.

Figure 7.25

The volume of the disk is

dV = π(4− x2)2 dx.

The volume of the solid over the interval [−2,2] is

V = π

∫ 2

−2
(4− x2)2 dx = π

∫ 2

−2
(16−8x2 + x4) dx

= π

[
16x− 8x3

3
+

x5

5

]2

−2

=
512
15

π.

(b) In this case, a horizontal rectangle will generate a washer where
the outer radius: 2+

√
y,

the inner radius: 2−√y and
the thickness: dy.
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Figure 7.26

The volume of the washer is
dV = π

[
(2+
√

y)2− (2−√y)2
]

dy = 8π
√

y dy.

The volume of the solid over the interval [0,4] is

V = 8π

∫ 4

0

√
y dx =

16π

3

[
y

3
2

]4

0
=

128
3

π.

Example 7.17 Sketch the region R bounded by graphs of the equations x = (y−1)2 and x = y+1. Then, find the volume of the solid
generated by revolving R about x = 4.

Solution:
First, we find the intersection points:

(y−1)2 = y+1⇒ y2−2y+1 = y+1

⇒ y2−3y = 0

⇒ y = 0 or y = 3.

Thus, the two curves intersect in two points (1,0) and (4,3).

Figure 7.27

The figure shows the region R and the solid S. A horizontal rectangle generates a washer where
the outer radius: 4− (y−1)2,
the inner radius: 4− (y+1) = 3− y and
the thickness: dy.
The volume of the washer is

dV = π

[
(4− (y−1)2)2− (3− y)2

]
dy = π

[
16−8(y−1)2 +(y−1)4− (3− y)2

]
dy.
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Thus, the volume of the solid over the interval [0,3] is

V = π

(∫ 3

0
16 dy−8

∫ 3

0
(y−1)2 dy+

∫ 3

0
(y−1)4 dy−

∫ 3

0
(3− y)2 dy

)
= π

[
16y− 8(y−1)3

3
+

(y−1)5

5
+

(3− y)3

3

]3

0

=
108

5
π.

7.3.3 Method of Cylindrical Shells

In the washer method, we assume that the rectangle from each subinterval is vertical to the axis of the revolution while in the method of
cylindrical shells, the rectangle is parallel to the axis of the revolution.

As shown in figure, let
r1 be the inner radius of the shell,
r2 be the outer radius of the shell,
h be high of the shell,
∆r = r2− r1 be the thickness of the shell,
r = r1+r2

2 be the average radius of the shell.

Figure 7.28

The volume of the cylindrical shell is

V = πr2
2h−πr2

1h

= π(r2
2− r2

1)h

= π(r2 + r1)(r2− r1)h

= 2π(
r2 + r1

2
)h(r2− r1)

= 2πrh∆r.

V = V2︸︷︷︸
the outer cylinder

− V1︸︷︷︸
the inner cylinder

Now, consider the graph shown in Figure 7.29 (A). The revolution of the region R about the y-axis generates a solid given in (B) of
the same figure. Let P be a partition of the interval [a,b] and let ω = (ω1,ω2, ...,ωn) be a mark on P where ωk is the midpoint of
[xk−1,xk].

The revolution of the rectangle about the y-axis generates a cylindrical shell where
the high = f (ωk),
the average radius = ωk and
the thickness = ∆xk.
Hence, the volume of the cylindrical shell is Vk = 2πωk f (ωk)∆xk. To evaluate the volume of the whole solid, we sum the volumes of all
cylindrical shells. This implies

V =
n

∑
k=1

Vk = 2π

n

∑
k=1

ωk f (ωk)∆xk.

From the Riemann sum

lim
‖P‖→0

n

∑
k=1

ωk f (ωk)∆xk =
∫ b

a
x f (x) dx

and this implies

V = 2π

∫ b

a
x f (x) dx.
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A B

Figure 7.29: The volume by the method of cylindrical shells for a solid generated by revolving a region about the y-axis.

Similarly, if the revolution of the region is about the x-axis, the volume of the solid of revolution is

V = 2π

∫ d

c
y f (y) dy.

Theorem 7.3
1. If R is a region bounded by the graph of f on the interval [a,b], the volume of the solid of revolution determined by

revolving R about the y-axis is

V = 2π

∫ b

a
x f (x) dx.

2. If R is a region bounded by the graph of f on the interval [a,b], the volume of the solid of revolution determined by
revolving R about the x-axis is

V = 2π

∫ d

c
y f (y) dy.

The method of cylindrical shells is sometimes easier than the washer method. This is because solving equations for one variable in terms
of another is not always simple (i.e., solving x in terms of y). For example, for the volume of the solid obtained by revolving the region
bounded by y = 2x2− x3 and y = 0 about the y-axis, by the washer method, we would have to solve the cubic equation for x in terms of
y, but this is not simple.

Example 7.18 Sketch the region R bounded by graphs of the equations y = 2x− x2 and x = 0. Then, by the method of the cylindrical
shells, find the volume of the solid generated by revolving R about the y-axis.

Solution: The figure shows the region R and the solid S generated by revolving R about the y-axis.

Figure 7.30
Since the revolution is about the y-axis, the rectangle is vertical and by revolving it, we obtain a cylindrical shell where
the high: y = 2x− x2,
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the average radius: x,
the thickness: dx.
The volume of the cylindrical shell is

dV = 2πx(2x− x2) dx = 2π(2x2− x3) dx.

Thus, the volume of the solid over the interval [0,2] is

V = 2π

∫ 2

0
(2x2− x3) dx

= 2π

[2x3

3
− x4

4

]2

0

= 2π
(16

3
− 16

4
)
=

8π

3
.

Example 7.19 Sketch the region R bounded by graphs of the equations x =
√

y and x = 2, and the y-axis. Then, find the volume of the
solid generated by revolving R about the x-axis.

Solution:

Figure 7.31

Since the revolution is about the x-axis, the rectangle is horizontal and by revolving it, we have a cylindrical shell where
the high: x =

√
y,

the average radius: y
the thickness: dy.
The volume of the cylindrical shell is dV = 2π y

√
y dy.

Thus, the volume of the solid over the interval [0,4] is

V = 2π

∫ 4

0
y
√

y dy = 2π

∫ 4

0
y

3
2 dy

=
4π

5

[
y

5
2

]4

0

=
4π

5

[
32−0

]
=

128π

5
.
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Exercise 7.3
1 - 8 Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving R
about the x-axis.

1 y = x+1,x = 0,x = 1
2 y = x2 +1, x = 0, x = 2
3 y = x3, x = 0, x = 2
4 y =

√
x, x = 0, x = 4

5 y =
√

x, x = y
6 y = sin x, x = 0, x = π/2
7 y = 1− x2, y = x2

8 y = x3 +1, y = x+1
9 - 16 Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by revolving
R about the y-axis.

9 y = x2, y = 1, y = 4
10 y =

√
x, y = 0, y = 3

11 x = cos y, y = 0, y = π/2
12 x = lny, y = 1, y = e
13 y = x, y = (x−1)2 +1
14 y = ex, x = 1, x = 2, y = 0
15 xy = 4, x+ y = 5
16 y = x2, y2 = 8x

17 - 26 Set up and evaluate an integral for the volume of the solid obtained by revolving the region bounded by the given curves
about the specified axis or line.

17 y = x2, y = 1, line x = 1
18 y = x2, y = 1, x-axis
19 y = x2, x = y2 line y =−1
20 y =

√
x−1, y = 0, x = 5 line x = 5

21 y = x2, x = 0, y = 1, y = 4 line y = 1
22 y = x− x2, y = 0 line x = 2
23 y = x2, y = 0, x = 1, x = 2 line x = 1
24 y = x2, y = 0, x = 1, x = 2 line x = 4
25 y =

√
x−1, y = 0, x = 5 line y = 3

26 y = x4, y = sin πx
2 line x =−1

27 - 35 Sketch the region R bounded by graphs of the given equations. Then, by method of the cylindrical shells, find the volume
of the solid generated by revolving R about the specified axis or line.

27 x = 1+ y2, x = 0, y = 1, y = 2 x-axis
28 x =

√
y, x = 0, y = 1 x-axis

29 y = x3, y = 8, x = 0 x-axis
30 y = 1

x , x = 1, x = 2 y-axis
31 y = x2, y = 0, x = 1 y-axis
32 y = x2, y = x x-axis
33 y = sin x, y = cos x, x = 0, x = π

4 y-axis
34 y = x2 + x, y = 0 y-axis
35 y = x+ 4

x , y = 5 line x =−1
�

7.4 Arc Length and Surfaces of Revolution

In this section, we present two other applications of the definite integrals. We use the definite integrals to evaluate the lengths of arcs of
functions and areas of surfaces of revolution. We restrict our attention to smooth functions (they have derivatives of all orders in their
domains).
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7.4.1 Arc Length

Let y = f (x) be a smooth function on [a,b]. Assume that P = {x0,x1, ...,xn} is a regular partition of the interval [a,b] and let P0,P1, ...,Pn
be points on the curve as shown in Figure 7.32.
The distance between any two points of the curve is

d(Pk−1,Pk) =
√

(∆xk)2 +(∆yk)2

=

√
(∆xk)2 +

(
f (xk)− f (xk−1)

)2

= ∆xk

√
1+

(
f (xk)− f (xk−1)

)2

(∆xk)2

=
b−a

n

√
1+
[ f (xk)− f (xk−1)

∆xk

]2

Figure 7.32: The length of the arc of y = f (x) from (a, f (a)) to (b, f (b)).

From the mean value theorem of differential calculus for the function f on [xk−1,xk], we have

f ′(ci) =
f (xk)− f (xk−1)

xk− xk−1

for some ci ∈ (xk−1,xk). Thus, the distance between Pk−1 and Pk is

d(Pk−1,Pk) =
b−a

n

√
1+
[

f ′(ci)
]2
.

The sum of all these distances is

b−a
n

[ √
1+
[

f ′(c1)
]2
+

√
1+
[

f ′(c2)
]2
+ ...+

√
1+
[

f ′(cn)
]2 ]

.

The previous sum is a Riemann sum for the function
√

1+
[

f ′(xk)
]2 from a to b where for a better approximation, we let n be large

enough. Thus, the arc length of the function f is

L( f ) =
∫ b

a

√
1+
[

f ′(x)
]2 dx

Similarly, let x = g(y) be a smooth function on [c,d].
The length of the arc of the function g from (g(c),c)
to (g(d),d) is

L(g) =
∫ d

c

√
1+
[
g′(y)

]2 dy.

Figure 7.33: The length of the arc of x = g(y) from (g(c),c) to (g(d),d).
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Theorem 7.4
1. Let y = f (x) be a smooth function on [a,b]. The length of the arc of f from (a, f (a)) to (b, f (b)) is

L( f ) =
∫ b

a

√
1+
[

f ′(x)
]2 dx.

2. Let x = g(y) be a smooth function on [c,d]. The length of the arc of g from (g(c),c) to (g(d),d) is

L(g) =
∫ d

c

√
1+
[
g′(y)

]2 dy.

Example 7.20 Find the arc length of the graph of the given equation from A to B.
(1) y = 5−

√
x3; A(0,5), B(4,−3)

(2) x = 4y; A(0,0), B(4,1)

Solution:
(1) y = f (x) = 5−

√
x3⇒ f ′(x) =−3

2
x

1
2

⇒ ( f ′(x))2 =
9
4

x

⇒ 1+( f ′(x))2 =
4+9x

4

⇒
√

1+( f ′(x))2 =

√
4+9x

2
.

The length of the curve is

L( f ) =
1
2

∫ 4

0

√
4+9x dx =

1
27

[
(4+9x)

3
2

]4

0

=
1
27

[
40

3
2 −4

3
2

]
=

8
27

[
10
√

10−1
]
.

(2) x = g(y) = 4y⇒ g′(y) = 4

⇒ (g′(y))2 = 16

⇒ 1+(g′(y))2 = 17

⇒
√

1+(g′(y))2 =
√

17.
The length of the curve is

L(g) =
√

17
∫ 1

0
dy =

√
17
[

y
]1

0

=
√

17
[
1−0

]
=
√

17.

Example 7.21 Find the arc length of the graph of the given equation over the indicated interval.
(1) y = cosh x; 0≤ x≤ 2

(2) x = 1
8 y4 + 1

4 y−2; −2≤ y≤−1

Solution:
(1) y = f (x) = coshx⇒ f ′(x) = sinh x

⇒ ( f ′(x))2 = sinh2 x

⇒ 1+( f ′(x))2 = 1+ sinh2 x = cosh2 x

⇒
√

1+( f ′(x))2 = cosh x.
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The length of the curve is

L( f )=
∫ 2

0
cosh x dx=

[
sinh x

]2

0
= sinh2−sinh0= sinh2. (sinh 0 = e0−e−0

2 = 1−1
2 = 0)

(2) x = g(y) =
1
8

y4 +
1
4

y−2⇒ g′(y) =
1
2
(y3− 1

y3 )

⇒ (g′(y))2 =
(y6−1)2

4y6

⇒ 1+(g′(y))2 =
4y6 + y12−2y6 +1

4y6

⇒ 1+(g′(y))2 =
y12 +2y6 +1

4y6

⇒
√

1+(g′(y))2 =

√
(y6 +1)2

4y6 =
y6 +1

2y3 .

Since y < 0 over [−2,−1], the length of the curve is

L(g) =−1
2

∫ −1

−2
(y3 + y−3) dy =−1

2

[y4

4
− 1

2y2

]−1

−2
=

33
16

.

7.4.2 Surfaces of Revolution

In Section 7.2, we assume that the bounded region revolves about an axis or a line and this process generates a solid. In this section, we
assume that only the curve revolves about an axis. This generates a surface called surface of revolution (see Figure 7.34). We show how
the definite integral is applied to calculate the area of that surface.

Definition 7.2 Let f is a continuous function on [a,b]. The surface of revolution is generated by revolving the graph of the
function f about an axis.

Let y = f (x)≥ 0 be a smooth function on the interval [a,b]. Let P = {x0,x1, ...,xn} be a partition of the interval [a,b] and P0,P1, ...,Pn
be the points on the curve as shown in Figure 7.34. Let Dk be a frustum of a cone generated by revolving the line segment Pk−1Pk about
the x-axis with radii f (xk−1) and f (xk). Since area of the frustum of a cone with radii r1 and r2 and slant length ` is S.A = π(r1 + r2)`,
then

S.A(Dk) = π[ f (xk)+ f (xk−1)]∆`k

where ∆`k is the distance between Pk−1 and Pk i.e., ∆`k =
√

(∆xk)2 +( f (xk)− f (xk−1))2.
From the intermediate value theorem, there exists ωk ∈ (xk−1,xk) such that

f (xk)− f (xk−1) = f ′(ωk)∆xk.

This implies ∆`k = ∆xk
√

1+[ f ′(ωk)]2.
For n large, f (xk)≈ f (xk−1)≈ f (ωk) and this implies

S.A =
n

∑
k=1

2π f (ωk)
√

1+[ f ′(ωk)]2∆xk.

From the Riemann sum,

S.A = lim
‖P‖→0

n

∑
k=1

2π f (ωk)
√

1+[ f ′(ωk)]2∆xk = 2π

∫ b

a
| f (x) |

√
1+[ f ′(x)]2 dx = 2π

∫ b

a
| y |

√
1+
(dy

dx

)2 dx.

If the revolution is about the y-axis, then

S.A = 2π

∫ b

a
| x |

√
1+[ f ′(x)]2 dx = 2π

∫ b

a
| x |

√
1+
(dy

dx

)2 dx.
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A B

Figure 7.34: The revolution surface generated by revolving the graph of a continuous function about the x-axis.

Similarly, if x = g(y) is a smooth function on [c,d], then the surface area S.A generated by revolving the graph of g about the y-axis from
y = c to y = d is

S.A = 2π

∫ d

c
| g(y) |

√
1+
[
g′(y)

]2 dy = 2π

∫ d

c
| x |

√
1+
(dx

dy

)2 dy.

If the revolution is about the x-axis, then

S.A = 2π

∫ d

c
| y |

√
1+
[
g′(y)

]2 dy = 2π

∫ d

c
| y |

√
1+
(dx

dy

)2 dy.

Theorem 7.5
1. Let y = f (x) be a smooth function on [a,b].

• If the revolution is about the x-axis, the surface area of revolution is

S.A = 2π

∫ b

a
| y |

√
1+
(

f ′(x)
)2 dx.

• If the revolution is about the y-axis, the surface are of revolution is

S.A = 2π

∫ b

a
| x |

√
1+
(

f ′(x)
)2 dx.

2. Let x = g(y) be a smooth function on [c,d].
• If the revolution is about the y-axis, the surface area of revolution is

S.A = 2π

∫ d

c
| x |

√
1+
(
g′(y)

)2 dy.

• If the revolution is about the x-axis, the surface area of revolution is

S.A = 2π

∫ d

c
| y |

√
1+
(
g′(y)

)2 dy.

Note that the absolute value is for the case when the function is negative for some values in the closed interval.

Example 7.22 Find the surface area generated by revolving the graph of the function
√

4− x2, −2≤ x≤ 2 about the x-axis.

Solution:
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We apply the formula S.A = 2π

∫ b

a
| y |

√
1+( f ′(x))2 dx.

y =
√

4− x2⇒ f ′(x) =
−2x

2
√

4− x2

⇒ ( f ′(x))2 =
x2

4− x2

⇒ 1+( f ′(x))2 =
4

4− x2

⇒
√

1+( f ′(x))2 =
2√

4− x2
.

The area of the revolution surface is S.A = 2π

∫ 2

−2

√
4− x2 2√

4− x2
dx = 4π

[
2+2

]
= 16π.

Example 7.23 Find the surface area generated by revolving the graph of the function y = 2x, 0≤ x≤ 3 about the y-axis.

Solution:

We apply the formula S.A = 2π

∫ b

a
| x |

√
1+( f ′(x))2 dx.

y = 2x⇒ f ′(x) = 2

⇒ ( f ′(x))2 = 4

⇒ 1+( f ′(x))2 = 5

⇒
√

1+( f ′(x))2 =
√

5.

The area of the revolution surface is S.A = 2π

∫ 3

0
| x |
√

5 dx =
√

5π

[
x2
]3

0
= 9
√

5π.

Example 7.24 Find the surface area generated by revolving the graph of the function x = y3 on the interval [0,1] about the y-axis.

Solution:

We apply the formula S.A = 2π

∫ d

c
| x |

√
1+(g′(y))2 dy.

x = y3⇒ g′(y) = 3y2

⇒ (g′(y))2 = 9y4

⇒ 1+(g′(y))2 = 1+9y4

⇒
√

1+(g′(y))2 =

√
1+9y4.

The area of the revolution surface is S.A = 2π

∫ 1

0
y3
√

1+9y4 dy = π

27

[
(1+9y4)

3
2

]1

0
= π

27

[
10
√

10−1
]
.
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Exercise 7.4
1 - 13 Find the arc length of the graph of the given equation over the indicated interval.

1 y = lnx, 1≤ x≤ 3

2 y = ex, 0≤ x≤ 1

3 y = x2 +1, 1≤ x≤ 3

4 y =
√

x, 1≤ x≤ 4

5 y = 1
2 x2, 0≤ x≤ 1

6 y = ln(cos x), π/4≤ x≤ π/3

7 x = 2
3 (y−1)

3
2 , 1≤ y≤ 2

8 x =
√

4− y2, 0≤ y≤ 1

9 x = 4−2y, 0≤ y≤ 2

10 x = cosh y, 1≤ y≤ 3

11 x = y2

3 , 1≤ y≤ 4

12 x = y2, 0≤ y≤ 1

13 x = ln(sec y), 0≤ y≤ π

4

14 - 24 Find the area of the surface generated by revolving the curve about the specified axis.
14 y =

√
4− x2, −1≤ x≤ 1 x-axis

15 y = x2, 1≤ x≤ 2 y-axis

16 y = ex, 0≤ x≤ 1 x-axis

17 y = lnx, 1≤ x≤ 3 y-axis

18 y = sin x, 0≤ x≤ π/2 x-axis

19 x = ey, 1≤ y≤ 2 y-axis

20 9x = y+18, 0≤ x≤ 2 x-axis

21 y = x3, 0≤ x≤ 2 x-axis

22 y = cos 2x, 0≤ x≤ π/6 x-axis

23 y = 3
√

x, 1≤ y≤ 2 y-axis

24 y = 1− x2, 0≤ x≤ 1 y-axis
�
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Review Exercises

1 - 23 Sketch the region bounded by the graphs of the given equations, then find its area.
1 y = x2, y = 5

2 y = x3, x = 0, y = 0, x = 2

3 x = y3, x = 0, y = 1

4 x = y2, x = 0, y =−1, y = 2

5 x2 + y2 = 4,

6 x = 2y, y+6 = 2x, y = 0

7 y = x2, y =
√

x

8 y = x3, y =−x, y = 8

9 x = y3− y, x = 0

10 y = x, x = 2− y, x = 0

11 y = x, y = x−5, x = 0, y = 2

12 x = y2, y = x+1, y = 1, y = 2

13 y = sin x, y = cos x, x = 0, x = π

4

14 y = ex, x = 0, x = ln4

15 y = x, y = 4x, y =−x+2

16 y = e−x,x =−1, x = 2

17 y = sin x, y = cos x, x = 0, x = π

2

18 y = cos 2x, y = 0, x = π

4 , x = π

2

19 y = sin x, x = −π

4 , x = π

2

20 y = sec x, y = 0, x = −π

4 , x = π

4

21 y = lnx, y = 0, x = ln3

22 y2− x2 = 1, x =−1, x = 1

23 y = tan x, y = 0, x = 0, x = π

4

24 - 26 Sketch the region bounded by the graphs of the given equations.
24 x = y2, y− x = 2, y =−2, y = 1.

25 y = x2−4, y = x+2.

26 y = x2, y =−x2, y =−2, y = 2.

27 - 39 Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by
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revolving R about the x-axis.
27 y = 1

x , x = 1, x = 3, y = 0

28 y = x2, y = 4− x2

29 y = x, x+ y = 4, x = 0

30 y = x2, y = 1− x2

31 y = x2, y = 9

32 y = x2, y = x

33 y = x2, y = x3

34 y = 1+ x3, x = 1, x = 2, y = 0

35 y = x2−4x, y = 0

36 y = ex, x = 0, x = 2

37 y = lnx, x = 1, x = 4

38 y = sin x, x = 0, x = π

2 , y = 0

39 y = sin x, y = cos x, x = 0, x = π

8

40 - 52 Sketch the region R bounded by the graphs of the given equations and find the volume of the solid generated by
revolving R about the y-axis.

40 y = x2, x = 0, y = 4

41 y = x3, x = 0, x = 1

42 x = y2, x = 2y

43 x = y2, y = x−2

44 y2 = 1− x, x = 0

45 y = x2−1, x = 0, y = 3

46 y = cos x, x = 0, x = π

2

47 y = cos x, y = sin x, x = 0, x = π

4

48 (x−2)2 + y = 1, y = 0

49 y = 1− x2, y = 1− x

50 y = x2 +1, x = 0, x = 1

51 y = 6−3x, x = 0, y = 0

52 y = 9− x2, x = 2, x = 3, y = 0

53 - 65 Find the arc length of the graph of the given equation over the indicated interval.
53 y = x2, 0≤ x≤ 2

54 y = x+1, 0≤ x≤ 4

55 y = x
3
2 , 1≤ x≤ 2
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56 y = 2(x−1)
3
2 , 1≤ x≤ 5

57 y = x
2
3 , 2≤ x≤ 4

58 y = 2
3 (x

2 +1)
3
2 , 1≤ x≤ 4

59 y = 2
3 x

3
2 , 0≤ x≤ 1

60 y = x3

6 + 1
2x , 1≤ x≤ 3

61 y = e−x, 1≤ x≤ ln4

62 y = 5−2x
3
2 , 0≤ x≤ 11

63 y = lnx, 2≤ x≤ 4

64 y = lnsec x, 0≤ x≤ π

4

65 y =
√

9− x2, 0≤ x≤ 4

66 - 71 Find the area of the surface generated by revolving the given curve about the x-axis.
66 y = 2x, 1≤ x≤ 2

67 y =
√

4− x2, 0≤ x≤ 4

68 y = 1
3 x3, 0≤ x≤ 3

69 y =
√

x, 0≤ x≤ 1

70 y = ex, 0≤ x≤ 1

71 y = cos x, 0≤ x≤ π

2

72 - 77 Find the area of the surface generated by revolving the given curve about the y-axis.
72 x = y2, 0≤ y≤ 3

73 x =
√

1− y2, 0≤ y≤ 4

74 y = 1
2 x2, 0≤ x≤ 3

75 x =
√

a− y2, 0≤ y≤ a
2

76 y = 1− x2, 0≤ x≤ 1

77 x = sin y, 0≤ y≤ π

78 - 84 Choose the correct answer.
78 The area of the region bounded by the graphs of the functions y = x2 and y = 2− x2 is equal to

(a) 2 (b) 4 (c) 3
8 (d) 8

3

79 The area of the region bounded by the graphs of the functions y = x and y =−x and y = 1 is equal to
(a) 1 (b) 0 (c) 2 (d) 1

2

80 The area of the region bounded by the graphs of the functions y = 2x and y = x and 0≤ x≤ 1 is equal to
(a) 1

2 (b) 1
4 (c) 2 (d) 1

3

81 The arc length of the graph of y = 4x from A(0,0) to B(1,4) is equal to
(a)
√

17 (b)
√

5 (c) 4
√

17 (d) 4
√

5

82 The area of the region bounded by the graphs of the functions x =−y2 and x =−1 is equal to
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(a) 4
3 (b) 1

9 (c) 1
6 (d) 8

3

83 The area of the region bounded by the graphs of the functions y = cos x, y = sin x, x = 0 and x = π

4 is equal to
(a)
√

2−1 (b) 0 (c)
√

2+1 (d) 1−
√

2

84 The area of the region bounded by the graphs of the functions x = y2 and x = 2− y2 is equal to
(a) 1

3 (b) 8 (c) 1 (d) 8
3
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Chapter 8

Parametric Equations and Polar
Coordinates

8.1 Parametric Equations of Plane Curves

In this section, rather than considering only function y = f (x), it is sometimes convenient to view both x and y as functions of a third
variable t (called a parameter).

Definition 8.1 A plane curve is a set of ordered pairs ( f (t),g(t)), where f and g are continuous on an interval I.

If we are given a curve C, we can express it in a parametric form x(t) = f (t) and y(t) = g(t). The resulting equations are called parametric
equations. Each value of t determines a point (x,y), which we can plot in a coordinate plane. As t varies, the point (x,y) = ( f (t),g(t))
varies and traces out a curve C, which we call a parametric curve.

Definition 8.2 Let C be a curve consists of all ordered pairs
(

f (t),g(t)
)
, where f and g are continuous on an interval I. The

equations
x = f (t), y = g(t) for t ∈ I

are parametric equations for C with parameter t.

Example 8.1 Consider the plane curve C given by y = x2.

Figure 8.1

If we consider the interval −1≤ x≤ 2, then we have
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Figure 8.2

Now, let x = t and y = t2 for −1≤ t ≤ 2. We have the same graph where the last equations are called parametric equations for the curve
C.

Remark 8.1
1. The parametric equations give the same graph of y = f (x).

2. To find the parametric equations, we introduce a third variable t. Then, we rewrite x and y as functions of t.

3. The parametric equations give the orientation of the curve C indicated by arrows and determined by increasing values of
the parameter as shown in Figure 8.2.

Example 8.2 Write the curve given by x(t) = 2t +1 and y(t) = 4t2−9 as y = f (x).

Solution:
Since x = 2t +1, then t = (x−1)/2. This implies

y = 4t2−9 = 4
(x−1

2
)2−9⇒ y = x2−2x−8.

Example 8.3 Sketch and identify the curve defined by the parametric equations

x = 5cos t, y = 2sin t, 0≤ t ≤ 2π.

Solution:
First, find the equation in x and y. Since x = 5cos t and y = 2sin t, then cos t = x/5 and sin t = y/2.

By using the identity cos2 t + sin2 t = 1, we have

x2

25
+

y2

4
= 1

Thus, the curve is an ellipse.

Figure 8.3

Example 8.4 The curve C is given parametrically. Find an equation in x and y, then sketch the graph and indicate the orientation.
(1) x = sin t, y = cos t, 0≤ t ≤ 2π.
(2) x = t2, y = 2ln t, t ≥ 1.

Solution:
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(1) By using the identity cos2 t + sin2 t = 1, we obtain

x2 + y2 = 1.

Therefore, the curve is a circle.

Figure 8.4

The orientation can be indicated as follows:

t 0 π

2 π
3π

2 2π

x 0 1 0 −1 0
y 1 0 −1 0 1

(x,y) (0,1) (1,0) (0,−1) (−1,0) (0,1)

As shown in Figure 8.5, the orientation is indicated by arrows.

(2) Since y = 2ln t = ln t2, then y = lnx.

Figure 8.5

The orientation of the curve C for t ≥ 1:

t 1 2 3
x 1 4 9
y 0 2ln2 2ln3

(x,y) (1,0) (4,2ln2) (9,2ln3)

The orientation of the curve C is determined by increasing values of the parameter t.

8.1.1 Tangent Lines

Suppose that f and g are differentiable functions. We want to find the tangent line to a smooth curve C given by the parametric equations
x = f (t) and y = g(t) where y is a differentiable function of x. From the chain rule, we have

dy
dt

=
dy
dx

dx
dt

.

If dx/dt 6= 0, we can solve for dy/dx to have the tangent line to the curve C:
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y
′
=

dy
dx

=
dy/dt
dx/dt

if
dx
dt
6= 0

Remark 8.2
• If dy/dt = 0 such that dx/dt 6= 0, the curve has a horizontal tangent line.
• If dx/dt = 0 such that dy/dt 6= 0, the curve has a vertical tangent line.

Example 8.5 Find the slope of the tangent line to the curve at the indicated value.
(1) x = t +1, y = t2 +3t; at t =−1
(2) x = t3−3t, y = t2−5t−1; at t = 2
(3) x = sin t, y = cos t; at t = π

4

Solution:
(1) The slope of the tangent line at P(x,y) is

y
′
=

dy
dx

=
dy/dt
dx/dt

=
2t +3

1
= 2t +3.

The slope of the tangent line at t =−1 is 1.

(2) The slope of the tangent line is

y
′
=

dy
dx

=
dy/dt
dx/dt

=
2t−5
3t2−3

.

The slope of the tangent line at t = 2 is −1
9 .

(3) The slope of the tangent line is

y
′
=

dy
dx

=
dy/dt
dx/dt

=
−sin t
cos t

=− tan t.

The slope of the tangent line at t = π

4 is −1.

Example 8.6 Find the equations of the tangent line and the vertical tangent line at t = 2 to the curve C given parametrically x = 2t, y =
t2−1.

Solution:
The slope of the tangent line at P(x,y) is

y
′
=

dy
dx

=
dy/dt
dx/dt

=
2t
2

= t.

The slope of the tangent line at t = 2 is m = 2. Thus, the slope of the vertical tangent line is −1
m = −1

2 .
At t = 2, we have (x0,y0) = (4,3). Therefore, the tangent line is

y−3 = 2(x−4) Point-Slope form: y− y0 = m(x− x0)

and the vertical tangent line is

y−3 =−1
2
(x−4).

Example 8.7 Find the points on the curve C at which the tangent line is either horizontal or vertical.
(1) x = 1− t, y = t2.

(2) x = t3−4t, y = t2−4.

Solution:
(1) The slope of the tangent line is m = dy

dx =
dy/dt
dx/dt =

2t
−1 =−2t.

For the horizontal tangent line, the slope m = 0. This implies −2t = 0 and then, t = 0. At this value, we have x = 1 and y = 0.
Thus, the graph of C has a horizontal tangent line at the point (1,0).
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For the vertical tangent line, the slope −1
m = 0. This implies 1

2t = 0, but this equation cannot be solved i.e., we cannot find values
for t to satisfy 1

2t = 0. Therefore, there are no vertical tangent lines.

(2) The slope of the tangent line is m = dy
dx =

dy/dt
dx/dt =

2t
3t2−4 .

For the horizontal tangent line, the slope m = 0. This implies 2t
3t2−4 = 0 and this is acquired if t = 0. At t = 0, we have x = 0 and

y =−4. Thus, the graph of C has a horizontal tangent line at the point (0,−4).

For the vertical tangent line, the slope −1
m = 0. This implies −3t2+4

2t = 0 and this is acquired if t =± 2√
3

. At t = 2√
3

, we obtain

x =− 16
3
√

3
and y =− 8

3 . At t =− 2√
3

, we obtain x = 16
3
√

3
and y =− 8

3 . Thus, the graph of C has vertical tangent lines at the points

(− 16
3
√

3
,− 8

3 ) and ( 16
3
√

3
,− 8

3 ).

Let the curve C has the parametric equations x = f (t), y = g(t) where f and g are differentiable functions. To find the second derivative
d2y
dx2 , we use the formula:

d2y
dx2 =

d(y
′
)

dx
=

dy
′
/dt

dx/dt

Note that d2y
dx2 6==

d2y/dt2

d2x/dt2 .

Example 8.8 Find dy
dx and d2y

dx2 at the indicated value.
(1) x = t, y = t2−1 at t = 1.
(2) x = sin t, y = cos t at t = π

3 .

Solution:
(1) dy

dt = 2t and dx
dt = 1. Hence, dy

dx =
dy/dt
dx/dt = 2t, then at t = 1, we have dy

dx = 2(1) = 2.

The second derivative is d2y
dx2 =

dy′/dt
dx/dt = 2.

(2) dy
dt =−sin t and dx

dt = cos t. Thus, dy
dx =

dy/dt
dx/dt =− tan t, then at t = π

3 , we have dy
dx =−

√
3.

The second derivative is d2y
dx2 =

dy′/dt
dx/dt = −sec2 t

cos t =−sec3 t. At t = π

3 , we have d2y
dx2 =−8

8.1.2 Arc Length and Surface Area of Revolution

Let C be a smooth curve has the parametric equations x = f (t), y = g(t) where a≤ t ≤ b. Assume that the curve C does not intersect
itself and f ′ and g′ are continuous.

Let P = {t0, t1, t2, ..., tn} is a partition of the interval
[a,b]. Let Pk = (x(tk),y(tk)) be a point on C
corresponding to tk. If d(Pk−1,Pk) is the length of
the line segment Pk−1Pk, then the length of the line
given in Figure 8.6 is

Lp =
n

∑
k=1

d(Pk−1,Pk)

Figure 8.6

In the previous chapter, we found that L = lim
||P||→0

Lp. From the distance formula,

d(Pk−1,Pk) =
√
(∆xk)2 +(∆yk)2

Therefore, the length of the arc from t = a to t = b is approximately

L≈ lim
||P||→0

n

∑
k=1

√
(∆xk)2 +(∆yk)2 = lim

||P||→0

n

∑
k=1

√
(∆xk/∆tk)2 +(∆yk/∆tk)2∆tk
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From the mean value theorem, there exists numbers wk,zk ∈ (tk−1, tk) such that

∆xk

∆tk
=

f (tk)− f (tk−1)

tk− tk−1
= f ′(wk),

∆yk

∆tk
=

g(tk)−g(tk−1)

tk− tk−1
= g′(zk)

By substitution, we obtain

L≈ lim
||P||→0

n

∑
k=1

√[
f ′(wk)

]2
+
[
g′(wk)

]2
If wk = zk for every k, then we have Riemann sums for

√[
f ′(t)

]2
+
[
g′(t)

]2. The limit of these sums is

L =
∫ b

a

√[
f ′(t)

]2
+
[
g′(t)

]2
.

In the following, we determine a formula to evaluate the surface area of revolution of parametric curves. Let the curve C has the
parametric equations x = f (t), y = g(t) where a≤ t ≤ b and f ′ and g′ are continuous. Let the curve C does not intersect itself, except
possibly at the point corresponding to t = a and t = b. If g(t)≥ 0 throughout [a,b], then the area of the revolution surface generated by
revolving C about the x-axis is

S.A = 2π

∫ b

a
x
√

1+[ f ′(x)]2 dx = 2π

∫ b

a
g(t)

√(dx
dt

)2
+
(dy

dt

)2 dt.

Similarly, if the revolution is about the y-axis such that f (t)≥ 0 over [a,b], the area of the revolution surface is

S.A = 2π

∫ b

a
f (t)

√(dx
dt

)2
+
(dy

dt

)2 dt.

Theorem 8.1 Let C be a smooth curve has the parametric equations x = f (t), y = g(t) where a ≤ t ≤ b, and f ′ and g′ are
continuous. Assume that the curve C does not intersect itself, except possibly at the point corresponding to t = a and t = b.

1. The arc length of the curve is

L =
∫ b

a

√(dx
dt

)2
+
(dy

dt

)2 dt.

2. If y≥ 0 over [a,b], the surface area of revolution generated by revolving C about the x-axis is

S.A = 2π

∫ b

a
y

√(dx
dt

)2
+
(dy

dt

)2 dt ,

3. If x≥ 0 over [a,b], the surface area of revolution generated by revolving C about the y-axis is

S.A = 2π

∫ b

a
x

√(dx
dt

)2
+
(dy

dt

)2 dt.

Example 8.9 Find the arc length of the curve x = et cos t, y = et sin t, 0≤ t ≤ π

2 .

Solution:
First, we find dx

dt and dy
dt .

dx
dt

= et cos t− et sin t⇒
(dx

dt

)2
= (et cos t− et sin t)2 ,

dy
dt

= et sin t + et cos t⇒
(dy

dt

)2
= (et sin t + et cos t)2.

Thus, (dx
dt

)2
+
(dy

dt

)2
= e2t cos2 t−2e2t cos t sin t + e2t sin2 t + e2t sin2 t +2e2t sin t cos t + e2t sin2 t

= e2t + e2t = 2e2t .

Therefore, the arc length of the curve is L =
√

2
∫ π

2
0 et dt =

√
2
[

et
] π

2

0
=
√

2
(
e

π

2 −1
)
.
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Example 8.10 Find the surface area of the solid obtained by revolving the curve x = 3cos t, y = 3sin t, 0≤ t ≤ π

3 about the x-axis.

Solution: Since the revolution is about the x-axis, we apply the formula

S.A = 2π

∫ b

a
y

√(dx
dt

)2
+
(dy

dt

)2 dt.

We find dx
dt and dy

dt as follows:

dx
dt

=−3sin t⇒
(dx

dt

)2
= 9sin2 t and

dy
dt

= 3cos t⇒
(dx

dt

)2
= 9cos2 t.

Thus,

(dx
dt

)2
+
(dy

dt

)2
= 9(sin2 t + cos2 t) = 9.

This implies

S.A = 18π

∫ π

3

0
sin t dt =−18π

[
cos t

] π

3

0
=−18π

[1
2
−1
]
= 9π.

Example 8.11 Find the surface area of the solid obtained by revolving the curve x = t3, y = t, 0≤ t ≤ 1 about the y-axis.

Solution: Since the revolution is about the y-axis, we apply the formula

S.A = 2π

∫ b

a
x

√(dx
dt

)2
+
(dy

dt

)2 dt.

We find dx
dt and dy

dt as follows:

dx
dt

= 3t2⇒
(dx

dt

)2
= 9t4 and

dy
dt

= 1⇒
(dx

dt

)2
= 1.

Thus,

(dx
dt

)2
+
(dy

dt

)2
= 9t4 +1.

This implies

S.A = 2π

∫ 1

0
t3
√

9t4 +1 dt =
π

18

[(
9t4 +1

) 3
2
]1

0
=

π

18

[
10
√

10−1
]
.
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Exercise 8.1
1 - 8 The curve C is given parametrically. Find an equation in x and y, then sketch the graph and indicate the orientation.

1 x = t,y = 2t +1,1≤ t ≤ 3

2 x = cos 2t,y = sin t,0≤ t ≤ π/2

3 x = 2t,y = (2t)2,−1≤ t ≤ 1

4 x = 1+ cos t,y = 1+ sin t,0≤ t ≤ 2π

5 x = ln t,y = et ,1≤ t ≤ 4

6 x = 3cos t,y = 3sin t,0≤ t ≤ 2π

7 x = 3t +2,y = t−1,−1≤ t ≤ 5

8 x = t,y = t3,1≤ t ≤ 3

9 - 16 Find dy
dx and d2y

dx2 at the indicated value.
9 x = t2,y = t3 +1 at t = 1

10 x = t/3,y = t3/2 at t = 2

11 x =
√

t3,y = 2t +1 at t = 1

12 x = t2 +1,y = 1− t3 at t = 3

13 x = et ,y = e−t +1 at t = 0

14 x = t + cos t,y = sin t at t = π/4

15 x = t cos t,y = t sin t at t = 0

16 x = 3
√

t,y = t2 at t = 1

17 - 24 Find the slope of the tangent line to the curve at the indicated value.
17 x = 2t,y = (2t)2 at t = 1

18 x =
√

t3,y = 2t +1 at t = 2

19 x = t2 +1,y = 1− t3 at t = 3

20 x = cos 2t,y = sin t at t = π/3

21 x = 3t +2,y = t−1 at t = 1

22 x = t + cos t,y = sin t at t = π/6

23 x = t,y = t3, at t = 1

24 x = 3
√

t,y = t2 at t = 5

25 - 30 Find the points on the curve C at which the tangent line is either horizontal or vertical.
25 x = t,y = t3, t ∈ R

26 x = 4t,y = t2, t ∈ R

27 x = ln t,y = et , t > 0

28 x = t2,y = t3−3t, t ∈ R

29 x = 3t2−6t,y =
√

t, t ≥ 0

30 x = 1− sin t,y = 2cos t, t ∈ R
31 - 38 Find the length of the curve.

31 x = 3t +2,y = t−1,−1≤ t ≤ 3

32 x = 3t2,y = 2t3,0≤ t ≤ 2

33 x = t,y = t2,1≤ t ≤ 4

34 x = sin t,y = cos t,π/6≤ t ≤ π/4

35 x = ln t,y = t,1≤ t ≤ 4

36 x = 1+ cos t,y = 1+ sin t,0≤ t ≤ π

37 x = 3cos t,y = 3sin t,0≤ t ≤ π/4

38 x = t2,y = t3,0≤ t ≤ 1/2

39 - 46 Find the area of the surface generated by revolving the curve about the specified axis.
39 x = t2, y = t, 0≤ t ≤ 1 x-axis

40 x = et cos t, y = et sin t, 0≤ t ≤ π

2 x-axis

41 x = t, y = t2, 1≤ t ≤ 4 y-axis

42 x = t, y =
√

t, 0≤ t ≤ 2 x-axis

43 x = t2, y = t, 0≤ t ≤ 2 x-axis

44 x = 1+ cos t, y = 1+ sin t, 0≤ t ≤ π y-axis

45 x = sin2 t, y = cos2 t, 0≤ t ≤ π/2 y-axis

46 x = 3t2, y = t, 0≤ t ≤ 2 x-axis
�
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8.2 Polar Coordinates System

Previously, we used Cartesian (or Rectangular) coordinates to determine points (x,y). In this section, we are going to study a new
coordinate system called polar coordinate system. Figure 8.7 shows the Cartesian and polar coordinates system.

Definition 8.3 The polar coordinate system is a two-dimensional system consisted of a pole and a polar axis (half line). Each
point P on a plane is determined by a distance r from a fixed point O called the pole (or origin) and an angle θ from a fixed
direction.

Figure 8.7: The Cartesian and polar coordinates. The Cartesian coordinate system is on the left and the polar coordinate system is on the right.

Remark 8.3
1. From the definition, the point P in the polar coordinate system is represented by the ordered pair (r,θ) where r, θ are

called polar coordinates.

2. The angle θ is positive if it is measured counterclockwise from the axis, but if it is measured clockwise the angle is
negative.

3. In the polar coordinates, if r > 0, the point P(r,θ) will be in the same quadrant as θ; if r < 0, it will be in the quadrant on
the opposite side of the pole with the half line. That is, the points P(r,θ) and P(−r,θ) lie in the same line through the
pole O, but on opposite sides of O. The point P(r,θ) with the distance |r| from O and the point P(−r,θ) with the half
distance from O.

4. In the Cartesian coordinate system, every point has only one representation while in a polar coordinate system each
point has many representations. The following formula gives all representations of a point P(r,θ) in the polar coordinate
system

P(r,θ+2nπ) = P(r,θ) = P(−r,θ+(2n+1)π), n ∈ Z.

Example 8.12 Plot the points whose polar coordinates are given.
(1) (1,5π/4)

(2) (1,−3π/4)

(3) (1,13π/4)

(4) (−1,π/4)
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Solution:

(1)

(2)

(3)

(4)

Figure 8.8

8.2.1 The Relationship between Rectangular and Polar Coordinates

Let (x,y) be the rectangular coordinates and (r,θ) be the polar coordinates of the same point P. Let the pole be at the origin of the
Cartesian coordinates system, and let the polar axis be the positive x-axis and the line θ = π

2 be the positive y-axis as shown in Figure
8.9.

In the triangle, we have

cos θ =
x
r
⇒ x = r cos θ ,

sin θ =
y
r
⇒ y = r sin θ.

Hence,

x2 + y2 = (r cosθ)2 +(r sinθ)2,

= r2(cos2
θ+ sin2

θ).

Figure 8.9: The relationship between the rectangular
and polar coordinates.

This implies, x2 + y2 = r2 and tan θ = y
x for x 6= 0.
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The previous relationships can be summarized as follows:

x = r cos θ, y = r sin θ

tan θ =
y
x

for x 6= 0

x2 + y2 = r2

Example 8.13 Convert from polar coordinates to rectangular coordinates.
(1) (1,π/4)

(2) (2,π)

(3) (2,−2π/3)

(4) (4,3π/4)

Solution:
(1) r = 1 and θ = π

4 .

x = r cos θ = (1)cos
π

4
=

1√
2
,

y = r sin θ = (1)sin
π

4
=

1√
2
.

Hence, (x,y) = ( 1√
2
, 1√

2
).

(2) r = 2 and θ = π.
x = r cos θ = 2cos π =−2 ,

y = r sin θ = 2sin π = 0.

Hence, (x,y) = (−2,0).

(3) r = 2 and θ = −2π

3 .

x = r cos θ = 2cos
−2π

3
=−1 ,

y = r sinθ = 2sin
−2π

3
=−
√

3.

Hence, (x,y) = (−1,−
√

3).

(4) r = 4 and θ = 3π

4 .

x = r cos θ = 4cos
3π

4
=−2

√
2 ,

y = r sin θ = 4sin
3π

4
= 2
√

2.

This implies (x,y) = (−2
√

2,2
√

2).

Example 8.14 Convert from rectangular coordinates to polar coordinates for r ≥ 0 and 0≤ θ≤ π.
(1) (5,0)

(2) (2
√

3,−2)

(3) (−2,2)

(4) (1,1)

Solution:

(1) We have x = 5 and y = 0. By using x2 + y2 = r2, we obtain r = 5. Also, we have tanθ = y
x = 0

5 = 0, then θ = 0. This implies
(r,θ) = (5,0).

(2) We have x = 2
√

3 and y = −2. Use x2 + y2 = r2 to have r = 4. Also, since tan θ = y
x = −2

2
√

3
= −1√

3
, then θ = 5π

6 . Hence,

(r,θ) = (4, 5π

6 ).

(3) We have x =−2 and y = 2. Then, r2 = x2 +y2 = (−2)2 +22 and this implies r = 2
√

2. Also, tan θ = y
x = 2

−2 =−1, then θ = 3π

4 .
This implies (r,θ) = (2

√
2, 3π

4 ).
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(4) We have x = 1 and y = 1. By using x2 + y2 = r2, we have r =
√

2. Also, by using tan θ = y
x = 1, we obtain θ = π

4 . This implies,
(r,θ) = (

√
2, π

4 ).

A polar equation is an equation in r and θ, r = f (θ). A solution of the polar equation is an ordered pair (r0,θ0) satisfies the equation i.e.,
r0 = f (θ0). For example, r = 2cos θ is a polar equation and (1, π

3 ), and (
√

2, π

4 ) are solutions of that equation.

Example 8.15 Find a polar equation that has the same graph as the equation in x and y.
(1) x = 7

(2) y =−3

(3) x2 + y2 = 4

(4) y2 = 9x

Solution:
(1) x = 7⇒ r cos θ = 7⇒ r = 7secθ.

(2) y =−3⇒ r sin θ =−3⇒ r =−3cscθ.

(3) x2 + y2 = 4⇒ r2 cos2
θ+ r2 sin2

θ = 4

⇒ r2(cos2
θ+ sin2

θ) = 4

⇒ r2 = 4 .

(4) y2 = 9x⇒ r2 sin2
θ = 9r cos θ

⇒ r sin2
θ = 9cos θ

⇒ r = 9cot θcsc θ.

Example 8.16 Find an equation in x and y that has the same graph as the polar equation.
(1) r = 3

(2) r = sin θ

(3) r = 6cos θ

(4) r = sec θ

Solution:
(1) r = 3⇒

√
x2 + y2 = 3⇒ x2 + y2 = 9.

(2) r = sinθ⇒ r = y
r ⇒ r2 = y⇒ x2 + y2 = y⇒ x2 + y2− y = 0.

(3) r = 6cos θ⇒ r = 6 x
r ⇒ r2 = 6x⇒ x2 + y2−6x = 0.

(4) r = sec θ⇒ r = 1
cos θ

⇒ r cos θ = 1⇒ x = 1.

8.2.2 Tangent Line to Polar Curves

Theorem 8.2 Let r = f (θ) be a polar curve where f ′ is continuous. The slope of the tangent line to the graph of r = f (θ) is

dy
dx

=
dy/dθ

dx/dθ
=

r cos θ + sin θ(dr/dθ)

−r sin θ + cos θ(dr/dθ)
.

Proof. Since r = f (θ) is a polar curve, then
x = f (θ)cos θ , y = f (θ)sin θ.

From the chain rule, we have
dx
dθ

=− f (θ)sin θ+ f ′(θ)cos θ =−r sin θ+
dr
dθ

cos θ ,

dy
dθ

= f (θ)cos θ+ f ′(θ)sin θ = r cos θ+
dr
dθ

sin θ.

If dx
dθ
6= 0, the slope of the tangent line to the graph of r = f (θ) is

dy
dx

=
dy/dθ

dx/dθ
=

r cos θ + sin θ(dr/dθ)

−r sin θ + cos θ(dr/dθ)
. �
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Remark 8.4
1. If dy

dθ
= 0 such that dx

dθ
6= 0, the curve has a horizontal tangent line.

2. If dx
dθ

= 0 such that dy
dθ
6= 0, the curve has a vertical tangent line.

3. If dx
dθ
6= 0 at θ = θ0, the slope of the tangent line to the graph of r = f (θ) is

r0 cos θ0 + sin θ0(dr/dθ)θ=θ0

−r0 sin θ0 + cos θ0(dr/dθ)θ=θ0

, where r0 = f (θ0)

Example 8.17 Find the slope of the tangent line to the graph of r = sin θ at θ = π

4 .

Solution:

x = r cos θ⇒ x = sin θcos θ⇒ dx
dθ

= cos2
θ− sin2

θ ,

y = r sin θ⇒ y = sin2
θ⇒ dy

dθ
= 2sin θcos θ.

Hence,

dy
dx

=
2sin θcos θ

cos2 θ− sin2
θ
.

At θ = π

4 , dy
dθ

= 1 and dx
dθ

= 0. Thus, the slope is undefined. In this case, the curve has a vertical tangent line.

Example 8.18 Find the points on the curve r = 2+2cos θ for 0≤ θ≤ 2π at which tangent lines are either horizontal or vertical.

Solution:

x = r cos θ = 2cos θ+2cos2
θ⇒ dx

dθ
=−2sin θ−4cos θsin θ ,

y = r sin θ = 2sin θ+2cos θsin θ⇒ dy
dθ

= 2cos θ−2sin2
θ+2cos2

θ.

For a horizontal tangent line,

dy
dθ

= 0⇒ 2cos θ−2sin2
θ+2cos2

θ = 0⇒ 2cos2
θ+ cos θ−1 = 0⇒ (2cos θ−1)(cos θ+1) = 0.

This implies θ = π, θ = π/3, or θ = 5π/3. Therefore, the tangent line is horizontal at (0,π), (3,π/3) or (3,5π/3).

For a vertical tangent line,

dx
dθ

= 0⇒ sin θ(2cos θ+1) = 0.

This implies θ = 0, θ = π, θ = 2π/3, or θ = 4π/3. However, we have to ignore θ = π since at this value dy/dθ = 0. Therefore, the
tangent line is vertical at (4,0), (1,2π/3), or (1,4π/3).

8.2.3 Graphs in Polar Coordinates

Before starting sketching polar curves, we study symmetry about the polar axis, or the vertical line θ = π

2 or about the pole.
Symmetry in Polar Coordinates
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Theorem 8.3
1. Symmetry about the polar axis.

The graph of r = f (θ) is symmetric with respect to the polar axis if replacing (r,θ) with (r,−θ) or with (−r,π−θ) does
not change the equation.

2. Symmetry about the vertical line θ = π

2 .
The graph of r = f (θ) is symmetric with respect to the vertical line if replacing (r,θ) with (r,π−θ) or with (−r,−θ)
does not change the equation.

3. Symmetry about the pole θ = 0.
The graph of r = f (θ) is symmetric with respect to the pole if replacing (r,θ) with (−r,θ) or with (r,θ+π) does not
change the equation.

A B C

Figure 8.10: Symmetry of the curves in the polar coordinate system. (A) symmetry about the polar axis, (B) symmetry about the vertical line θ = π

2 , and
(C) symmetry about the pole θ = 0.

Example 8.19 (1) The graph of r = 4cos θ is symmetric about the polar axis since

4cos (−θ) = 4cos θ and −4cos(π−θ) = 4cos θ.

(2) The graph of r = 2sin θ is symmetric about the vertical line θ = π

2 since

2sin (π−θ) = 2sin θ and −2sin (−θ) = 2sin θ.

(3) The graph of r2 = a2 sin 2θ is symmetric about the pole since

(−r)2 = a2 sin 2θ,

⇒ r2 = a2 sin 2θ.

and
r2 = a2 sin

(
2(π+θ)

)
,

= a2 sin (2π+2θ),

r2 = a2 sin 2θ.

Some Special Polar Graphs
Lines in polar coordinates
1. The polar equation of a straight line ax+by = c is r = c

acos θ+bsin θ
.

Since x = r cos θ and y = r sin θ, then

ax+by = c⇒ r(cos θ+bsin θ) = c⇒ r =
c

(cos θ+bsin θ)
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2. The polar equation of a vertical line x = k is r = k sec θ .
Let x = k, then r cos θ = k. This implies r = k

cos θ
= k sec θ.

3. The polar equation of a horizontal line y = k is r = k csc θ.
Let y = k, then r sin θ = k. This implies r = k

sin θ
= r csc θ.

4. The polar equation of a line that passes the origin point and makes an angle θ0 with the positive x-axis is θ = θ0.

Example 8.20 Sketch the graph of θ = π

4 .

Solution:

We are looking for a graph of the set of polar points

{(r,θ) |,r ∈ R}.

Figure 8.11

Circles in polar coordinates
1. The circle equation with center at the pole O and radius |a| is r = a.

2. The circle equation with center at (a,0) and radius |a| is r = 2acos θ.

3. The circle equation with center at (0,a) and radius |a| is r = 2asin θ.

Figure 8.12: Circles in polar coordinates.

Example 8.21 Sketch the graph of r = 4sin θ.

Solution:
Note that the graph of r = 4sin θ is symmetric about the vertical line θ = π

2 since 4sin (π−θ) = 4sin θ. Therefore, we restrict our
attention to the interval [0,π/2] and by the symmetry, we complete the graph. The following table displays polar coordinates of some
points on the curve:

θ 0 π

6
π

4
π

3
π

2
r 0 2 4/

√
2 2

√
3 4

Cardioid curves
1. r = a(1± cos θ) 2. r = a(1± sin θ)

r = a(1+ cos θ) r = a(1− cos θ) r = a(1+ sin θ) r = a(1− sin θ)
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Figure 8.13

Figure 8.14: Cardioid curves.

Example 8.22 Sketch the graph of r = a(1− cos θ) where a > 0.

Solution:
The curve is symmetric about the polar axis since cos (−θ) = cos θ. Therefore, we restrict our attention to the interval [0,π] and by the
symmetry, we complete the graph. The following table displays some solutions of the equation r = a(1− cos θ):

θ 0 π

3
π

2
2π

3 π

r 0 a/2 a 3a/2 2a
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Figure 8.15

Limaçons curves
1. r = a±bcos θ 2. r = a±bsin θ

1. r = a±bcos θ

(a) r = a+bcos θ

(b) r = a−bcos θ

Figure 8.16: Limaçons curves r = a±bcos θ.
2. r = a±bsin θ

(a) r = a+bsin θ
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(b) r = a−bsin θ

Figure 8.17: Limaçons curves r = a±bsin θ.

Roses
1. r = a cos (nθ) 2. r = a sin (nθ) where n ∈ N.

1. r = a cos (nθ)

2. r = a sin (nθ)

Figure 8.18: Roses in polar coordinates.
Note that if n is odd, there are n petals; however, if n is even, there are 2n petals.
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Spiral of Archimedes
r = a θ

Figure 8.19: Spiral of Archimedes.

Exercise 8.2
1 - 8 Find the corresponding rectangular coordinates for the given polar coordinates.

1 (1, π

2 )

2 (−1, π

2 )

3 (2, π

4 )

4 (3,π)

5 ( 1
2 ,

3π

2 )

6 (−3,2π)

7 (7, 3π

4 )

8 (3, π

6 )

9 - 16 Find the corresponding polar coordinates for the given rectangular coordinates for r ≥ 0 and 0≤ θ≤ π.
9 (1,1)

10 (1,
√

3)

11 (−1,1)

12 (
√

3,3)

13 (2,
√

2)

14 (3,0)

15 (4,2)

16 (−3,−3)

17 - 24 Find a polar equation that has the same graph as the equation in x and y and vice versa.
17 x = 9

18 x2 + y2 = 1

19 r = csc θ

20 r = 2cos θ

21 x2 = 3y

22 x2− y2 = 16

23 r = 3
1−sin θ

24 r = 3−2sin θ

25 - 28 Sketch the curve of the polar equations.
25 r = sec θ

26 r = 2cos θ

27 r = 2+2sin θ

28 r = 3+2cos θ

29 - 33 Find the slope of the tangent line to the graph at θ. Then find the points on the curve at which the tangent lines are either
horizontal or vertical.

29 r = 2sin θ at θ = π

3

30 r = 3+2cos θ at θ = π

4

31 r = cos 7θ at θ = π

2

32 r = 1+ sin θ at θ = π

4

33 r = 1− cos θ at θ = π

6

�

8.3 Area in Polar Coordinates

Let r = f (θ) be a continuous function on the interval [α,β] such that 0≤ α≤ β≤ 2π. Let f (θ)≥ 0 over that interval and R be a polar
region bounded by the polar equations r = f (θ), θ = α and θ = β as shown in Figure 8.20.
To find the area of R, we assume P = {θ1,θ2, ...,θn} is a regular partition of the interval [α,β]. Consider the interval [θk−1,θk] where
∆θk = θk−θk−1. By choosing ωk ∈ [θk−1,θk], we have a circular sector where its angle and radius are ∆θk and f (ωk), respectively.
The area between θk−1 and θk can be approximated by the area of a circular sector.
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Figure 8.20: Areas in polar coordinates.

Let f (uk) and f (vk) be maximum and minimum values of f on
[θk−1,θk]. From Figure 8.21, we have

1
2
[

f (uk)
]2

∆θk︸ ︷︷ ︸
Area of the sector of radius f (uk)

≤ ∆Ak ≤
1
2
[

f (vk)
]2

∆θk︸ ︷︷ ︸
Area of the sector of radius f (vk)

Figure 8.21
By summing from k = 1 to k = n, we obtain

n

∑
k=1

1
2
[

f (uk)
]2

∆θk f (uk)≤
n

∑
k=1

∆Ak︸ ︷︷ ︸
=A

≤
n

∑
k=1

1
2
[

f (vk)
]2

∆θk f (vk)

The limit of the sums as the norm ||P|| approaches zero,

lim
||P||→0

n

∑
k=1

1
2
[

f (uk)
]2

∆θk f (uk) = lim
||P||→0

n

∑
k=1

1
2
[

f (uk)
]2

∆θk f (vk) =
∫

β

α

1
2
[

f (θ)
]2 dθ .



162

Therefore,

A =
1
2

∫
β

α

(
f (θ)

)2 dθ

Similarly, assume f and g are continuous on the interval [α,β] such that f (θ)≥ g(θ). The area of the polar region bounded by the graphs
of f and g on the interval [α,β] is

A =
1
2

∫
β

α

[(
f (θ)

)2−
(
g(θ)

)2
]

dθ

Example 8.23 Find the area of the region bounded by the graph of the polar equation.

(1) r = 3

(2) r = 2cos θ

(3) r = 4sin θ

(4) r = 6−6sin θ

Solution:

(1) The area is

A =
1
2

∫ 2π

0
32 dθ =

9
2

∫ 2π

0
dθ =

9
2

[
θ

]2π

0
= 9π.

Note that one can evaluate the area in the first quadrant and multiply
the result by 4 to find the area of the whole region i.e.,

A = 4
(1

2

∫ π

2

0
32 dθ

)
= 18

∫ π

2

0
dθ = 18

[
θ

] π

2

0
= 9π.

Figure 8.22

(2) We find the area of the upper half circle and multiply the result by 2
as follows:

A = 2
(1

2

∫ π

2

0
(2cos θ)2 dθ

)
=

∫ π

2

0
4cos2

θ dθ

= 2
∫ π

2

0
(1+ cos 2θ) dθ

= 2
[
θ+

sin 2θ

2

] π

2

0

= 2
[

π

2
−0
]

= π.

Figure 8.23
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(3) The area of the region is

A =
1
2

∫
π

0
(4sin θ)2 dθ =

16
4

∫
π

0
(1− cos 2θ) dθ

= 4
[
θ− sin 2θ

2

]π

0

= 4
[
π−0

]
= 4π.

Figure 8.24

(4) The area of the region is

A =
1
2

∫ 2π

0
36(1− sin θ)2 dθ

= 18
∫ 2π

0
(1−2sin θ+ sin2

θ) dθ

= 18
[
θ+2cos θ+

θ

2
− sin 2θ

4

]2π

0

= 18
[
(2π+2+π)−2

]
= 54π.

Figure 8.25

Example 8.24 Find the area of the region that is inside the graphs of the equations r = sinθ and r =
√

3cosθ.

Solution:
First, we find the intersection points of the two curves

sin θ =
√

3cos θ⇒ tan θ =
√

3⇒ θ =
π

3
.

The origin O is in each circle, but it cannot be found by solving the equations. Therefore, when looking for the intersection points of the
polar graphs, we sometimes take under consideration the graphs.

The region is divided into two small regions: below and above the line π

3 .

Figure 8.26
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Region(1): below the line π

3 .

A1 =
1
2

∫ π

3

0
sin2

θ dθ =
1
4

∫ π

3

0
(1− cos 2θ) dθ

=
1
4

[
θ− sin 2θ

2

] π

3

0

=
1
4

[
π

3
−

sin 2π

3
2

]
=

1
4

[
π

3
−
√

3
4

]
.

Figure 8.27

Region(2): above the line π

3 .

A2 =
1
2

∫ π

2

π

3

(
√

3cos θ)2 dθ =
3
4

∫ π

2

π

3

(1+ cos 2θ) dθ

=
3
4

[
θ+

sin 2θ

2

] π

2

π

3

=
3
4

[(π

2
−0
)
−
(π

3
+

√
3

4
)]

=
3
4

[
π

6
−
√

3
4

]
.

Figure 8.28

Total area A = A1 +A2 =
5π

24 −
√

3
4 .

Example 8.25 Find the area of the region that is outside the graph of r = 3 and inside the graph of r = 2+2cosθ.

Solution: As shown in the figure, we find the area in the first quadrant and then we double the result to find the area of the whole region.
The intersection point of the two curves in the first quadrant is

2+2cos θ = 3⇒ cos θ =
1
2
⇒ θ =

π

3
.

A = 2
(1

2

∫ π

3

0

(
4(1+ cos θ)2−9

)
dθ

)
=

∫ π

3

0

(
4(1+2cos θ+ cos2

θ)−9
)

dθ

=
∫ π

3

0
(8cos θ+4cos2

θ−5) dθ

=
[
8sin θ+ sin 2θ−3θ

] π

3

0

=
9
2

√
3−π.

Figure 8.29
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Exercise 8.3
1 - 8 Find the area of the region bounded by the graph of the polar equation.

1 r = 4sin θ

2 r = 1+ sin θ

3 r = 5

4 r = 2cos θ

5 r = 6(1+ sin θ)

6 r = 2(1− cos θ)

7 r = 3cos 3θ

8 r = 3+2sin θ

9 - 18 Find the area of the region bounded by the graph of the polar equations.
9 inside r = 1+ cos θ and outside r = 3cos θ

10 inside r = 2+2cos θ and outside r = 3

11 outside r = 2−2cos θ and inside r = 4

12 inside both graphs r = 1+ cos θ and r = 1

13 inside r = 1+ sinθ and outside r = 1

14 inside both graphs r = 2cos θ and r = 2sin θ

15 outside r = 3 and inside r =−6cos θ

16 inside both graphs r = cosθ and r =−sin θ

17 between the graphs r = 1+ sin θ and r = 3sin θ

18 inside both graphs r = 2 and r = 2+2sin θ

19 inside the graph r = 1− cos θ in the first quadrant

20 between the graphs r = 1+ sin θ and r = 3sin θ in the second quadrant
�

8.3.1 Arc Length and Surface Area of Revolution in Polar Coordinates

Arc Length in Polar Coordinates

Let the polar function r = f (θ), α≤ θ≤ β be smooth. We know that

x = f (θ)cos θ and y = f (θ)sin θ, α≤ θ≤ β.

Thus, ( dx
dθ

)2
+
( dy

dθ

)2
=
(

f ′(θ)cos θ− f (θ)sin θ
)2

+
(

f ′(θ)sin θ+ f (θ)cos θ
)2

=
(

f ′(θ)
)2 cos2

θ−2 f (θ) f ′(θ)cos θsin θ+
(

f (θ)
)2 sin2

θ

+
(

f ′(θ)
)2 sin2

θ+2 f (θ) f ′(θ)cos θsin θ+
(

f (θ)
)2 cos2

θ

=
(

f ′(θ)
)2
[

cos2
θ+ sin2

θ

]
+
(

f (θ)
)2
[

sin2
θ+ cos2

θ

]
=
(

f ′(θ)
)2

+
(

f (θ)
)2

=
( dr

dθ

)2
+ r2.

Therefore, the arc length of the curve is

L =
∫

β

α

√
r2 +(

dr
dθ

)2 dθ

Example 8.26 Find the length of the curve.
(1) r = 2
(2) r = 2sin θ

(3) r = e−θ where 0≤ θ≤ 2π

(4) r = 2−2cos θ

Solution:
(1) r2 +( dr

dθ
)2 = 4. Hence,

L =
∫ 2π

0

√
4 dθ = 2

[
θ

]2π

0
= 4π.
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(2) r2 +( dr
dθ
)2 = 4sin2

θ+4cos2 θ = 4(sin2
θ+ cos2 θ) = 4. This implies

L =
∫

π

0

√
4 dθ = 2

[
θ

]π

0
= 2π.

(3) r2 +( dr
dθ
)2 = e−2θ + e−2θ = 2e−2θ. Hence,

L =
∫ 2π

0

√
2e−2θ dθ =

√
2
∫ 2π

0
e−θ dθ =

√
2
[
1− e−2π

]
.

(4) r2 +( dr
dθ
)2 = 4−8cos θ+4cos2 θ+4sin2

θ = 8−8cos θ = 8(1− cos θ).

L =
∫ 2π

0

√
8(1− cos θ) dθ = 2

√
2
∫ 2π

0

√
1− cos θ dθ.

Since sin2 θ

2 = 1−cos θ

2 , then

L = 4
∫ 2π

0

√
sin2 θ

2
dθ = 8

∫ 2π

0

1
2

sin
θ

2
dθ =−8

[
cos

θ

2

]2π

0
= 16.

Surface Area of Revolution in Polar Coordinates

Let the polar function r = f (θ), α≤ θ≤ β be smooth. We know that

x = f (θ)cos θ and y = f (θ)sin θ, α≤ θ≤ β.

The surface area generated by revolving the curve about the polar axis (the x-axis) is

S.A = 2π

∫
β

α

| r sin θ |
√

r2 +
( dr

dθ

)2 dθ

The surface area generated by revolving the curve about the line θ = π

2 (the y-axis) is

S.A = 2π

∫
β

α

| r cos θ |
√

r2 +
( dr

dθ

)2 dθ

Note that when choosing α and β, we must ensure that the surface does not retrace itself when the curve C is revolved.

Example 8.27 Find the area of the surface generated by revolving the curve r = 2sin θ about
(1) the polar axis.
(2) the line θ = π

2 .

Solution:

(1) We apply the formula S.A = 2π

∫
β

α

| r sinθ |
√

r2 +(
dr
dθ

)2 dθ.

r2 +(
dr
dθ

)2 = 4sin2
θ+4cos2

θ = 4(sin2
θ+ cos2

θ) = 4.

Thus,

S.A = 8π

∫
π

0
sin2

θ dθ = 4π

∫
π

0
(1− cos 2θ) dθ = 4π

[
θ− sin 2θ

2

]π

0
= 4π

[
π−0

]
= 4π

2.

(2) We apply the formula S.A = 2π

∫
β

α

| r cos θ |
√

r2 +(
dr
dθ

)2 dθ. Thus,

S.A = 8π

∫ π

2

0
sin θcos θ dθ =−8π

2

[
cos2

θ

] π

2

0
=−4π

[
0−1

]
= 4π.
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Exercise 8.4
1 - 6 Find the length of the curve.

1 r = 3cos θ

2 r = sin θ

3 r = 2(1− cos θ)

4 r = 3

5 r = 3+3cos θ

6 r = θ, 0≤ θ≤ 1

7 - 12 Find the area of the surface generated by revolving the graph of the equation about the polar axis.
7 r = 1+ cos θ

8 r = cos θ

9 r = 3−3cos θ

10 r = 4

11 r = 4sin θ

12 r = 6(1+ cos θ)

13 - 18 Find the area of the surface generated by revolving the graph of the equation about the line θ = π

2 .
13 r = 1+ sin θ

14 r = 2

15 r = 1− sin θ

16 r = 2(1+ sin θ)

17 r = 4cos θ

18 r = sin θ
�
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Review Exercises

1 - 8 The curve C is given parametrically. Find an equation in x and y, then sketch the graph and indicate the orientation.
1 x = 3t, y = 2t +1, 0≤ t ≤ 3

2 x = t2, y = 2ln t, t > 0

3 x = t2−1, y = t2 +1, −2≤ t ≤ 2

4 x = et , y = e−t , t ∈ R

5 x = 3cos t, y = 2sin t, 0≤ t ≤ 2π

6 x = cos t, y = sin t, 0≤ t ≤ 2π

7 x = ln t, y = tet , t > 0

8 x =
√

t, y = 2t +4, 0≤ t ≤ 5

9 - 16 Find dy
dx and d2y

dx2 at the indicated value.
9 x = 5t, y = 4t +2, at t = 1

10 x = et , y = e2t , at t = ln3

11 x =
√

t, y = 4t+2
3 , at t = 2

12 x = t3 +1, y = t2−2t, at t = 1

13 x = sin t, y = cos t, at t = π

6

14 x = sin2 t, y = cos2 t, at t = π

4

15 x = 1− sin t, y = 1− cos t, at t = π

3

16 x = 3t2−6t, y = ln t, at t = 2

17 - 24 Find an equation of the tangent line at the indicated value.
17 x = t2, y = t +2, at t = 2

18 x = cos t, y = sin2 t, at t = π

4

19 x =
√

t, y = t+1
3 , at t = 2

20 x = 2+ sec t, y = 1+2tan t, at t = π

6

21 x = t3−3t, y = t2−5t−1, at t = 2

22 x = et , y = e−t , at t = 0

23 x = 1+ sin t, y = 1−2cos t, at t = π

3

24 x = ln(t +1), y = t2, at t = 3

25 - 32 Find the points on the curve C at which the tangent line is either horizontal or vertical.
25 x = 3t2−6t, y =

√
t, t ≥ 0

26 x = t3−3t, y = t2−5t, t ∈ R

27 x = 1− t, y = t2, t ∈ R

28 x = 1− t, y = t3−3t, t ∈ R

29 x = sin t, y = cos t, t ∈ R

30 x = 1+ sin t, y = 2cos t, t ∈ R

31 x = 1− t2, y = t2− t, t ∈ R

32 x = et , y = e−t , t ∈ R

33 - 40 Find the length of the curve.
33 x = 5t2, y = t, 0≤ t ≤ 1

34 x = t +1, y = 2t, 0≤ t ≤ 5

35 x = cos t, y = sin t, 0≤ t ≤ π

36 x = 2sin t, y = 2cos t, 0≤ t ≤ 2π

37 x = t2, y = 2t, 0≤ t ≤ 3

38 x =
√

t, y = 2t, 1≤ t ≤ 3

39 x = et cos t, y = et sin t, 0≤ t ≤ π

2

40 x = 8t
3
2 , y = 3+(8− t)

3
2 , 0≤ t ≤ 4

41 - 48 Find the area of the surface generated by revolving the curve about the x-axis.
41 x = t2, y = t, 0≤ t ≤ 3

42 x = t3, y = t2, 0≤ t ≤ 1

43 x = cos t, y = sin t, 0≤ t ≤ π

44 x = t− sin t, y = 1− cos t, 0≤ t ≤ π

2

45 x = 2cos t, y = 2sin t, 0≤ t ≤ π

46 x = et cos t, y = et sin t, 0≤ t ≤ π

2

47 x = et , y = e
t
2 , 0≤ t ≤ 1

48 x = 9+2t2, y = 4t, 0≤ t ≤ 2

49 - 56 Find the area of the surface generated by revolving the curve about the y-axis.
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49 x = 4t3, y = 2t, 0≤ t ≤ 5

50 x = 3t +2, y = t, 0≤ t ≤ 3

51 x = cos2 t, y = sin2 t, 0≤ t ≤ π

2

52 x = 3+ cos t, y = sin t, 0≤ t ≤ π

53 x = et , y = t, 0≤ t ≤ e

54 x =
√

9− t2, y = 3t, −2≤ t ≤ 2

55 x = 2t, y = 1− t2, 0≤ t ≤ 1

56 x = 2sin t, y = 2cos t, π

4 ≤ t ≤ π

2

57 - 64 Find the corresponding rectangular coordinates for the given polar coordinates.
57 (2,π)

58 (4,−π)

59 (−2, π

3 )

60 (1, π

6 )

61 (8, π

4 )

62 (−2,π)

63 (5, 3π

2 )

64 (2, 3π

4 )

65 - 72 Find the corresponding polar coordinates for the given rectangular coordinates for r ≥ 0 and 0≤ θ≤ π.
65 (1,1)

66 (−1,0)

67 (3,3
√

3)

68 (−2,2)

69 (1,0)

70 (
√

2, 1
2 )

71 (−3,0)

72 (−3,4)

73 - 80 Find a polar equation that has the same graph as the equation in x and y.
73 x = 3

74 y =−7

75 x2 + y2 = 1

76 x2 + y2−6x = 0

77 xy = 4

78 y2 = 9x

79 x2 + y2 +9y = 0

80 x2− y2 = 25

81 - 88 Find an equation in x and y that has the same graph as the polar equation.
81 r = 3

82 r = sin θ

83 r = 2cos θ

84 r sin θ = 4

85 r = sec θ

86 r(cos θ− sin θ) = 4

87 r = 2
1−sin θ

88 r = 3
1+2cos θ

89 - 92 Sketch the graph of the polar equations.
89 r = 2

90 r = 4sin θ

91 r = 2(1− cos θ)

92 r = 3(1+ sin θ)

93 - 109 Find the area of the region bounded by the graph of the polar equations.
93 r = 4cos θ

94 r = 6sin θ

95 r = sin θ, 0≤ θ≤ π

4

96 r = 1+ sin θ,

97 r = 2(1− cos θ), 0≤ θ≤ π

2

98 r = e−θ, 0≤ θ≤ 2π

99 outside r = 2(1+ cos θ) and inside r = 3
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100 inside r = 2(1+ sin θ) and outside r = 2

101 outside r = cos θ and inside r = sin θ

102 inside both graphs r = 1− cos θ and r = 1+ cos θ

103 inside both graphs r = 4cos θ and r = 4sin θ

104 inside both graphs r = 1− sin θ and r = 1+ sin θ

105 outside r = 2−2cos θ and inside r = 4

106 outside r = 2(1+ sin θ) and inside r = 2(1− sin θ)

107 inside r = cos θ and r =
√

3sin θ

108 inside r = 3 and outside r = 2

109 inside r = 2cos θ and outside r = 4cos θ

110 - 115 Find the length of the curve.
110 r = 2

111 r = 2sin θ

112 r = 1− cos θ

113 r = eθ, 0≤ θ≤ 2π

114 r = 3(1+ sin θ)

115 r =
√

5cos θ

116 - 121 Find the area of the surface generated by revolving the graph of the equation about the polar axis.
116 r = cos θ, 0≤ θ≤ π

2

117 r = sin θ, 0≤ θ≤ π

2

118 r = 2+2cos θ

119 r = 1− cos θ

120 r = eθ, 0≤ θ≤ π

121 r =
√

3cos θ, 0≤ θ≤ π

2

122 - 127 Find the area of the surface generated by revolving the graph of the equation about line θ = π

2 .
122 r = cos θ

123 r = sin θ, 0≤ θ≤ π

2

124 r = 1+ sin θ

125 r = 1− sin θ

126 r = 3, 0≤ θ≤ π

2

127 r = eθ, 0≤ θ≤ π

2

128 - 150 Choose the correct answer.
128 The slope of the tangent line at the point corresponding to t = 1 on the curve given parametrically equations x = 2t2 +1,

y = 5t3−1, −2≤ t ≤ 2 is
(a) 5

2 (b) − 5
2 (c) 2

5 (d) 15
4

129 If a graph has polar equation r = 2sec θ, then its equation in xy-system is
(a) x = 2 (b) y = 2 (c) x+ y+1 = 0 (d) y = 1

2

130 The length of the curve C: x = cos 2t, y = sin 2t, 0≤ t ≤ π is equal to
(a) 2 (b) 2π (c) π (d) 4π

131 The surface area resulting by revolving the graph of the parametric equation x = 3t, y = 3t, 0≤ t ≤ 1 about the x-axis is
equal to
(a) 9
√

2π (b) 18
√

2π (c) 24
√

2π (d) 9
2

√
2π

132 If a point has xy-coordinates (x,y) = (1,1), then one of its (r,θ)-coordinates is
(a) (1, π

2 ) (b) (−1, 5π

4 ) (c) (2, π

4 ) (d) (
√

2, π

4 )

133 The slope of the tangent line to the graph of the equation r = 2 at θ =− π

4 is
(a) 1 (b) −1 (c) 0 (d) ∞
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134 The graph of the curve C defined by the parametric equations x = 2+ cos 2t,y =−1+ sin 2t,0≤ t ≤ π is
(a) a line (b) parabola (c) cardioid (d) circle

135 The slope of the tangent line at the point corresponding to t = π

4 on the parametric curve given by the equations ,
x = sin t, y = cos t, 0≤ t ≤ 2π is
(a) −1 (b) 1 (c) 0 (d) 1

3

136 If a graph has polar equation r = 2csc θ, then its equation in xy-system is
(a) x = 2 (b) x = 1

2 (c) y = 2 (d) y = 1
2

137 The length of the curve C : x = cos 2t, y = sin 2t,0≤ t ≤ π

2
(a) π (b) π

2 (c) 2π (d) π

4

138 If a point has (r,θ)− coordinates (r,θ) = (1, π

6 ), then its (x,y)− coordinates is

(a) (
√

3
2 , 1

2 ) (b) ( 1
2 ,
√

3
2 ) (c) (

√
2

2 ,
√

2
2 ) (d) (1,0)

139 The slope of the tangent line to the curve: r = cos θ at θ = π

4 is
(a) π

2 (b) 0 (c) π

4 (d) 1

140 Let C be the curve given parametrically by : x = t2 + t, y = t2 + 3, t ∈ R. The point on C at which the slope of the
tangent line equal to 2 is given by
(a) (0,4) (b) (2,4) (c) (4,4) (d) ( 3

4 ,
13
4 )

141 If a graph has polar equation r = csc θ, then its equation in xy-system is
(a) x = 1 (b) x+1 = 0 (c) y = 1 (d) y+1 = 0

142 The length of the curve C : cos 4t, y = sin 4t, 0≤ t ≤ π

4 is equal to
(a) π

2 (b) 2π (c) π (d) 4π

143 If a point has xy-coordinates (x,y) = (1,1) then one of its (r,θ)− coordinates is
(a) (1, π

4 ) (b) (2, π

4 ) (c) (
√

2, −π

4 ) (d) (−
√

2, 5π

4 )

144 The equation in polar coordinates for the line y = x−1 is
(a) r = 1

cos θ−sin θ
(b) r = 1

cos θ+sin θ
(c) r = 1

cos θ
+ 1

sin θ
(d) r = cos θ+ sin θ

145 The parametric equation of the circle centered at the origin with radius 5 is given by
(a) x = cos 5θ,y = sin 5θ

(b) x = 5cos θ,y = 5sin θ

(c) 5x = cos θ,5y = sin θ

(d) x = cos θ,y = sin θ

146 The slope of the tangent line at the point corresponding to t = π

2 on the parametric curve given by the equations ,
x = sin2 t, y = cos t, π

2 ≤ t ≤ 2π is
(a) −∞ (b) −1 (c) 0 (d) 1

147 The length of the curve C : x = 2cos t, y = 2sin t; 0≤ t ≤ 1 is equal to
(a) 1 (b)

√
2 (c) 2 (d) 4

148 If a graph has a polar equation r = 1
2sin θ+cos θ

, then its equation in xy-system is
(a) x+2y+1 = 0 (b) x+2y−1 = 0 (c) 2x+ y+1 = 0 (d) 2x+ y−1 = 0

149 The slope tangent line to the graph of the equation r = 2 at θ = π

4 is
(a) 1 (b) −1 (c) 0 (d) ∞

150 The polar equation that has the same graph as the equation x4 +2x2y2 + y4 = 2xy is
(a) r2 = sin 2θ (b) r2 = cos 2θ (c) r2 = sin θ cos θ (d) r2 = sin 2θ

1+ 1
2 sin 2θ
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Appendix (1): Basic Mathematical Concepts

Mathematical Expressions⇒ is the symbol for implying. ⇔ is the symbol for “⇒ and⇐. Also, the expression “iff"
means if and only if . b > a means b is greater than a and a < b means a is less than b. b≥ a to denote that b is greater than
or equal to a.

Sets of Numbers & Notations

1.2.3.4.1. Natural numbers N= {1,2,3, ...}.
2. Whole numbers W= {0,1,2,3, ...}.
3. Integers Z= {...,−3,−2,−1,0,1,2,3, ...}.
4. Rational numbers Q= { a

b | a,b ∈ Z and b 6= 0}.
5. Irrational numbers I= {x | x is a real number that is not rational}.
6. Real numbers R contains all the previous sets.

Fractions Operations
• Adding or subtracting two fractions
To add or subtract two fractions, we do the following steps:

1. Find the least common denominator.
2. Write both original fractions as equivalent fractions with the least common denominator.
3. Add (or subtract) the numerators.
4. Write the result with the denominator.

•Multiplying two fractions
To multiple two fractions, we do the following steps:

1. Multiply the numerator by the numerator.
2. Multiply the denominator by the denominator.

a
b
.
c
d
=

ac
bd

where b 6= 0 and d 6= 0 .

• Dividing two fractions
To divide two fractions, we do the following steps:

1. Find the multiplicative inverse of the second fraction.
2. Multiply the two fractions.

a
b
÷ c

d
=

a
b
.
d
c
=

ad
bc

where b 6= 0 and d 6= 0 .

Example 1
(1) 3

7 +
2
5 = 15

35 +
14
35 = 15+14

35 = 29
35

(2) 4
9 −

3
7 = 28

63 −
27
63 = 28−27

63 = 1
63

(3) 2
5 ×

4
9 = 2×4

5×9 = 8
45

(4) 2
5 ÷

4
9 = 2

5 ×
9
4 = 2×9

5×4 = 18
20

Exponents
Assume n is a positive integer and a is a real number. The nth power of a is

an = a.a...a .

Basic Rules
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For every x,y > 0 and a,b ∈ R,
1. x0 = 1

2. xaxb = xa+b

3. xa

xb = xa−b

4. (xa)b = xab

5. (xy)a = xaya

6. x−a = 1
xa

Example 2
(1) 232−5 = 23−5 = 2−2 = 1

22 = 1
4

(2) 32

3−2 = 32−(−2) = 34 = 81

(3) (5x)2 = 25x2

(4) x2y3

(yz)5 = x2y3

y5z5 = x2 y3

y5
1
z5 = x2y3−5 1

z5 = x2

y2z5

Algebraic Expressions

Let a and b be real numbers. Then,
1. (a+b)2 = a2 +2ab+b2

2. (a−b)2 = a2−2ab+b2

3. (a+b)(a−b) = a2−b2

4. (a+b)3 = a3 +3a2b+3ab2 +b3

5. (a−b)3 = a3−3a2b+3ab2−b3

6. a3 +b3 = (a+b)(a2−ab+b2)

7. a3−b3 = (a−b)(a2 +ab+b2)

8. an−bn = (a−b)(an−1 +an−2b+an−3b2 + ...+abn−2 +bn−1)

Example 3
(1) (x±2)2 = x2±4x+4
(2) x2−25 = (x−5)(x+5)

(3) (x±2)3 = x3±6x2 +12x±8
(4) x3±27 = (x±3)(x2∓3x+9)

Intervals

Let a,b ∈ R and a < b.

• Open interval (a,b).
It contains all real numbers between a and b, i.e.,

x ∈ (a,b)⇔ a < x < b

• Interval [a,∞)
It contains all real numbers larger than or equal to a,
i.e.,

x ∈ [a,∞)⇔ a≤ x

• Closed interval [a,b].
It contains all real numbers between a and b including
a and b, i.e.,

x ∈ [a,b]⇔ a≤ x≤ b

• Interval (a,∞)
It contains all real numbers larger than a, i.e.,

x ∈ (a,∞)⇔ a < x

• Half-open interval (a,b].
It contains all real numbers between a and b including
b, i.e.,

x ∈ (a,b]⇔ a < x≤ b

• Interval (−∞,b]
It contains all real numbers less than or equal to b, i.e.,

x ∈ (−∞,b]⇔ x≤ b

• Half-open interval [a,b).
It contains all real numbers between a and b including
a, i.e.,

x ∈ [a,b)⇔ a≤ x < b

• Interval (−∞,b)
It contains all real numbers less than b, i.e.,

x ∈ (−∞,b)⇔ x < b

Example 4
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(1) (2,5]

(2) [−2,4)∩ [1,6)

[1,4)

(3) [−1,∞)

(4) [−1,4)∪ [0,5)

[−1,5)

Absolute Value
The absolute value of x is defined as follows:

| x |=
{

x : x≥ 0
−x : x < 0

Example 5 |2|= 2, |−2|= 2, |0|= 0 .

Equations and Inequalities
If b > 0,

1. |x−a|= b⇔ x = a−b or x = a+b .
2. |x−a|< b⇔ a−b < x < a+b .
3. |x−a|> b⇔ x < a−b or x > a+b .

Example 6 Solve for x.
(1) |3x−4|= 7 (2) |2x+1|< 1

Solution:
(1) |3x−4|= 7⇔ 3x−4 = 7 or 3x−4 =−7. Thus, x = 11

3 or x =−1.
(2) |2x+1|< 1⇔−1 < 2x+1 < 1. By subtracting 1 and then dividing by 2, we have −1 < x < 0.

Functions
A function f : D→ S is a mapping that assigns each element in D to an element in S. The set D is called the domain of the function f .
All values of f (x) belong to a set R⊆ S called the range.
• Domains and Ranges
In the following, we show how to determine the domain and range of some functions.

1. Polynomials anxn +an−1xn−1 + ...+a1x+a0 .
Domain: R Range: R

2. Square Roots f (x) =
√

g(x) .
Domain: x ∈ R such that g(x)≥ 0 Range: R+

3. Rational Functions q(x) = f (x)
g(x) .

To determine the domain, we need to find the intersection of the domains of f and g. Then, we remove zeros of the function
g.

Example 7 Find the domain of the function.
(1) f (x) =

√
x−1

(2) q(x) = x+1
2x−1

(3) q(x) = 3x2+x+2√
x+2

Solution:
(1) We need to find all x ∈ R such that x−1≥ 0. By solving the inequality, we have x−1≥ 0⇒ x≥ 1. Thus, the domain is

[1,∞). Hence, ∀x ∈ D( f ), f (x) =
√

g(x)≥ 0 i.e., the range is [0,∞).
(2) The domain of the numerator and the denominator is R. The denominator g(x) = 0 if x = 1

2 . Thus, the domain of q is
R\
{ 1

2 } .
(3) The domain of the numerator is R and the domain of the denominator is [−2,∞). The denominator g(x) = 0 if x = −2.

Thus, the domain of q is (−2,∞).

• Functions Operations
Let f and g be functions such that x belongs to their domains. Then

1. ( f ±g)(x) = f (x)±g(x) .
2. ( f g)(x) = f (x)g(x) .
3. ( f

g )(x) =
f (x)
g(x) where g(x) 6= 0 .

Example 8 If f (x) = x2−1 and g(x) = x−1, find the following:
(1) ( f +g)(x) (2) ( f g)(x) (3) ( f

g )(x)
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Solution:

(1) ( f +g)(x) = f (x)+g(x) = (x2−1)+(x−1) = x2 + x−2
(2) ( f g)(x) = f (x)g(x) = (x2−1)(x−1) = x3− x2− x+1
(3) ( f

g )(x) =
f (x)
g(x) =

x2−1
x−1 =

(x−1)(x+1)
(x−1) = x+1

• Composite Functions

If f and g are two functions, the composite function ( f ◦g)(x) = f (g(x)). The domain of f ◦g is {∀x ∈ D(g) : g(x) ∈ D( f )}.

Example 9 If f (x) = x2 and g(x) = x+2, find ( f ◦g)(x).

Solution:

( f ◦g)(x) = f (g(x)) =
(
x+2

)2
= x2 +4x+4.

• Inverse Functions

A function f has an inverse function f−1 if it is one to one: y = f−1(x)⇔ x = f (y).1

Properties of inverse functions:
1. D( f−1) is the range of f .
2. The range of f−1 is the domain of f .
3. f−1( f (x)

)
= x,∀x ∈ D( f ).

4. f
(

f−1(x)
)
= x,∀x ∈ D( f−1).

5. ( f−1)−1(x) = f (x)∀x ∈ D( f ).

• Even and Odd Functions

Let f be a function and −x ∈ D( f ).

1. If f (−x) =− f (x) ∀x ∈ D( f ), the function f is odd.
2. If f (−x) = f (x) ∀x ∈ D( f ), the function f is even.

Example 10

(1) The function f (x) = 2x3 + x is odd because f (−x) = 2(−x)3 +(−x) =−2x3− x =−(2x3 + x) =− f (x).
(2) The function f (x) = x4 +3x2 is even because f (−x) = (−x)4 +3(−x)2 = x4 +3x2 = f (x).

Roots of Linear and Quadratic Equations

• Linear Equations

A linear equation is an equation that can be written in the form ax+b = 0 where x is the unknown, and a,b ∈ R and a 6= 0. To solve the
equation, we subtract b from both sides and then divide the result by a:

ax+b = 0⇒ ax+b−b = 0−b⇒ ax =−b⇒ x =
−b
a

.

Example 11 Solve for x the equation x+2 = 5.

Solution:

3x+2 = 5⇒ 3x = 5−2⇒ 3x = 3⇒ x =
3
3
= 1 .

1The −1 in f−1 is not exponent where 1
f (x) is written as

(
f (x)

)−1
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• Quadratic Equations
A quadratic equation is an equation that can be written in the form ax2 +bx+ c = 0 where a, b, and c are constants and a 6= 0. The
quadratic equations are solved by using the factorization method or the quadratic formula, or the completing the square.
Factorization Method
The factorization method depends on finding factors of c that add up to b. Then, we use the fact that if x,y ∈ R, then

xy = 0⇒ x = 0 or y = 0 .

Example 12 Solve for x the following quadratic equations:
(1) x2 +2x−8 = 0
(2) x2 +5x+6 = 0

Solution:
(1) Consider 2 and −4, we have 2× (−4) =−8 = c, but 2+(−4) =−2 6= b. Now, consider −2 and 4, then −2×4 =−8 = c

and −2+4 = 2 = b. Thus,

x2 +2x−8 = (x−2)(x+4) = 0⇒ x−2 = 0 or x+4 = 0⇒ x = 2 or x =−4 .

(2) By factoring the left side, we have

(x+2)(x+3) = 0⇒ x+2 = 0 or x+3 = 0⇒ x =−2 or x =−3 .

Quadratic Formula Solutions
We can solve the quadratic equations by the quadratic formula:

x =
−b±

√
b2−4ac

2a
.

Remark: The expression b2−4ac is called the discriminant of the quadratic equation.
1. If b2−4ac > 0, then the equation has two distinct real solutions.

2. If b2−4ac = 0, then the equation has one distinct real solution.

3. If b2−4ac < 0, then the equation has no real solutions.

Example 13 Solve for x the following quadratic equations:
(1) x2 +2x−8 = 0
(2) x2 +2x+1 = 0
(3) x2 +2x+8 = 0

Solution:
(1) a = 1, b = 2, c =−8. Since b2−4ac = 22−4(1)(−8) = 36, then there are two solutions x = 2 and x =−4.
(2) a = 1, b = 2, c = 1. Since b2−4ac = 22−4(1)(1) = 0, then there is one solution x =−1.
(3) a = 1, b = 2, c = 8. Since b2−4ac = 22−4(1)(8)< 0, then there are no real solutions.

Completing the Square Method
To solve the quadratic equation by the completing the square method, we need to do the following steps:
Step 1: Divide all terms by a (the coefficient of x2).
Step 2: Move the term ( c

a ) to the right side of the equation.
Step 3: Complete the square on the left side of the equation and balance this by adding the same value to the right side.
Step 4: Take the square root of both sides and subtract the number that remains on the left side.

Example 14 Solve for x the quadratic equation x2 +2x−8 = 0 .
Solution: a = 1, b = 2, c =−8 .
Step 1 can be skipped in this example since a = 1.
Step 2: x2 +2x = 8 .
Step 3: To complete the square, we need to add ( b

2 )
2 since a = 1.

x2 +2x+1 = 8+1⇒ (x+1)2 = 9 .

Step 4: x+1 =±3⇒ x =±3−1⇒ x = 2 or x =−4.
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Systems of Equations

A system of equations consists of two or more equations with the same set of unknowns. The equations in the system can be linear or
non-linear, but for the purpose of this book, we only consider the linear ones.

Consider a system of two equations in two unknowns x and y

ax+by = c

dx+ ey = f .

To solve the system, we try to find values of the unknowns that will satisfy each equation in the system. To do this, we can use elimination
or substitution.

Example 15 Solve the following system of equations:

x−3y = 4→ 1

2x+ y = 6→ 2

Solution:

• By using the elimination method.

Multiply equation 2 by 3, then add the result to equation 1 . This implies 7x = 22⇒ x = 22
7 . Substitute the value of x into the first

or the second equation to obtain y =− 2
7 .

• By using the substitution method.

From the first equation, we have x = 4+3y. By substituting that into the second equation, we obtain

2(4+3y)+ y = 6⇒ 7y+8 = 6⇒ y =−2
7

Substitute value of y into x = 4+3y to have x = 22
7 .
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Pythagorean Theorem
If c denotes the length of the hypotenuse and a
and b denote the lengths of the other two sides, the
Pythagorean theorem can be expressed as follows:

a2 +b2 = c2 or c =
√

a2 +b2 .

If a and c are known and b is unknown, then

b =
√

c2−a2 .

Similarly, if b and c are known and a is unknown, then

a =
√

c2−b2

The trigonometric functions for a right triangle are

cosθ =
a
c

sinθ =
b
c

tanθ =
b
a

a

b
c

θ

a is adjacent to the angle θ

b is opposite
c is hypotenuse

Example 16 Find value of x. Then find cosθ, and sinθ.

Solution:
a = 3, b = 4⇒ c2 = 42 +32 = 25⇒ c = 5
cosθ = 3

5
sinθ = 4

5

3

4
x

θ

Trigonometric Functions
• If (x,y) is a point on the unit circle, and if the ray
from the origin (0,0) to that point (x,y) makes an angle
θ with the positive x-axis, then

cosθ = x , sinθ = y ,

• Each point (x,y) on the unit circle can be written as
(cosθ,sinθ).
• Since x2 + y2 = 1, then cos2 θ + sin2

θ = 1.
Therefore,

1+ tan2
θ = sec2

θ and cot2 θ+1 = csc2
θ.

Also,

tanθ =
sinθ

cosθ
cotθ =

cosθ

sinθ
secθ =

1
cosθ

cscθ =
1

sinθ

• Trigonometric functions of negative angles

cos(−θ) = cos(θ), sin(−θ) =−sin(θ), tan(−θ) =− tan(θ)

• Double and half angle formulas

sin2θ = 2sinθcosθ, cos2θ = cos2
θ− sin2

θ = 1−2sin2
θ = 2cos2

θ−1

tan2θ =
2tanθ

1− tan2 θ

sin2 θ

2
=

1− cosθ

2
, cos2 θ

2
=

1+ cosθ

2

• Angle addition formulas
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sin(θ1±θ2) = sinθ1 cosθ2± cosθ1 sinθ2

cos(θ1±θ2) = cosθ1 cosθ2∓ sinθ1 sinθ2

tan(θ1±θ2) =
tanθ1± tanθ2

1∓ tanθ1 tanθ2

• Values of trigonometric functions of most commonly used angles

Degrees 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
Radians 0 π

6
π

4
π

3
π

2
2π

3
3π

4
5π

6 π
7π

6
5π

4
4π

3
3π

2
5π

3
7π

4
11π

6 2π

sinθ 0 1
2

1√
2

√
3

2 1
√

3
2

1√
2

1
2 0 −1

2
−1√

2
−
√

3
2 −1 −

√
3

2
−1√

2
−1
2 0

cosθ 1
√

3
2

1√
2

1
2 0 −1

2
−1√

2
−
√

3
2 −1 −

√
3

2
−1√

2
−1
2 0 1

2
1√
2

√
3

2 1

• Graphs of trigonometric functions

− π

4
π

4

−1

1

y = sinx
y = cosx

x

y

−π/4 π/4
−2

2

y = tanx
x

y

Distance Formula

Let P1 = (x1,y1) and P2 = (x2,y2) be two points in the
Cartesian plane. The distance between P1 and P2 is

D =
√
(x2− x1)2 +(y2− y1)2 .

Example 17 Find the distance between the two points
P1(1,1) and P2(−3,4).
Solution: D =

√
(−3−1)2 +(4−1)2 =

√
16+9 =√

25 = 5.

Differentiation of Functions
Differentiation Rules

d
dx
(

f (x)+g(x)
)
= f ′(x)+g′(x)

d
dx
(

f (x)g(x)
)
= f ′(x)g(x)+ f (x)g′(x)

d
dx
( f (x)

g(x)

)
=

f ′(x)g(x)− f (x)g′(x)(
g(x)
)2

d
dx
( 1

g(x)

)
=
−g′(x)(
g(x)
)2

d
dx
(
c f (x)

)
= c f ′(x)

Elementary Derivatives
d
dx xr = rxr−1 d

dx
1
x =− 1

x2
d
dx
√

x = 1
2
√

x
Derivative of Composite Functions (Chain Rule)

If y = f (u),u = g(x) such that dy/du and du/dx exist, then the derivative of the composite function ( f ◦g)(x) exists and

dy
dx

=
dy
du

du
dx

= f ′(u)g′(x) = f ′
(
g(x)

)
g′(x) .
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Derivative of Inverse Functions

If a function f has an inverse function f−1, then d
dx f−1(x) = 1

f ′
(

f−1(x)
) .

Graphs of Functions

• The First and Second Derivative Tests

1. Let f be continuous on [a,b] and f ′ exists on (a,b).
• If f ′(x)> 0,∀x ∈ (a,b), then f is increasing on [a,b].
• If f ′(x)< 0,∀x ∈ (a,b), then f is decreasing on [a,b].

2. Let f be continuous at a critical number c and differentiable on an open interval (a,b), except possibly at c.
• f (c) is a local maximum of f if f ′ changes from positive to negative at c.
• f (c) is a local minimum of f if f ′ changes from negative to positive at c.

3. If f ′′ exists on an open interval I,
• the graph of f is concave upward on I if f ′′(x)> 0 on I.
• the graph of f is concave downward on I if f ′′(x)< 0 on I.

• Shifting Graphs

Let y = f (x) is a function.

1. Replacing each x in the function with x− c shifts the graph c units horizontally.
• If c > 0, the shift will be to the right.
• If c < 0, the shift will be to the left.

2. Replacing y in the function with y− c shifts the graph c units vertically.
• If c > 0, the shift will be upward.
• If c < 0, the shift will be downward.

• Symmetry about the y-axis and the origin

1. If a function f is odd, the graph of f is symmetric about the origin.
2. If a function f is even, the graph of f is symmetric about the y-axis.

• Lines

The general linear equation in two variables x and y can be written in the form:

ax+by+ c = 0 ,

where a, b and c are constants with a and b not both 0.
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Example 18

2x+ y = 4
a = 2, b =−1, c =−4
To plot the line, we rewrite the equation to become
y =−2x+4. Then, we use the following table to make
points on the plane:

x 0 2
y 4 0

The line 2x+ y = 4 passes
through the points (0,4)
and (2,0).

Slope

1. The slope of a line passing through the points P1(x1,y1) and P2(x2,y2) is m = y2−y1
x2−x1

.
2. Point-Slope form: y− y1 = m(x− x1).
3. Slope-Intercept form:

If b 6= 0, the general linear equation can be rewritten as

ax+by+ c = 0⇒ by =−ax− c⇒ y =−a
b

x− c
b
⇒ y = mx+d ,

where m is the slope.

Example 19 Find the slope of the line 2x−5y+9 = 0.

Solution: 2x−5y+9 = 0⇒−5y =−2x−9⇒ y = 2
5 x+ 9

5 .

Thus, the slope is 2
5 . Alternatively, take any two points on that line say (−2,1) and (3,3). Then,

m =
y2− y1

x2− x1
=

3−1
3− (−2)

=
2
5
.

Special cases of lines in a plane
1. If m is undefined, the line is vertical. 2. If m = 0, the line is horizontal.

3. Let L1 and L2 be two lines in a plane, and let m1 and m2 be their slopes, respectively.
• If L1 and L2 are parallel, m1 = m2. • If L1 and L2 are vertical, m1 =

−1
m2

.
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• Quadratic Functions
Circles

Let C(h,k) be the center of a circle and r be the radius.
The equation of the circle is

(x−h)2 +(y− k)2 = r2

for h,k > 0

If h = k = 0, the center of the circle is the origin (0,0)
and the equation of the circle becomes

x2 + y2 = r2 .

Example 20 Find the equation of the circle that has
center at the point (1,−2) and radius r = 2.
Solution:

(x−1)2 +(y+2)2 = 4

x2 + y2−2x+4y =−1 .

Conic Sections
Parabola:
A parabola is the set of all points in the plane equidistant from a fixed point F (called the focus) and a fixed line D (called the directrix).

1. The vertex of the parabola is the origin (0,0).
(A) x2 = 4ay, a > 0.
• The parabola opens upward.
• Focus: F(0,a).

• Directrix equation: y =−a.
• Parabola axis: the y-axis.

(B) x2 =−4ay, a > 0.
• The parabola opens downward.
• Focus: F(0,−a).

• Directrix equation: y = a.
• Parabola axis: the y-axis.

(C) y2 = 4ax, a > 0.
• The parabola opens to the right.
• Focus: F(a,0).

• Directrix equation: x =−a.
• Parabola axis: the x-axis.

(D) y2 =−4ax, a > 0.
• The parabola opens to the left.
• Focus: F(−a,0).

• Directrix equation: x = a.
• Parabola axis: the x-axis.

2. The general formula of a parabola V (h,k):
(A) (x−h)2 = 4a(y− k), a > 0.
• The parabola opens upwards.
• Focus: F(h,k+a).
• Directrix equation: y = k−a.
• Parabola axis: parallel to the y-axis.

(B) (x−h)2 =−4a(y− k), a > 0.
• The parabola open downwards.
• Focus: F(h,k−a).
• Directrix equation: y = k+a.
• Parabola axis: parallel to the y-axis.

(C) (y− k)2 = 4a(x−h), a > 0
• The parabola opens to the right.
• Focus: F(h+a,k).
• Directrix equation: x = h−a.
• Parabola axis: parallel to the x-axis.

(D) (y− k)2 =−4a(x−h), a > 0
• The parabola opens to the left.
• Focus: F(h−a,k).
• Directrix equation: x = h+a.
• Parabola axis: parallel to the x-axis.
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Ellipse:
An ellipse is the set of all points in the plane for which the sum of the distances to two fixed points is constant.

1. The center of the ellipse is the origin (0,0).
(A) x2

a2 +
y2

b2 = 1 where a > b and c =
√

a2−b2.
• Foci: F1(−c,0) and F2(c,0).
• Vertices: V1(−a,0) and V2(a,0).
• Major axis: the x-axis, its length is 2a.
• Minor axis endpoints: W1(0,b) and W2(0,−b).

(B) x2

a2 +
y2

b2 = 1 where b > a and c =
√

b2−a2.
• Foci: F1(0,c) and F2(0,−c).
• Vertices: V1(0,b) and V2(0,−b).
• Major axis: the y-axis, its length is 2b.
• Minor axis endpoints: W1(−a,0) and W2(a,0).

2. The general formula of the ellipse P(h,k).

(A) (x−h)2

a2 +
(y−k)2

b2 = 1 where a > b and
c =
√

a2−b2.
• Foci: F1(h− c,k) and F2(h+ c,k).
• Vertices: V1(h−a,k) and V2(h+a,k).
• Major axis: parallel to the x-axis, its length is 2a.
• Minor endpoints: W1(h,k+b) and W2(h,k−b).

(B) (x−h)2

a2 +
(y−k)2

b2 = 1 where b > a and c =
√

b2−a2.
• Foci: F1(h,k+ c) and F2(h,k− c).
• Vertices: V1(h,k+b) and V2(h,k−b).
• Major axis: parallel to the y-axis, its length is 2b.
• Minor endpoints: W1(h−a,k) and W2(h+a,k).

Hyperbola:
A hyperbola is the set of all points in the plane for which the absolute difference of the distances between two fixed points is constant.

1. The center of the hyperbola is the origin (0,0).
(A) x2

a2 − y2

b2 = 1 where c =
√

a2 +b2.
• Foci: F1(−c,0) and F2(c,0).
• Vertices: V1(−a,0) and V2(a,0).
• Transverse axis: the x-axis, its length is 2a.
• Asymptotes: y =± b

a x.

(B) y2

b2 − x2

a2 = 1 where c =
√

a2 +b2.
• Foci: F1(0,c) and F2(0,−c).
• Vertices: V1(0,b) and V2(0,−b).
• Transverse axis: the y-axis, its length is 2b.
• Asymptotes: y =± b

a x.

2. The general formula of the hyperbola P(h,k).

(A) (x−h)2

a2 − (y−k)2

b2 = 1 where c =
√

a2 +b2.
• Foci: F1(h− c,k) and F2(h+ c,k).
• Vertices: V1(h−a,k) and V2(h+a,k).
• Transverse axis: parallels to the x-axis, its length is 2a.
• Asymptotes: (y− k) =± b

a (x−h).

(B) (y−k)2

b2 − (x−h)2

a2 = 1 where c =
√

a2 +b2.
• Foci: F1(h,k+ c) and F2(h,k− c).
• Vertices: V1(h,k+b) and V2(h,k−b).
• Transverse axis: parallels to the y-axis, its length is 2b.
• Asymptotes: (y− k) =± b

a (x−h).

• Graph of Some Functions
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y = mx+b y = a x = a

y = x2 y = x2 +a y = x2−a

y = (x+a)2 y = (x−a)2 x =
√

y

x = y2−a x = (y−a)2 y =
√

x

x = y2 y = x3 y =| x |

Areas and Volumes of Special Shapes
Area = x2 Area = xy Area = 1

2 bh
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Area = πr2 Volume = πr2h Volume = 4
3 πr3

Volume = xyz Volume = 1
3 xyh Volume = 1

3 πr2h
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Appendix (1): Integration Rules and Integrals Table

Integration Rules:∫ (
f (x)±g(x)

)
dx =

∫
f (x) dx±

∫
g(x) dx∫

k f (x) dx = k
∫

f (x) dx

∫
f ′
(
g(x)

)
g′(x) dx = f

(
g(x)

)
+ c

∫ b

a
f ′(x) dx = f (b)− f (a)

Elementary Integrals:∫
xr dx =

xr+1

r+1
if r 6=−1

∫
sinx dx = cosx∫
cosx dx =−sinx∫
sec2 x dx = tanx∫
csc2 x dx =−cotx

∫
secx tanx dx = secx∫
cscx cotx dx =−cscx

∫ 1√
a2− x2

dx = sin−1 x
a∫ 1

a2 + x2 dx =
1
a

tan−1 x
a∫ 1

x
√

x2−a2
dx =

1
a

sec−1 | x
a
|

Inverse Trigonometric Integrals:

∫
sin−1 x dx = xsin−1 x+

√
1− x2 + c

∫
tan−1 x dx = x tan−1 x− 1

2
ln(1+ x2)+ c∫

sec−1 x dx = xsec−1 x− ln | x+
√

x2−1 |+c

∫
xn sin−1 x dx =

xn+1

n+1
sin−1 x− 1

n+1

∫ xn+1
√

1− x2
dx+ c if n 6=−1

∫
xn tan−1 x dx =

xn+1

n+1
tan−1 x− 1

n+1

∫ xn+1

1+ x2 dx+ c if n 6=−1

∫
xn sec−1 x dx =

xn+1

n+1
sec−1 x− 1

n+1

∫ xn
√

x2−1
dx+ c if n 6=−1
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Trigonometric Integrals:∫
sin2 x dx =

x
2
− sin2x

4
+ c

∫
cos2 x dx =

x
2
+

sin2x
4

+ c∫
tan2 x dx = tanx− x+ c∫
cot2 x dx =−cotx− x+ c

∫
sec3 x dx =

1
2

secx tanx+
1
2

ln | secx + tanx |+c

∫
sec3 x dx =

1
2

cscx cotx+
1
2

ln | cscx − cotx |+c

∫
sinn x dx =−1

n
sinn−1 x cosx+

n−1
n

∫
sinn−2 x dx+ c

∫
cosn x dx =

1
n

cosn−1 x sinx+
n−1

n

∫
cosn−2 x dx+ c

∫
tann x dx =

tann−1 x
n−1

−
∫

tann−2 x dx+ c if n 6= 1

∫
cotn x dx =− cotn−1 x

n−1
−

∫
cotn−2 x dx+ c if n 6= 1

∫
secn x dx =

1
n−1

secn−2 x tanx+
n−2
n−1

∫
secn−2 x dx+ c if n 6= 1

∫
cscn x dx =− 1

n−1
cscn−2 x cotx+

n−2
n−1

∫
cscn−2 x dx+ c if n 6= 1

∫
sinn x cosm x dx =− sinn−1 xcosm+1 x

n+m
+

n−1
n+m

∫
sinn−2 x cosm x dx+ c if n 6= m

∫
sinn x cosm x dx =

sinn+1 xcosm−1 x
n+m

+
m−1
n+m

∫
sinn x cosm−2 x dx+ c if m 6= n

∫
xn sinx dx =−xn cosx+n

∫
xn−1 cosx dx+ c∫

xn cosx dx = xn sinx−n
∫

xn−1 sinx dx+ c

Miscellaneous Integrals:∫
x(ax+b)−1 dx =

x
a
− b

a2 ln |ax+b|+ c

∫
x(ax+b)−2 dx =

1
a2

(
ln | ax+b |+ b

ax+b

)
+ c

∫
x(ax+b)n dx =

(ax+b)n+1

a2

(ax+b
n+2

− b
n−1

)
+ c

∫ a
(a2± x2)n dx =

1
2a2(n−1)

( x
(a2± x2)n−1 +(2n−3)

∫ 1
(a2± x2)n−1 dx

)
if n 6=−1

∫
x
√

ax+b dx =
2

15a2 (3ax−2b)(ax+b)3/2 + c

∫
xn√ax+b dx =

2
a(2n+3)

(
xn(ax+b)3/2−nb

∫
xn−1√ax+b dx

)
∫ x√

ax+b
dx =

2
3a2 (ax−2b)

√
ax+b+ c

∫ xn
√

ax+b
dx =

2
a(2n+1)

(
xn√ax+b−nb

∫ xn−1
√

ax+b
dx
)

∫ 1
x
√

ax+b
dx =

1√
b

ln |
√

ax+b−
√

b√
ax+b+

√
b
|+c if b > 0
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∫ 1
x
√

ax+b
dx =

1√
−b

tan−1

√
ax+b
−b

+ c if b < 0

∫ 1
xn
√

ax+b
dx =−

√
ax+b

b(n−1)xn−1 −
(2n−3)a
2(n−1)b

∫ 1
xn−1
√

ax+b
dx if n 6= 1

∫ √
2ax− x2 dx =

x−a
2

√
2ax− x2 +

a2

2
cos−1(

a− x
a

)+ c

∫
x
√

2ax− x2 dx =
2x2−ax−3a3

6

√
2ax− x2 +

a3

2
cos−1(

a− x
a

)+ c

∫ √2ax− x2

x
dx =

√
2ax− x2 +acos−1(

a− x
a

)+ c

∫ √2ax− x2

x2 dx =−2
√

2ax− x2

x
− cos−1(

a− x
a

)+ c

∫ dx√
2ax− x2

= cos−1(
a− x

a
)+ c

∫ x√
2ax− x2

dx =−
√

2ax− x2 +acos−1(
a− x

a
)+ c

∫ x2
√

2ax− x2
dx =− (x+3a)

2

√
2ax− x2 +

3a2

2
cos−1(

a− x
a

)+ c

∫ 1
x
√

2ax− x2
dx =−

√
2ax− x2

ax
+ c
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Appendix (2): Answers to Exercises

Chapter 1:
Exercise 1.1
1 2
√

x+ c

2 − 4
4√x + c

3 −cotx+ c

4 − tanx+ c

5 5
4 x

4
5 + c

6 secx+ c

7 − 2
3
√

x3 + c

8 −cosx+ c

Exercise 1.2
1 2

7 x
7
2 + c

2 4
7 x

7
4 + x3

3 + x+ c

3 x5

5 + 2
3 x3 + x2

2 + c

4 x3

3 + tanx+ c

5 −cotx− 2
3 x

3
2 + c

6 3x−4cotx+ c

7 −1
x + 1

3x3 + c

8 20
7 x

7
5 − 6

5 x
5
3 + 1

2 x2 + c

9 − 3
2x2 − 2

3x3 + x+ c

10 3
8 x

8
3 + 3

5 x
5
3 + 3

2 x
2
3 + c

11
√

cos3 x+1

12
√

cos3 x+1+ c

13 f (x) = x4 + x2 + x+1

14 f (x) =−sinx−2cosx+4x+3

15 f (x) = 2
3 x

3
2

16 f (x) = sinx+1

17 f (x) = tanx−1

Exercise 1.3

1 (1+x2)
3
2

3 + c

2 2
5 (x−1)

5
2 + 2

3 (x−1)
3
2 + c

3 2
7 (x−1)

7
2 + 4

5 (x−1)
5
2 + 2

3 (x−1)
3
2 + c

4 tan2 x
2 + c

5 sin6 x
6 + c

6 1
2 (2x2 +1)

1
2 + c

1 − 2
3 (1− sin t)

3
2 + c

2 − cos4 x
4 + c

3 1
3 sin(3x+4)+ c

4 −2√
x+1 + c

5 1
4 sec4x+ c

6 − 2
3 cot

3
2 x+ c

7 − 1
2 (1+

1
t )

2 + c

8 (2x−1)
3
2

6 +
(2x−1)

1
2

2 + c

9 (4x3−6)8

96 + c

10 1
9 sin3(3x)+ c

Review Exercises
1 x2 + c

2 x3 + x+ c

3 x4

8 + x2

2 + c

4 x5

5 + x4

4 + c

5 x3

3 + 3
2 x2− x+ c

6 x− x2− 5
4 x4 + c

7 −1
x + c

8 2
7 x

7
2 + c

9 −2√
x + c

10 x3

3 − x+ c

11 x4

2 −2x
3
2 − 1

x4 + c

12 5(1+x)
6
5

6 + c

13 x5

5 −
x4

4 + x2

2 − x+ c

14 x2

2 + x+ c

15 2
3 x

3
2 −6x

1
2 + c

16 3
5 x

5
3 + 3

2 x
2
3 + c

17 x7

7 −
x4

2 + x+ c

18 −cosx+ x+ c

19 sinx− x2

2 + c

20 tanx−4x+ c

21 secx+ x2

2 + c

22 −cotx+ x3

3 + x+ c

23 tanx+ c

24 −cotx+ c

25 secx+ c

26 secx− tanx+ c

27 tanx+ x+ c

28 −cscx+ c

29 tan2 x
2 + c

30 secx+ c

31 −cscx+ c

32 tanx+2secx+ c

33 −cotx−3cscx+ c

34 −2
5 cos

5
2 x+ c
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35 (3x5+1)11

165 + c

36 (x2+1)
3
2

3 + c

37 2
3 (x

2 + x+2)
3
2 + c

38 (x3−3x+2)
4
3

4 + c

39 (5x2+2x−5)4

8 + c

40 −2cos
√

x+ c

41 2tan
√

x−2
√

x+ c

42 −2cot
√

x−2
√

x+ c

43 1
2 sec2x+ c

44 −2csc
√

x+ c

45 − 1
2 cosx2 + c

46 1
2 tanx2 + c

47 − 1
2 cot(x2 + x−1)+ c

48 −3cot 3
√

x

49 5tan( 5
√

x+1)+ c

50
√

x2 +9+ c

51 3
4 (x

2−1)
2
3 + c

52 − cos3 x
3 + c

53 sin2√x+ c

54 − 1
2 cos4√x+ c

55 −2cotx− cscx+ c

56 5
9 (x+1)

9
5 − 5

4 (x+1)
4
5 + c

57 2
5 (x−3)

5
2 +2(x−3)

3
2 + c

58 − 1
(
√

x+1)2 + c

59
√

4x− x2 + c

60 − cos3 x
3 − cosx+ c

61 1
4(5+cos2x)2 + c

62 1
2

√
x4−1+ c

63 2
3 x

3
2 + c

64 3sec 3
√

x+ c

65 (a)

66 (c)

67 (d)

68 (a)

69 (d)

70 (c)

Chapter 2:
Exercise 2.1

1 9

2 55

3 163
60

4 275

5 120

6 11

7 n(n−1)
2

8 2n3+3n2+7n
6

9
n
[
(n+1)

(
3n2+11n−2

)
+12
]

12

Exercise 2.2
1 2.7

2 1.5

3 3

4 2.3

5 2.1

6 2.1

7 0.5

8 π

4

9 {0, 3
5 ,

6
5 ,

9
5 ,

12
5 ,3}

10 {−1, −1
6 , 2

3 ,
3
2 ,

7
3 ,

19
6 ,4}

11 {−4,−3,−2,−1,0,1,2,3,4}
12 {0, 1

4 ,
1
2 ,

3
4 ,1}

13 15

14 39

15 24.5

16 1
2

17 3
2

18 28
3

19 60

Exercise 2.3
1 35
2 0
7 11

8 −5
9 0

10 −2

Exercise 2.4

1 21
2

2 8
3

3 10(4
√

10+1)

4 4(
√

2−1)

5 0

6 1

7 1+
√

3−
√

2

8 1

9 10
3

10 1√
3

11 3
√

2−1

12 3
√
−2

13
( 14

9
)2

14 9
4

15 sin−1( 2
π
)

16 cos−1( 2
π
)

17 7
3

18 3
16 (3

3
√

3−1)
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19 3
25

20 3
π
(2−
√

3)

21
√

sinx+1cosx+
√

cosx+1sinx

22 1
2
√

x(x+1) −
1

x2+1

23 x−1

24 3
3x−4 −

1
x

25 cosx
∫ x

1

√
t dt +

√
xsinx

26 sin(x+1)+2sin(−2x+1)

27 − 3x2

x12+1

28
√

1+ sec4 x secx tanx−
√

1+ tan4 x sec2 x

29 F(2) = 0 F ′(2) =
√

13 F ′′(2) = 6√
13

30 G(0) = 0 G′(0) = 0 G′′(0) =−1

31 H ′(2) = 4 5
√

5− 5
√

3

32 F(0) = 0 F ′(0) = 0

Exercise 2.5

1 2.3251, | ET |≤ 0.0147

2 3.046, | ET |≤ 8×10−4

3 2.317, | ET |≤ 0.0053

4 1.8961, | ET |= 0

5 1.5, | ES |< 5×10−4

6 0.5, | ES |< 1×10−4

7 2, | ES |< 9×10−7

8 4, | ES |< 4×10−6

9 n = 99

10 n = 4

Review Exercises
1 n(n−1)

2

2 n(n+2)

3
n
(

2(n2−1)+6
)

6

4
n
(
(n+1)(n2+n+4)+4

)
4

5 24

6 1.45

7 26

8 14

9 2

10 1.5

11 1.5

12 1.55

13 a. 20 b. 25 c. 22.5

14 a. 3 b. 10.5 c. 6.75

15 a. 20.375 b. 27.875 c. 23.9375

16 a. −164 b. −512 c. −299

17 10

18 5/2

19 2/3

20 28/3

21 3

22 8
23 2

24 1/3

25 0

26 9/2

27 20

28 14/3

29 12

30 5
2

31 275
6

32 0

33 −11
20

34 0

35 17
2

36 9
2

37 2
3

38 0

39 1

40 −2

41 0

42 2.0414

43 −2

44 4

45 7

46 −1

47 65
3

48 0

55 7

56 6

57 −1
3

58 9
4

59 16

60 4√
3

61 3
√

5

62 4

63 3
√

15
4

64 sin
√

x

65 1
x

66 3x2 sin(x9 +1)10−3sin(27x3 +1)10

67 1
x2+2x+2

68 cosx2 + cos(cos2 x)sinx

69
√

x2 +1

70 −6 3
√

12x+2

71 tanx
2
√

x

72 162

73 0.694

74 1.727

75 6.244
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76 2.405

77 0.984

78 4.671

79 1.250

80 19

81 1891

82 800

83 157

84 d

85 d

86 c

87 a

88 a

89 b

90 b

91 c

92 d

93 d

94 c

95 b

96 d

97 c

98 b

99 d

100 a

101 b

102 b

103 d

104 b

105 d

106 c

Chapter 3:
Exercise 3.1

1 1
x+1

2 3x2+2
x3+2x−4

3 1
2x

4 2
3x

5 −1
x

6 cosx+1
sinx+x+1

7 secx tanx+2x
secx+x2

8 −2tanx

9 2cotx

10 2tanx+ cotx

11 −cscx cotx lnx+ cscx
x

12 2ln(x3+1)
3 3√x + 3x2 3√x2

x3+1

13 x
x2−1 −

1
2(x+2)

14 2x
x2+1 +

1
x−1

15 − 1
2
√

x(x+1)

16 lnx2−2
(lnx2)2

17 3x2

x3+1

18 cotx
lnsinx

19 1
5

[
2

2x+1 −
3

3x−1

]
5
√

2x+1
3x−1

20
[

1
x−1 +

3x2+2
2(x3+2x+1) −

3x2+4x+1
x3+2x2+x−1

]
(x−1)

√
x3+2x+1

x3+2x2+x−1

21
[

2
x +

7
2(7x+3) −

6x
(1+x2)

]
x2
√

7x+3
(1+x2)3

22 1
3

[
2

cosx sinx + cotx− tanx− 3
2x

]
3
√

tan2 x sinx cosx√
x3

23 7
2

[
1−x

2x(x+1) +2x tanx2
]
( x secx2
√

x(x+1) )
7
2

24
[

1
3(x+1) −2tanx+3tan3x− 2

x+1

]
3√x+1 cos2 x

(x+1)2 cos(3x)

25 3
2 ln(x2 +1)+ c

26 ln
√

3

27 1
2 ln | ln(x2) |+c

28 ln(
√

2+1)

29 − ln | 1+ cotx |+c

30 1
2
[

ln17− ln2
]

31 − ln | cscx+ cotx |+c

32 2sin
√

x+1+ c

33 (lnx2)
3
2

3 + c

34 ln2+ 3
2

35 sin(lnx)+ c

36 − 1
4

[
1

(ln3)4 − 1
(ln2)4

]
Exercise 3.2

1 1

2 5
√

x

3 x2−4

4 3+ lnx2

5 x =±e2

6 x = ee

7 x =
√

27

8 x = 1 or x =−3

9 esinx−3x2
(cosx−6x)
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10 ex
√

x[1+ 3x
√

x
2
]

11 ex cos(lnx)− ex sin(lnx)
x

12 e
1
x (x−lnx)

x2

13 −1+ 1
2
√

x(1+
√

x)

14 e
3√x cosx+ e

3√x sin x
3x2/3

15 ex sec2(ex)
tanex

16
√

ex

2

17 1+2ex−e−x

2
√

e−x+1

18 6e3x sec2(e3x) tan(e3x)

19 e
2 (e

2−1)

20 2e
√

x + c

21 esinx + c

22 2e
√

x+cosx + c

23 −e
1
x + c

24 e
√

2− e

25 −2e−
√

x + c

26 − 1
4(1+ex)4 + c

27 sinx+ c

28 ln(e2 +1)− ln(e+1)

Exercise 3.3

1 3x ln3

2 2sinx cosx ln2 cos 2x

3 ln2

4 − tanx
ln2

5 1
3ln10 (x+1)

6 5
√

x tanx( tanx
2
√

x +
√

x sec2 x
)

7 4−2x−2ln(4) x 4−2x

8 1
ln10 (x+1)

9 tan5x+1 (5x+1 ln5)

10 3
2(ln5) x

11
(

lnsinx+ xcotx
)
(sinx)x

12
(

lnex + x
)
(ex)x

13
(

ex lnx+ ex

x

)
xex

14
(

ln(x2−x)
x +

(2x−1) lnx
x2−x

)
(x2− x)lnx

15 1
3ln5 5x3

+ c

16 1
ln2 sin(2x +1)+ c

17 ln(10)
2 ln | logx2|+ c

18 2
√

3x+1
ln3 + c

19 2
9ln7 (7

3x +1)
3
2 + c

20 ln2
2 (log2 sinx)2 + c

Review Exercises
1 2

2 e

3 3/64

4 ±2
√

2

5 (1+
√

5)/2

6 ln2

7 0

8 0

9 1

10 ∞

11 ∞

12 −∞

13 2
x

14 2x+3
x2+3x+1

15 −3tanx

16 2x cotx2

17 3x2+1
2(x3+x−1)

18 − 1
2
√

x(x−1)

19 cosx ln(cosx)− sin2 x
cosx

20 2
x + cotx− 1

2(x+1)

21 − 1
x
[ 1
(lnx)2 +1

]
22 6lnx3

x

23 ln(x2+x−2)
2
√

x +
(2x+1)

√
x

x2+x−2

24 ex secx (1+ tanx)

25 2x+1

26 ex+1 sin2 x
(
3cosx+ sinx

)
27 1

(x+1)2 e
x

x+1
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28 ex cotex

29 2e2x+1

30 esinx cosx

31 2sec2 x tanx esec2 x

32 (6x2 +1) e2x3+x−1 cos(e2x3+x−1)

33 2e2x+1

34 xex

(x+1)2

35 ex(x lnx−1)
x (lnx)2

36 ex tanx( tanx+ xsec2 x
)

37 ex lnx+ ex

x

38 xe
√

x

2 (4+
√

x)

39 −πcosx sinx lnπ

40 2sin2 x ln2
(
2sinxcosx

)
41 3 ln(10) 103x

42 sec2(2sinx)
(
2sinx cosx ln2

)
43 1

ln3
( 6

6x+1 −
2

2x−1
)

44 1
10x lnx

45 sec2 x
[

ln(tanx)+1
]
(tanx)tanx

46
[

lnx+1
]
xx

47
[

lnx+2
2
√

x

]
x
√

x

48 4(lnx+1)x4x

49
[

cosx lnx+ sinx
x

]
xsinx

50
[

sec2 x ln(lnx)+ tanx
x lnx

]
(lnx)tanx

51 1
3 ln | x3 +2 |+c

52 − ln | cosx |+c

53 1
2 ln | x2 +2x |+c

54 2(lnx)3/2

3 + c

55 ln
√

2

56 1
2 (ln3− ln7)

57 sin(lnx)

58 x2

2 +2x+ ln |x|+ c

59 −1
lnx + c

60 − ln | sinx+ cosx |+c

61 − 1
2ln3 3−x2

+ c

62 ex2
+ c

63 ln(ex + e−x)+ c

64 sinx+ c

65 etanx + c

66 2
ln5 5

√
x + c

67 − 5
2

68 1
4 ln | x4 +1 |+c

69 43x

6ln2 + c

70 1
−2ln3

( 1
39 −1

)
71 1

2ln10 10x2+1 + c

72 2a
√

x+1

lna

73 b

74 c

75 a

76 b

77 c

78 d

79 a

80 a

81 b

82 b

83 c

84 c

85 a

86 c

87 a

88 a

89 c

Chapter 4:
Exercise 4.1

1 1
x
√

1−(lnx)2

2 −8x√
1−16x4

3 1
2
√

x(x+1)

4 1
|x|
√

25
9 x2−1

5 2x+1√
1−(x2+x−1)2

6 −1
1+x2

7 e
1
x

x2
(

e
2
x +1
)

8 1
3x ln( 3√x)

√
(ln 3√x)2−1

9 sin−1( x
3 )+ c
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10 1
9 tan−1( x

9 )+ c

11 1
2 sec−1( ex

2 )+ c

12 tan−1(sinx)+ c

13 1
12 sec−1( x4

3 )+ c

14 tan−1(ex)+ c

15 sin−1(lnx)+ c

16 1√
3

sec−1( tanx√
3
)+ c

Exercise 4.2

1 3
2
√

xcosh(
√

x3)

2 5sech2(5x)

3 −e−x coshx+ e−x sinhx

4 2esinh(2x) cosh(2x)

5 −csch2x
cothx

6 − 1
2

√
cschx cothx

7 cosh(tanx) sec2 x

8 e
√

x sinh(e
√

x)
2
√

x

9 sech2(lnx)
x

10 cschx
[ 1−2(x+1)cothx

2
√

x+1

]
11 2cosh(

√
x)+ c

12 sinh(lnx)+ c

13 ln(coshex)+ c

14 (1+tanhx)4

4 + c

15 esinhx + c

16 − ln(1+ sechx)+ c

17 2(3+coshx)3/2

3 + c

18 2
(
− sech

√
x+ ln(cosh

√
x)
)
+ c

19 ln | tanhx |+c

20
−
(

ln(cothx)
)2

2 + c

Exercise 4.3

1 secx

2 e
√

x

2
√

x(e2
√

x−1)

3 1
x(1−(lnx)2)

4 csch−1x
2
√

x+1
+ −

√
x+1

|x|
√

x2+1

5 sec2 x tanh−1 x+ tanx
1−x2

6 6(2x−1)2 sinh−1(
√

x)+ (2x−1)3

2
√

x(x+1)

7 1√
2

cosh−1 x+ c

8 tanh−1(ex)+ c

9 −1
2 sech−1x2 + c

10 sinh−1( x
5 )+ c

11 cosh−1( x
5 )+ c

12 tanh−1(sinx)+ c

13 − 1
3
√

2
csch−1(

|x3|√
2
)+ c

14 − 1
2 sech−1( ex

2 )+ c

Review Exercises

1 3√
1−(3x+1)2

2 −1
2
√

x(1−x)

3 2
3+4x2/3

4 1
x
√

9x2−1

5 4cosh(4x+1)

6 ex sinh(ex)

7 1
2
√

x tanh(
√

x)+ sech2(
√

x)
2

8 e3x(3cosh(2x)+2sinh(2x)
)

9 3cosh(3x)+5sinh(5x)
2
√

sinh(3x)+cosh(5x)

10 sechx

11 ex cosh(coshx)+ ex sinh(coshx) sinhx

12 sech2x

13 −1
x
√

1−9x2

14 1
2
√

x(1−x)

15 4x3 cosh−1 x+ x4
√

x2−1
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16 ex tanh−1( 3
√

x)+ ex

3(x
2
3 −x

4
3 )

17 sech2x√
tanh2 x+1

18 − 1
2x

19 0

20 ∞

21 ∞

22 1

23 sinh4 x
4 + c

24 tanh5 x
5 + c

25 esinhx + c

26 ln | e2x−1 |+c

27 2sinh(
√

x)+ c

28 − 1
2 sechx2 + c

29 1
3 sinh3x+ c

30 ln | coshx |+c

31 1√
3

tan−1( x√
3
)+ c

32 1
4 sec−1( x2

2 )+ c

33 sec−1(ex)+ c

34 −
√

4− x2− sin−1( x
2 )+ c

35 sin−1( x
3 )−

1
5 sech−1(

|x|
5 )+ c

36 1
16 sec−1( x4

4 )+ c

37 1
2 sinh−1(2x)+ c

38 1
6 tanh−1( 3x

2 )+ c

39 − 1
8
(

coth−1(16)− coth−1(4)
)

40 cosh−1(3)− cosh−1(2)

41 1
3 sinh−1( 3x

5 )+ c

42 1
4 sec−1( ex

4 )+ c

43 a

44 a

45 a

46 c

47 b

48 b

49 c

50 c

51 d

52 c

53 c

54 a

55 d

Chapter 5:
Exercise 5.1

1 x4

4 (lnx− 1
4 )+ c

2 1
2 (1− ln 1

2 )

3
√

1− x2 + xsin−1 x+ c

4 1
5 (4− x2)5/2− 4

3 (4− x2)3/2 + c

5 sinx− xcosx+ c

6 (x2−2)sinx+2xcosx+ c

7 ex

5
(

sin(2x)−2cos(2x)
)
+ c

8 π

6
√

3
− ln 2√

3

9 e2x

5 (sinx+2cosx)+ c

10 x
(
(ln2 x−2) lnx+2

)
+ c

11 − lnx
x −

1
x + c

12 sin2x−2xcos2x
8 + c

13 − 1
2ln2 x

+ c

14 e−2

15 (x2+1) tan−1 x−x
2 + c

16 −(x+1)e−x + c

Exercise 5.2

1 1
8 sin3 x cos5 x+ 5

8
( x

16 −
1

64 sin4x
)
+ 1

6 sin3 x cos3 x+ c

2 − 1
7 cos7 x+ 2

5 cos5 x− 1
3 cos3 x+ c

3 1
6 cos6 x− 1

4 cos4 x+ c

4 1
24 sin4x cos5 4x+ 5

24

( 3
2 x− 3

32 sin16x
)
+ 1

4 sin4x cos3 4x
]
+ c

5 x+ 1
3 tan3 x− tanx+ c

6 − 1
4 cot4 x+ 1

2 cot2 x+ ln | sinx |+c

7
√

x− 1
2 sin(2

√
x)+ c

8 − 1
4 cotx csc3 x+ 1

4

(
− 1

2 tan x
2 +

1
2 cot2 x

2 −2ln | tanx|
)
+ 3

16 + c

9 − 1
5 cot5 x+ c

10 1
15 sec3 x(3sec2 x−5)+ c
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11 tan3 x
3 + c

12 − 1
2 secx tanx + 1

4 sec3 x tanx − 1
2 ln |secx + tanx| +

3
8
(

secx tanx+ ln |secx+ tanx|
)
+ c

13 1
4 tanx sec3 x+ 3

4
( 1

2 secx tanx+ 1
2 ln |secx+ tanx|

)
+ c

14 −x+ tan5 x
5 − tan3 x

3 + tanx+ c

15 1
40
(
−5cos(4x)−2cos(10x)

)
+ c

16 1
2
(

sinx+ sin7x
7
)
+ c

17 1
16
(
4sin2x− sin8x

)
+ c

18 1
16
(
4cos2x− cos8x

)
+ c

Exercise 5.3

1
√

x2−16
16x + c

2 x
√

9−x2

2 + 9
2 sin−1( x

3 )+ c

3 − x√
9x2−1

+ c

4 sinh−1( x
3 )+ c

5 −
√

x2+4
4x + c

6 1
16 ln | 4− x | − 1

16 ln | x+4 | − 1
4(x−4) + c

7 1
4 sin−1(x4)+ c

8 csch−1(3cotx)+ c

9 1
2

[
x

x2+1 + tan−1 x
]
+ c

10 x
2

√
x2−16−8cosh−1( x

4 )+ c

11
√

e2x−25−5tan−1( 1
5

√
e2x−25)+ c

12 sin−1 ( sinx√
2

)
+ c

13 ln
∣∣√x2+2√

2
+ x√

x2+2

∣∣+ c

14 2x
3
√

1−x2 +
x

3(1−x2)3/2 + c

15 1
2

[
ex
√

1− e2x + sin−1(ex)
]
+ c

16 −
√

9−x2

x − sin−1( x
3 )+ c

Exercise 5.4

1 ln |x−1|− ln |x|+ c

2 ln3− 1
2 ln5

3 − 1
2 tanh−1( x

2 )+ c

4 1
3 ln | x−2

x+1 |+c

5 5
4 ln |x+6|− 1

4 ln |x+2|+ c

6 4ln |x+4|−3ln |x+3|+ c

7 4−6ln3+3ln5

8 1
2
(
25ln |x2−25|+ x2−25

)
+ c

9 5
6 ln |x+6|− 1

5 ln |x+1|+ c

10 2
3
√

3
tan−1

(
2x+3
3
√

3

)
11 − 1

4 ln |x2 +1|− 1
2 tan−1 x+ 1

2 ln |x−1|+ c

12 − 2
3 tanh−1( 2x−1

3 )+ c

13 x2

2 +3x+ 11
7 ln |x+2|+ 136

7 ln |x−5|+ c

14 tan−1 x

15 ln |x|+ 2√
5

tanh−1( 2x+1√
5
)+ ln |5− (2x+1)2|− 4√

5
tanh−1( 2x−1√

5
)+ c

16 2
3 ln2

17 −3ln |x|− 2
x +3ln |x+1|+ c

18 1− ln(e+1)+ ln(2)

19 − 1
4 tanh−1( ex−1

4 )+ c

20 1
x − tanh−1 x+ c

Exercise 5.5

1 tan−1(3)− tan−1(2)

2 − 1
2
√

2
tanh−1 ( x−3

2
√

2

)
+ c

3 tanh−1( x+1
2 )+ ln |(x+1)2−4|− 3

2 tanh−1( x+1
2 )+ c

4 1− x−5tanh(1− x)+ c

5 −sin−1(1/3)+ sin−1(2/3)

6 − 1
5 tanh−1( x+4

5 )+ c

7 5sin−1( x+2√
5
)+ c

8 − 1√
2

tanh−1( ex+1√
2
)+ c

9 1√
2

sin−1 ( 2x+3√
21

)
+ c

10 1
2

(
sin−1(x−1)+(x−1)

√
1− (x−1)2

)
+ c

11 1√
3

tan−1 ( tan
√

x−3√
3

)
+ c

12 9
2

(
sin−1( x+1

3 )+
(x+1)
√

9−(x+1)2

9

)
+ c
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Exercise 5.6

1 4(
√

x
2 − 4
√

x)−4ln( 4
√

x+1)+ c

2 10( x9/10

9 −
x3/10

3 )+ 10
3 tan−1(x3/10)+ c

3
√

2sinh
(

tan( x
2 )
)
+ c

4 (
√

x+4)2−16(
√

x+4)+32ln |
√

x+4|+ c

5 − 1√
2

tanh−1 ( tan(x/2)+3
2
√

2

)
+ c

6 −x− 3√
2

tan−1 ( 1−3tan(x/2)
2
√

2

)
+ c

7 1√
2

tan−1 (√2tan( x
2 )
)
+ c

8 2(x
1
6 +1)3−9(x

1
6 +1)2 +18(x

1
6 +1)−6ln |x

1
6 +1|+ c

9 4
(

x
5
4

5 + x
3
4

3 −
x
4 −

√
x

2 + x
1
4 − ln |x

1
4 +1|

)
+ c

10 −10
(

x2/5

4 + x3/10

3 + x1/5

2 + x1/10 + ln |x1/10−1|
)
+ c

11 − 2√
3

tanh−1 (√3tan(x/2)
)
+ c

12
√

2tanh−1 ( tan(x/2)−1√
2

)
+ c

Review Exercises

1 (2x−1)
4 e2x + c

2 ex2

2 + c

3 sinx− xcosx+ c

4 1
16
(
4xsin(4x)+ cos(4x)

)
+ c

5 2
9 x3/2(3ln |x|−2)+ c

6 xcos−1 x−
√

1− x2 + c

7 x tanx+ ln | cosx |+c

8 − xe−4x

4 − e−4x

16 + c

9
√

5−
√

2

10 x ln3 x−3x ln2 x+6(x lnx− x)+ c

11 sin7 x
7 − 2sin7 x

7 + sin3 x
3 + c

12 1
32

(
3x
4 −

3
16 sin(4x)− 1

4 sin3 2x cos2x
)
+ c

13 sec3 x
3 + c

14 sec5 x
5 − sec3 x

3 + c

15 − 1
4 cotx csc3 x+ 1

4

(
− 1

2 tan2( x
2 )+

1
2 cot2( x

2 )−2ln | tan( x
2 )|
)
+c

16 − 1
7 cot7 x− 1

5 cot5 x+ c

17 1
2
(
− sin4x

4 + sin2x
2
)
+ c

18 1
2
( 1

4 cos(4x)− 1
10 cos(10x)

)
+ c

19 1
12
(
3sin(2x)+ sin(6x)

)
+ c

20 x
√

25−x2

2 + 25
2 sin−1( x

5 )+ c

21 sin−1( x
5 )+ c

22
√

x2−16−4tan−1 (√x2−16
4

)
+ c

23 1
2(16−x2)

+ c

24 − x2+2
(x2+3)

3
2
+ c

25 81
16 π

26 tanh−1(1− x)+ c

27 1
2 ln
( 1

4 (x−2)2 +1
)
+ tan−1( x−2

2 )+ c

28 3
2 ln
( 1

4 (x−3)2 +1
)
+5tan−1( x−3

2 )+ c

29 − 2
5 tanh−1( 2x+3

5 )+ c

30 1
2 ln |5− (2x+1)2|− 1√

5
tanh−1( 2x+1√

5
)+ c

31 1
3

[
ln |x−1|+5ln |x+2|

]
+ c

32 4− ln2
3 + 4ln5

3

33 6
(
x+2ln |x−2|

)
− 3x2−10

x−2 + c

34 1
2 (x−1)2 +2(x−1)−8ln |x−1|+ c

35 x2− x+ 1
x+1 +

1
2 ln(x−3)− 3

2 ln(x+1)−6+ c

36 x− ln(ex +1)+ c

37 4
5(x+2) +

9
25 ln |x−3|+ 16

25 ln |x+2|+ c

38 x−3
7(x2+x+2) +

1
7
√

7
tan−1 ( 2x+1√

7

)
+ c

39 1
27

[
3(55x−107)

(x−2)2 + ln |x−2|+53ln |x+1|
]
+ c

40 2
9 (x

3−2)
√

x3 +1+ c

41 2
3 tan−1(

√
x3−1)+ c

42 (
√

x+1)
(
(
√

x+1)−4
)
+2ln(

√
x+1)+ c

43 1√
2

tan−1 ( tan(x/2)√
2

)
+ c

44 − 2
tan(x/2)−1 + c

45 1
5

[
ln | tan( x

2 )+2|− ln |2tan( x
2 )−1|

]
+ c

46 1
2 ln
( 2+

√
3

2
)
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47 c
48 b
49 c
50 a
51 d
52 c
53 b
54 b
55 a
56 c
57 c
58 d
59 a

60 b
61 d
62 b
63 a
64 c
65 a
66 b
67 a
68 c
69 a
70 d
71 d
72 c

Chapter 6:
Exercise 6.1

1 0

2 6

3 −∞

4 −1

5 −∞

6 −∞

7 e2

8 1

9 0

10 0

11 1

12 1

13 0

14 1

Exercise 6.2
1 Divergent

2 Convergent

3 Divergent

4 Convergent

5 Divergent

6 Divergent

7 Divergent

8 Divergent

9 Convergent

10 Convergent

11 Convergent

12 Convergent

13 Divergent

14 Divergent

15 Convergent

16 Divergent

Review Exercises
1 ∞

2 −∞

3 0

4 0

5 1

6 ln(3)

7 1

8 2

9 1/e

10 e2

11 Convergent

12 Convergent

13 Divergent

14 Convergent

15 Divergent

16 Divergent

17 Divergent
18 Convergent
19 b
20 b
21 a
22 c
23 b
24 b
25 b
26 d

27 c
28 c
29 d
30 c
31 b
32 c
33 d
34 c
35 b

Chapter 7:
Exercise 7.1

1 13/3

2 4

3 27/2

4 14/3

5 5/4

6 2

7 ln(2)/2

8 1/4

9 7/6

10 5/6

11 4

12 4/3

13 63

14 4

15 3/ 3
√

4

16 5/9

17 4
√

2/3

18 10

19 3/2

20 e3− e−2

21 e(e−1)

22 5ln5−4

23 (
√

2−1)/
√

2

24
√

2−1

25
√

2

26 14/3

27 1

Exercise 7.2
1

2
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3

4

5

6

7

8

9

10

Exercise 7.3
1 7

3 π

2 206
15 π

3 128
7 π

4 8π

5 π

6

6 π2

4

7 2
3 π

8 π

9 15
2 π

10 243
5 π

11 π2

4

12 (e−2)π

13 π

2

14 2e2π

15 9π

16 24
5 π

17 8
3 π

18 8
5 π

19 29
30 π

20 256
15 π

21 38
15 π

22 π

2

23 17
6 π

24 67
6 π

25 24π

26 120+60π−11π

15π

27 21π

2

28 4π

5

29 768π

7

30 2π
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31 π

2

32 2π

15

33 π(π
√

2−4)
2

34 π

6
35 8π(3− ln4)

Exercise 7.4

1 2(
√

5−1)+ tanh−1(
√

2)− tanh−1(
√

10)

2
√

1+ e2− tanh−1(
√

1+ e2)−
√

2+ tanh−1(
√

2)

3 1
4
(
−2
√

5+6
√

37− sinh−1(2)+ sinh−1(6)
)

4 1
4
(
−2
√

5+4
√

17− coth−1( 2√
5
)+ coth−1( 4√

17
)
)

5 1
2
(√

2+ sinh−1(1)
)

6 ln(2+
√

3)− sinh−1(1)

7 14
3

8 π

3

9 2
√

5

10 sinh(3)− sinh(1)

11 1
12

(
−2
√

13+8
√

73−9ln(2+
√

13)+9ln(8+
√

73)
)

12 1
4
(
2
√

5+ sinh−1(2)
)

13 ln(
√

2+1)

14 8π

15 π

6 (17
√

17−5
√

5)

16 π
(
−
√

2+ e
√

1+ e2− sinh−1(1)+ sinh−1(e)
)

17 π
(√

2(3
√

5−1)− sinh−1(1)+ sinh−1(3)
)

18 π(
√

2+ sinh−1(1))

19 π
(
− e
√

1+ e2 + e2
√

1+ e4− sinh−1(e)+ sinh−1(e2)
)

20 36
√

82π

21 π

27 (145
√

145−1)

22 π

4
(
2
√

3+ ln(2+
√

3)
)

23 5π

27 (29
√

145−2
√

10)

24 π

6 (5
√

5−1)

Review Exercises
1 20

√
5

3

2 4

3 1
4

4 3

5 4π

6 12
7 1

3
8 44
9 0

10 1
11 10
12 11

6

13 2−
√

2√
2

14 3

15 79
225

16 e3−1
e2

17 2
√

2−1
18 1

2

19 1√
2

20 ln(3+2
√

2)
21 1+ ln(3)

(
ln(ln3)−1

)
22 2

(√
2+ sinh−1(1)

)
23 ln(2)

2

24 25

26

27 2
3 π

28 64
√

2
3 π

29 16
3 π

30 2
√

2
3 π

31 1944
5 π

32 2
15 π

33 2
35 π

34 373
14 π

35 512
15 π

36 (e4−1)π
2

37
(
6 + 4ln2(4) −

16ln(2)
)
π

38 π2

4
39 π

2
√

2

40 8π

41 2
5 π

42 64
15 π

43 72
5 π

44 16
15 π

45 8π

46 π(π−2)
47 π

2 (
√

2π−4)

48 16
3 π

49 π

6

50 3
2 π

51 8π

52 25
2 π

53
√

17+ sinh−1(4)
4



202

54 4
√

2

55 1
27 (22

√
22−13

√
13)

56 2
27 (37

√
37−1)

57 1
27

(
(4+18 3

√
2)

3
2 − (4+9(2)

3
2 )

3
2

)
58 45

59 2
3 (2
√

2−1)

60 14
3

61 −
√

17
4 +

√
1+e2

e + sinh−1(4)− sinh−1(e)

62 74

63 −
√

5+ tanh−1(
√

5)+
√

17− tanh−1(
√

17)

64 ln(
√

2+1)

65 3π

2 −3cos−1( 4
3 )

66 6
√

5π

67 16π

68 π

9 (82
√

82−1)

69 π

6 (5
√

5−1)

70 π
(
e
√

1+ e2 + ln(e+
√

1+ e2)−
√

2− ln(
√

2+1)
)

71
(√

2+ sinh−1(1)
)
π

72 π

32
(
438
√

37− sinh−1(6)
)

73 8π

74 2π

3 (10
√

10−1)

75 a2π

76 π

6 (5
√

5−1)

77 2π(
√

2+ sinh−1(1))
78 d
79 a
80 a
81 a

82 a
83 a
84 d

Chapter 8:
Exercise 8.1

1 y = 2x+1

2 x+2y2 = 1

3 y = x2

4 (x−1)2 +(y−1)2 = 1

5 x = ln(lny)

6 x2 + y2 = 9

7 x = 3y+5

8 y = x3

9 3
2 , 3

4

10 18, 54

11 4
3 , − 4

9

12 − 9
2 , − 1

4

13 −1, 2

14 1√
2−1

,
√

2√
2−1

15 0, 2

16 6, 30

17 4

18 2
√

2
3

19 − 9
2

20 − 1
2
√

3

21 1
3

22
√

3

23 3

24 30 3
√

25

25 Horizontal line at (0,0) and no vertical line.

26 Horizontal line at (0,0) and no vertical line.

27 There are no horizontal or vertical lines.

28 Horizontal lines at (1,2) and (1,−2) and vertical line at (0,0).

29 Vertical line at (−3,1) and no horizontal lines.

30 Horizontal lines at (1,2) and (1,−2), and vertical lines at (0,0)
and (2,0)

31 4
√

10

32 2(5
√

5−1)

33 1
4
(
−2
√

5+8
√

65− sinh−1(2)+ sinh−1(8)
)

34 π

12

35 −
√

2+
√

17+ tanh−1(
√

2)− tanh−1(
√

17)

36 π

37 3π

4

38 61
216

39 π

6 (5
√

5−1)

40 2
√

2π(1+2eπ)
5

41 5
√

5π

6 (13
√

13−1)
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42 13π

6

43 π

6 (17
√

17−1)

44 2π2

45
√

2π

46 π

54 (145
√

145−1)

Exercise 8.2
1 (0,1)

2 (0,−1)

3 (
√

2,
√

2)

4 (−3,0)

5 (0,− 1
2 )

6 (−3,0)

7 (− 7√
2
, 7√

2
)

8 ( 3
√

3
2 , 3

2 )

9 (
√

2, π

4 )

10 (2, π

6 )

11 (
√

2, 3π

4 )

12 (2
√

3, π

3 )

13 (
√

6,35.26)

14 (3,0)

15 (2
√

5,26.57)

16 (3
√

2, 5π

4 )

17 r = 9secθ

18 r = 1

19 y = 1

20 x2 + y2−2x = 0

21 r = 3tanθsecθ

22 r = 4
√

sec2θ

23
√

x2 + y2− y = 3

24 x2 + y2 + 2y −
3
√

x2 + y2 = 0

25 26

27 28

29 −
√

3
30 − 3

3+2
√

2
31 The curve has a vertical

tangent line.

32 −(1+
√

2)
33 1

Exercise 8.3
1 4π

2 3
2 π

3 25π

4 2π

5 54π

6 6π

7 27
4 π

8 11π

9 4−π

2

10 9
√

3
2 −π

11 10π

12 5
4 π−2

13 8+π

4

14 (π+2)
2

15 9
√

3
2 +3π

16 π−2
8

17 π

18 5π−8

19 3π

8 −1

20 π

2

Exercise 8.4
1 3π

2 π

3 16

4 6π

5 24

6 1
2
(√

2+ sinh−1(1)
)

7 64π√
5

8 2π

9 288π

5

10 128π

11 16π2

12 2304π

5

13 64
5 π

14 32π

15 64
5 π

16 256
5 π

17 32π2

18 2π

Review Exercises
1 y = 2x

3 +1

2 y = ln(x)

3 y = x+2

4 y = 1
x

5 x2

9 + y2

4 = 1

6 x2 + y2 = 1

7 y = exeex

8 y = 2x2 +4

9 4
5 , 0

10 6, 2

11 8
√

2
3 , 8

3

12 0, 2
3

13 − 1√
3

, − 8
3
√

3

14 −1, 0

15 −
√

3, 8

16 1
12 , − 1

48
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17 y = 1
4 x+3

18 y =−
√

2x+ 3
2

19 y = 2
√

2
3 x− 1

3

20 y = 4x− 2√
3

21 y =− 1
9 x− 61

9

22 y =−x+2

23 y = 2
√

3x− (2
√

3+3)

24 y = 24x− (24ln(4)−9)

25 Vertical line at (−3,1) and no horizontal lines.

26 Horizontal line at ( 65
8 ,− 25

4 ) and vertical line at (−2,−4) and
(2,6).

27 Horizontal line at (1,0) and no vertical lines.

28 Horizontal line at (0,−2) and (2,2) and no vertical lines.

29 Horizontal line at (0,1) and (0,−1) and vertical line at (1,0) and
(−1,0).

30 Horizontal line at (1,2) and (1,−2) and vertical line at (2,0) and
(0,0).

31 Horizontal line at ( 3
4 ,−

1
4 ) and vertical line at (1,0).

32 There are no horizontal or vertical lines.

33 1
20
(
10
√

101+ sinh−1(10)
)

34 5
√

5

35 π

36 4π

37 3
√

10+ sinh−1(3)

38 1
16
(
28
√

3−4
√

17+ tanh−1( 7
4
√

3
)− coth−1( 4√

17
)
)

39
√

2(e
π

2 −1)

40 8
63 (65

√
65−2

√
2)

41 π

6 (37
√

37−1)

42 2(64+247
√

13)π
1215

43 4π

44 π

3 (32−20
√

2)

45 16π

46 2
√

2π

5 (1+2eπ)

47 4π

3
√

2

(
(1+ e)

3
2 −2

√
2
)

48 32π

3 (5
√

5−1)

49 1250π

3

50 39
√

10 π

51
√

2 π

52 6 π2

53 π
(
−
√

2+ ee
√

e2e +1− sinh−1(1)+ sinh−1(ee)
)

54
(

28
√

2+81sin−1( 4
√

2
9 )√

2

)
π

55 8π

3 (2
√

2−1)

56 8π√
2

57 (−2,0)

58 (−4,0)

59 (−1,−
√

3)

60 (
√

3
2 , 1

2 )

61 (4
√

2,4
√

2)

62 (2,0)

63 (0,−5)

64 (−
√

2,
√

2)

65 (
√

2, π

4 )

66 (1,π)

67 (6, π

3 )

68 (2
√

2, 3π

4 )

69 (1,0)

70 ( 3
2 ,19.47)

71 (3,π)

72 (5,126.87)

73 r = 3secθ

74 r =−7cscθ

75 r = 1

76 r = 6cosθ

77 r2 = 8csc2θ

78 r = 9cotθcscθ

79 r =−9sinθ

80 r2 = 25sec2θ

81 x2 + y2 = 9

82 x2 + y2− y = 0

83 x2 + y2−2x = 0

84 y = 4

85 x = 1
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86 x− y = 4

87
√

x2 + y2− y = 2

88
√

x2 + y2 +2x = 3

89 90

91 92

93 4π

94 9π

95 π−2
16

96 3π

2

97 3π

2 −4

98 1
4 (1− e−4π)

99 9
√

3
2 +2π

100 π+8
101 2+π

8

102 3π−8
2

103 2(π−2)
104 4+ 3π

2
105 10π

106 16
107 5π−6

√
3

24

108 5π

109 3π

110 4π

111 2π

112 8
113

√
2(e2π−1)

114 12
√

2
115 2

√
5π

116 π

117 π2

2

118 128
5 π

119 32
5 π

120 2
√

2π

5 (1+ e2π)

121 3π

122 π2

123 π

124 32
5 π

125 32
5 π

126 18π

127 2
√

2π

5 (eπ−2)

128 d

129 a

130 b

131 a

132 d

133 a

134 d

135 a

136 c

137 a

138 a

139 b

140 a

141 c

142 c

143 d

144 a

145 b

146 a

147 c

148 b

149 b

150 a
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Chapter 1:
Exercise 1.1 : 1, 6
Exercise 1.2 : 2, 7, 13
Exercise 1.3 : 1, 2, 3, 16
Review Exercises : 41, 62, 65, 66

Chapter 2:
Exercise 2.1 : 1, 7
Exercise 2.2 : 1, 9, 13, 14, 15
Exercise 2.3 : 7, 10
Exercise 2.4 : 1, 7, 9, 12, 17, 24, 29
Exercise 2.5 : 1, 5
Review Exercises : 17, 19, 84, 87, 92

Chapter 3:
Exercise 3.1 : 2, 15, 21, 27, 35
Exercise 3.2 : 9, 18, 19, 25
Exercise 3.3 : 2, 5, 15, 18
Review Exercises : 73, 75

Chapter 4:
Exercise 4.1 : 1, 3, 9
Exercise 4.2 : 1, 10, 11, 16
Exercise 4.3 : 1, 4, 7, 8
Review Exercises : 43, 55

Chapter 5:
Exercise 5.1 : 1, 5
Exercise 5.2 : 1, 13
Exercise 5.3 : 1, 6
Exercise 5.4 : 1, 3, 8, 16
Exercise 5.5 : 2, 10
Exercise 5.6 : 6
Review Exercises : 51, 70, 72

Chapter 6:
Exercise 6.1 : 3, 7
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Exercise 6.2 : 1, 9
Review Exercises : 20, 26, 35

Chapter 7:
Exercise 7.1 : 2, 9, 17
Exercise 7.2 : 1
Exercise 7.3 : 1, 2, 9, 17
Exercise 7.4 : 1, 2, 14
Review Exercises : 78, 79

Chapter 8:
Exercise 8.1 : 1, 9, 17, 25, 31, 39
Exercise 8.2 : 1, 9, 18, 27, 29
Exercise 8.3 : 1, 9, 11
Exercise 8.4 : 1, 7, 13
Review Exercises : 128, 130, 143, 148, 150
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