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ABSTRACT 

In this paper, we introduce a new generalization of a class of inverse Lindley distributions 
called the generalized inverse Lindley power series (GILPS) distribution. This class of 
distributions is obtained by compounding the generalized class of inverse Lindley distributions 
with the power series family of distributions. The GILPS contains several lifetime subclasses 
such as inverse Lindley power series, two parameters inverse Lindley power series and inverse 
power Lindley power series distributions. It can generate many statistical distributions such 
as the inverse power Lindley Poisson distribution; the inverse power Lindley geometric 
distribution; the inverse power Lindley logarithmic distribution; and the inverse power Lindley 
binomial distribution. The proposed class has flexibility in the sense that it can generate new 
lifetime distributions as well as some existing distributions. For the proposed class, several 
properties are derived such as hazard rate function; limiting behavior; quantile function; 
moments; moments generating function and distributions of order statistics. The method of 
maximum likelihood estimation can be used to estimate the model parameters of this new 
class. A simulation for a selective model will be discussed. At the end, we will demonstrate 
applications of three real data sets to show the flexibility and potential of the new class of 
distributions. 

 Keywords: Generalized inverse Lindley power series distributions, inverse Lindley 
power series distributions, inverse power Lindley power series distribution 

 

 

1. Introduction 

 

Consider the lifetime, ,iX of a system with N components. The life of each component 

is a positive continuous random variable and can have any lifetime distribution. Examples 
might include the exponential; the gamma; the Weibull; the Lindley; the inverse Weibull; the 
inverse gamma; and the inverse Lindley. The life of such a system can be modeled as a non-

negative random variable 1min{ }N

i iX X  or 1max{ }N

i iY X  based on whether the 

components are in a series or parallel. The distribution of the discrete random variable N can 
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be any truncated discrete distribution such as the zero-truncated Poisson, the geometric, the 
logarithmic, the binomial and the generalized power series. The continuous random variables 

, 1,...,iX i N are independent from the random variable .N  

 
The inverted family of distributions is commonly used to model data from reliability 

experiments that exhibit unimodal hazard rate functions. Lindley [20] suggested a new 
distribution as an alternative for the exponential distribution that became the well-known 
Lindley distribution. Since then, many other generalizations and extensions of the Lindley 
distributions have been proposed, both to improve its flexibility and to achieve a better fitting 
of lifetime data. The inverse Lindley (IL) distribution was originally proposed by Sharma et al. 
[29]. Sharma et al. [30] added a shape parameter to the IL distribution, and this work was 
extended by Alkarni [2]. Another extension of the inverse Lindley distribution was proposed 
by Sharma and Khandelwal [28]. Recently, Barco et al. [6] introduced the inverse power 
Lindley (IPL) distribution and applied it to real data. It showed good flexibility in fitting the data 
compared with many existing distributions. 

 
In recent years, several power series distributions have been proposed in the literature. These 

distributions were obtained by compounding some useful lifetime distributions with power 

series distributions. Lindley power series (LPS) class of distributions (Liyanage and Pararai 

[21]), Weibull power series class of distributions (Morais and Barreto-Souza [24]); compound 

class of extended Weibull power series of distributions (Silva et al. [31]); a generalization of 

the extended Weibull power series family of distributions (Alkarni [1]); exponentiated 

extended Weibull power series class of distributions (Tahmasebi and Jafari [34]); Inverse 

Weibull power series distributions (Shafie et al. [27]); generalized exponential power series of 

distributions (Mahmoudi and Jafari [22]); complementary exponential power series (Flores et 

al. [14]); double-bounded Kumaraswamy power series (Bidram and Nekoukhou [7]); Burr XII 

power series (Silva and Cordeiro [32]); generalized linear failure rate power series of 

distributions (Alamatsaz and Shams [3]); Birnbaum Saunders power series of distribution 

(Bourguignon et al. [8]); linear failure rate-power series of distributions (Mahmoudi and Jafari 

[23]); complementary extended Weibull-power series of distributions (Cordeiro and Silva [9]);  

Gompertz-power series distributions (Tahmasebi and Jafari [33]); the Exponential Pareto 

power series distribution (Elbatal et al. [13]); generalized modified Weibull power series 

distribution (Bagheri et al. [5]); Compound family of generalized inverse Weibull power 

series distributions (Hassan et al. [18]); and complementary exponentiated inverted Weibull 

power series family of distributions (Hassan et al. [17]) are some examples of such 

distributions. To compound a continuous distribution with a discrete one, Nadarajah et al. [25] 

introduced the package: Compounding in R software (R Development Core Team [26]). 

 
In this paper, we introduce the GILPS by considering a system with parallel components 

and by compounding the generalized class of inverse Lindley distributions with the power 
series distributions. The GILPS class of distributions is a flexible family and contains several 
inverse Lindley types of distributions compounded with discrete distributions (truncated at 
zero).  
 

The proposed family of distributions can be applied to many fields such as business, 
environmental science, actuarial science, biomedical studies, demography and industrial 
reliability. This family contains several subclasses and lifetime models as special cases. In 
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addition, it gives us the flexibility to choose any compound lifetime for modeling many 
behavioral types of lifetime data. 
 

The remainder of this paper is organized as follows. In Section 2, we define the 
generalized inverse Lindley (GIL) class of distributions and present some existing models that 
can be deduced as special cases of the considered model. In Section 3, we define the GILPS 
class of distributions in terms of the cumulative distribution function and introduce some 
special subclasses. In Section 4, we provide the general properties of the GILPS class, including 
density, hazard function, quantile function, moments, moments generating function and 
distribution of order statistics. The estimations of GILPS parameters are investigated in 
Section 5 using the method of maximum likelihood estimation. In Section 6, some special 
distributions are introduced as examples of the GILPS. In Section 7, a simulation is applied to 
a GILPS model to test the performance of the maximum likelihood method in estimating the 
parameters. In Section 8, we present some real data to illustrate the applicability and flexibility 
of the GILPS distributions. Finally, some concluding remarks are offered in Section 9. 

 2. The generalized inverse Lindley class of distributions 

In this section, we define the generalized inverse Lindley (GIL) class of distributions, 

which generates most of the existing inverse Lindley types of distributions and can be used to 

generate new ones. 

Definition. The GIL class of distributions is defined by its cumulative distribution function 
(cdf) as follows: 

                
( ; , , ) ; , , , 0.xx

G x e x



  

     
 




 
 


              (1) 

The corresponding probability distribution function (pdf) becomes: 
 

           

 
2

1 2 1( ; ,, , ) ; , , 0.xg x x x e x
  

      
 

      


             (2)   

We note that the GIL class of distributions was introduced as a three-parameter model 
called "the extended inverse Lindley distribution" by Alkarni [2].  

Several inverse Lindley distributions can be written in form (1) depending on the parameters 

  and . We present some special distributions in the following sub-section. 

2.1 Special cases 

2.1.1 Inverse Lindley distribution 

For the choice of 1,   the cdf in (1) becomes: 

   
1

11
( ; ) ; , 0,

1

xx
F x e x

 





  
  

 
                                               

which is the cdf of the inverse Lindley distribution introduced by Sharma et al. [29]. From (2), 
the pdf is given by  

https://vpn.ksu.edu.sa/science/article/pii/,DanaInfo=www.sciencedirect.com+S0167947312003386#s000010
https://vpn.ksu.edu.sa/science/article/pii/,DanaInfo=www.sciencedirect.com+S0167947312003386#s000015
https://vpn.ksu.edu.sa/science/article/pii/,DanaInfo=www.sciencedirect.com+S0167947312003386#s000035
https://vpn.ksu.edu.sa/science/article/pii/,DanaInfo=www.sciencedirect.com+S0167947312003386#s000070
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2.1.2 Two-parameter Inverse Lindley distribution 

For the choice of 1,   the cdf in (1) becomes: 

1
1

( ; , ) , , , 0,xx
F x e x  

   
 




 
 


 

which is the cdf of the two parameters of the inverse Lindley. From (2), the pdf is given by:  

 
1

2
2 3( ; , ) , , , 0.xf x x x e x

    
 

    


 

2.1.3 Inverse power Lindley distribution 

If 1   then the cdf in (1) becomes: 
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which is the cdf of the inverse power Lindley distribution introduced by Barco et al. [6]. From 
(2), the pdf is given by:  

2
1 2 1( ; , ) , , , 0.

1

xf x x x e x
  

   


        
                       

3. The GILPS family 

In this section, we derive the family of GILPS distributions by compounding the GIL class 
of distributions with the power series distributions. 

 

Let N  be a zero-truncated discrete random variable having a power series distribution 
with the following probability mass function:  

( ) ,   1,2,...,
( )

n

n
n

a
p p N n n

c




                                                              

where 0na   depends only on 
1

,  ( ) ,n

nn
n c a 




  and (0, )s   is chosen in such a 

way that ( )c   is finite. The power series family of distributions, includes Poisson, geometric, 

logarithmic and binomial distributions, see Johnson et al. [19]. Useful quantities, such as 

, ( ),na c   the first derivative of ( )c  and its inverse, for the above mentioned distributions 

truncated for zero are presented in Table 1.  
 
Table 1: Useful quantities for some power series distributions 

Distribution       na            ( )c               ( )c                     
1( )c 

               par. space 

 



5 
 
 

    Poisson            
1

!n
         1e               e

                      log( 1)                (0, )   

    Geometric        1            
1




             2

1

(1 )
             

( 1)



 
                   (0,1)  

    Logarithmic      
1

n
      log(1 )       

1

(1 )
             1 e                       (0,1)  

    Binomial         
m

n

 
 
 

     (1 ) 1m     
1(1 )mm        

1

( 1) 1m                    

 
   

Given ,N  let 
1max( ,..., ),NX X X  where , 1,...,iX i N are independent and identically 

distributed (iid) random variables with cdf as in (1). Then the cdf of X N n is given by:  

X
(x) [ ( ; ,, , )] ,   x 0, n 1.

n

n x

N n

x
F G x e




  
  

 








  
    

   

The GILPS distribution is then defined by the marginal cdf of X , which is given by: 
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Remark 1. Let (1) 1min{ }N

i iX X  . Then, the cdf of (1)X  is given by: 

 

       
(1)

1

( (1 ( ; , ,, , )))
( ; , ,, , ) (1 ( ; , ,, , )) 1 ,
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Based on the choice of ( ),c   and   with form (3), this class covers the entire compounded 

inverse Lindley types of distributions. 

Remark 2. Setting 1,   we obtain the inverse Lindley power series (ILPS) class of 

distributions. Setting 1,  we have the two parameters of the inverse Lindley power series 

(TILPS) class of distributions. Setting 1,  we have the inverse power Lindley power series 

(IPLPS) class of distributions. 

4. General properties 

4.1 Density and hazard functions 

The pdf and hazard function (hf) of the GILPS are, respectively, given by: 
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Proposition 1. The limiting distribution of the GILPS when   is the GIL. 

Proof: , ,ˆusing the LHopital s rule,  
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which is the cdf of the GIL distribution.  

Proposition 2. The pdf of GILPS distributions can be expressed as an infinite number of 

linear combinations of densities of the order statistics and given by 

 
1

2 1 1 1

1 0

1
( ; , , , ) ( ) ( ) ;

( )
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Proof: Given that 
1

1
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where g ( ; )Y x n is the pdf of 1max( ,..., ),nY Y Y  and 
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 and using 

the binomial expansion, the pdf of the GILPS can be written as 
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4. 2 Moments, and moments-generating function 

The thr moment of a random variable ( , , , )X GILPS      distribution, r

, is obtained 

using (6) as: 

0

( )   r

r Xx f x dx
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The moments generating function (mgf) of the GILPS is obtained as:  
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  the above expressions 

are reduced to: 
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where 1

0

.a xa x e dx



     

Therefore, the mean and the variance of the GILPS distribution, respectively can be obtained 

easily from (7) as: 

               1   and 
2 2

2 .     

 

The skewness and kurtosis measures can be obtained from the expressions 

3
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upon substituting for the raw moments from (7). 

4. 3 Quantile function and order statistics  

In this section, the quantile function and order statistics of GILPS distributions will be 

derived. 

Proposition 3. Let ( , , , )X GILPS      have the  cdf as in (3). The quantile function of X  

is given by: 

1

1

1

1 1 1 ( ) ( ( ))
( ) ,X
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                                       (8) 

where 
1(.)W 

is the negative branch of the Lambert W function (See Corless et al. [10]). 

Proof: The quantile function is the root of the equation ( ( )) ,  X XF Q p p p 

Therefore, 
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c e
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Multiplying both sides by ( )c   and applying 
1(.)c 

, then multiplying both sides by  
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, leads to 
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for ( )XQ p  completes the 

proof.               

Order statistics are the most fundamental tools in non-parametric statistics and inference. 

These can be used to address estimation problems and hypothesis tests in many ways. The 

pdf of the kth order statistics from a random sample 1,..., nX X  from 

( , , , )X GILPS      is given by: 
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The associated cdf can be defined as: 
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where ( )GILPSF x  and (GILPSf x   come from (3) and (4), respectively. 

5. Estimation and inference 

Let 
1,..., nX X be a random sample with the observed value 

1( ,..., )nx x x obtained 

from the GILPS distribution with parameters , ,  and     . Let ( , , , )T    be the 

4 1  parameter vector. The log likelihood function is given by: 
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The score function, 
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The maximum likelihood estimation (MLE) of  ,say  , is obtained by solving the 

nonlinear system
 

(x; ) 0.nU   Since this nonlinear system of equations does not have 

a closed form solution, any numerical method (such as the Newton-Raphson procedure) 

can be used. For the interval estimation and hypothesis tests on the model parameters, 

we require the following observed information matrix:  

( )n

I I I I

I I I I
I

I I I I

I I I I

   

   

   

   

 
 
   
 
 
  

 , 

where the elements of  nI   are the second partial derivatives of ( ).nU  Under the 

standard regularity conditions for the large sample approximation as mentioned in Cox and 

Hinkley [11], and verified here that these are fulfilled by the proposed model, the 

distribution of  is approximately 
1( , ( )),p nN J    where ( ) E[I ( )].n nJ    Whenever the 

parameters are in the interior of the parameter space and not on the boundary, the 

asymptotic distribution of ( )n  is
1(0, ( )),pN J   where 1 1( ) lim ( )n

n
J n I 


   is the 

unit information matrix, and p is the number of parameters of the distribution. The 

asymptotic multivariate normal 1( , ( ))p nN I    distribution of  can be used to 

approximate the confidence interval for the parameters, the hazard rate and the survival 

functions. An 100(1 )  asymptotic confidence interval for parameter 
i  is given by  
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2 2

( , ),ii ii
i iZ I Z I       

where iiI  is the ( , )i i  diagonal element of 
1( )nI    for 1,...,i p , and 

2

Z  is the 

quantile 1
2


  of the standard normal distribution. 

6. Special cases of GILPS model 

In this section, we shall show that various models can be obtained as special cases of the GILPS 

class of distributions.  

6.1 Inverse power Lindley Poisson distribution 

 The inverse power Lindley Poisson (IPLP) distribution (truncated at zero) is a special case of 

the GILPS distribution with ( ) 1( 0), 1.c e       Using (3), the cdf of the IPLP distribution 

is:  
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 Using (4) and (5), the associated pdf and hf are given respectively by: 
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for , , , 0x    . 

Plots of the pdf and hf of the IPLP distribution for some selected parameter values are shown 

in Figure 1. 
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    Figure 1: Plots of the density function of the IPLP distribution for different values of 

    ,  and .        

The thr moment of a random variable X following the IPLP distribution can be obtained from  

(7) with 
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From (8), the quantile function of the IPLP distribution can be readily expressed as 
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For 1,  we have the inverse Lindley Poisson (ILP) distribution.  

6.2 Inverse power Lindley Geometric distribution 

 The inverse power Lindley geometric (IPLG) distribution (truncated at zero) is a special case 

of the GILPS distribution with ( ) , 1,(0 ).
1

c


  


   


 Using (3), the cdf of the IPLG 

distribution is:  
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From (4) and (5), the associated pdf and hf are given respectively by 
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 for 0 , , , 0.x      

Plots of the pdf and hf of the IPLG distribution for some selected parameter values are shown 

in Figure 2. 
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Figure 2: Plots of the density function of the IPLG distribution for different values of 

    ,  and .      

 The thr moment of a random variable X following the IPLG distribution can be obtained from 

(7) with 1na  : 
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 From (8), the quantile function of the IPLG distribution can be readily defined by: 
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For 1,  we have the inverse Lindley geometric (ILG) distribution.  

6.3 Inverse power Lindley logarithmic distribution 
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 The inverse power Lindley logarithmic (IPLL) distribution (truncated at zero) is a special case 

of the GILPS distribution with ( ) log(1 ), 1,(0 ).c           Using (3), the cdf of the IPLL 

distribution is:  

1 ( 1 )
( ; , , ) log 1 .
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xx
F x e




  
  

 




  
  

  
  

 By using (4) and (5) the associated pdf and hf are given respectively by: 

2 1 2 1

f(x)=
log(1 ) ( 1) ( 1 )x

x x

e x
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[( 1) log(1 ) log 1 1 ( 1 )

1

x

x x

x x e

x
e x e



 

  


  




  
    





 

    


  

 

    
         

   

 

 for 0 , , , 0.x      

Plots of the pdf and hf of the IPLL distribution for some selected parameter values are shown 

in Figure 3. 
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Figure 3: Plots of the density function of the IPLL distribution for different values of 

    ,  and .       

The thr moment of a random variable X following the IPLL distribution can be obtained from 
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From (8), the quantile function of the IPLL distribution can be expressed as: 
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For 1,  we have the inverse Lindley logarithmic (ILL) distribution.  

6.4 Inverse power Lindley binomial distribution 

 The inverse power Lindley binomial (IPLB) distribution (truncated at zero) is a special case of 

the GILPS 

 distribution with ( ) (1 ) 1, 1,(0 )mc          , where m is a positive integer. Using (3), 

the cdf of the IPLB distribution is: 

( 1 )
1 1

1
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F x




  


  






  
  

 


 
  

 By using (4) and (5), the associated pdf and hf are given respectively by: 
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 for 0 , , , 0.x      

Plots of the pdf and hf of the IPLB distribution for some selected parameter values are shown 

in Figure 4. 
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Figure 4: Plots of the density function of the IPLB distribution for different values of 

    , ,   and 4.m     
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From (8), the quantile function of the IPLB distribution can be expressed as: 
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For 1,  we have the inverse Lindley binomial (ILB) distribution.  

7. Simulation study 
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In this section, we present the results of simulations for different sample sizes to assess the 

performances of the MLE estimators. For illustrative purposes, we choose the IPLG 

distribution. The simulation technique for the IPLG distribution is the inversion method using 

the following lemma. 

Lemma 1. Let U be a standard uniform variable between zero and one. Then, the random 

variable: 

1

1 1

1 1 ( 1)
1 ,

( 1) 1

U
X W

e U





 

   



 

   
     

   

  

is said to come from the IPLG distribution with parameters ,   and .   

Samples of size 25,50,100,200,400n  and 600  are generated for two sets of parameters, 

namely ( 0.2,  0.8,  0.75)      and ( 0.8,  1.1,  2).      Using Lemma 1, we 

repeated the simulations for 5000,N   and evaluated the average estimate (AE), average 

bias (AB) and root mean squared error (RMSE). The empirical results are obtained by using the 

statistical computing software R and are presented in Table 2. It can be seen that as the sample 

size increases, the RMSE and AB decrease toward zero and the AE converges to the actual 

parameter. Thus, we can conclude that the MLE method provides consistent estimates of the 

model parameters. 

Table 2: The AE, AB and RMSE for varying , ,  and .n     

 

0.2, 0.8, 0.75                                                        0.8, 1.1, 2                                                              

Par.    n           AE                AB                    RMSE              AE                      AB                  RMSE                               

 

  25    0.3205   0.1205     0.3597    0.4801   -0.3199    0.4686 

   50    0.3115   0.1115     0.3441    0.5494   -0.2506    0.4029     

  100    0.3057   0.1057     0.3285    0.6352   -0.1648    0.3123    

  200    0.2934   0.0934     0.3005    0.7073   -0.0927    0.2128 

  400    0.2545   0.0545     0.2469    0.7576   -0.0424    0.1319 

  600    0.2405   0.0405     0.2249    0.7743   -0.0257    0.0984          

 

  25    0.6968   -0.1032    0.2805    1.7280    0.6280    0.9525 

   50    0.7064   -0.0936    0.2507    1.5581    0.4581    0.7408  

  100    0.7155   -0.0845    0.2298    1.3941    0.2941    0.5632   

  200    0.7257   -0.0743    0.2006    1.2680    0.1680    0.4080 

  400    0.7572   -0.0428    0.1540    1.1759    0.0759    0.2886   
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  600    0.7668   -0.0332    0.1374    1.1456    0.0456    0.2331 

 

   25   0.8346    0.0846    0.1748   1.9462   -0.0538     0.3890 

    50   0.8056    0.0556    0.1247   1.9158   -0.0842     0.2993 

   100   0.7909    0.0409    0.0991   1.9282   -0.0718     0.2388 

   200   0.7822    0.0322    0.0781   1.9594   -0.0406     0.1809 

   400   0.680     0.0180    0.0554   1.9828   -0.0172     0.1334 

   600   0.7633    0.0133    0.0485   1.9914   -0.0086     0.1083 

 

 

8. Applications 

In this section, we fit the IPLP, IPLG, IPLL, and IPLB to three real datasets and compare the 

results with two three-parameter distributions. The first is the generalized inverse Weibull 

(GIW) distribution introduced by Gusmão et al. [16]. The cdf of the GIW distribution is given 

by  

( ; , , ) , , , , x 0.xF x e






     
 

  
    

The second is the extended inverse Lindley (EIL) distribution proposed by Alkarni [2]. The cdf 

of the EIL is given by 

 

1
F( ; , , ) 1 ; , , , 0.xx e x

x








     

 

 
   

   

The first data set represents the relief times (in minutes) of 20 patients receiving an 
analgesic (reported by Gross & Clark [15]). These data consist of 20 observations and have 
the following values: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 
1.7, 2.3, 1.6 and 2.0. 
 
 The second data corresponds to 46 observations reported on active repair times (hours) for 

an airborne communication transceiver discussed by Alven [4]. The data are: 0.2, 0.3, 0.5, 
0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 

2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 
    22.0, 24.5. 
 
The third data set represents the flood levels for the Susquehanna River at Harrisburg, 
Pennsylvania, over 20 four-year periods from 1890 to 1969 and was obtained in a civil 
engineering context and give the maximum flood level (in millions of cubic feet per second). 
This data has been widely used by authors and were initially reported by Dumonceaux and 
Antle [12]. The values of this data are: 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 
0.379, 0.324, 0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265. 
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For each distribution, we derive the maximum likelihood estimates (MLE), the maximized log 
likelihood (Log L), the Kolmogorov‒Smirnov statistics (K-S) with their respective p-value, the 
Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The K-S test 
is valid to test the quality of the fit of the underlying distributions to the failure data, as shown 
in Bagheri et al. [5]. The results of all data sets are presented in Table 3, Table 4, and Table 5. 
The fitted densities of GILPS models and the competitor's models for all the data sets are 
shown in Figures 5, 6, and 7. These indicate that the GILPS distributions fits the data better 
than the other distributions. The KS test statistic has smallest value with largest p-value for 
the GILPS distributions. This is confirmed by the log likelihood, the AIC and the BIC also.  

Table 3: Parameter estimates, KS statistic, P-value, log likelihood, AIC, and BIC of relief times data. 

Dist.        ̂              ̂               ̂            K-S         p-value     -log(L)      AIC          BIC          

IPLP   1.2114   5.7405   4.4234   0.0880   0.9939   15.38   36.76   39.74 

 

IPLG   0.3820   6.0742   4.3965   0.0877   0.9941   15.39   36.76   39.74 

 

IPLL   0.4759   6.3464   4.2787   0.0853   0.9959   15.40   36.80   39.78 

 

IPLB   0.1444   5.7078   4.4048   0.0790   0.9986   15.36   36.75   39.74 

 

EIL    6.0286   0.0062   4.0175   0.0886   0.9934   15.41   36.82   39.80 

  

GIW    1.1396   4.0175   1.5135   0.0897   0.9923   15.41   36.82   39.80 
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Figure 5. Plots of fitted models of the relief times data. 

Table 4: Parameter estimates, KS statistic, P-value, log likelihood, AIC, and BIC of active repair times data. 

Dist.        ̂              ̂               ̂             K-S          p-value     -log(L)        AIC          BIC          

IPLP    2.5689   0.8989   1.0700   0.0795   0.9106   100.45   206.89   212.38 

 

IPLG    0.8783   0.5691   1.2594   0.0717   0.9584   100.07   206.14   211.62 

 

IPLL    0.9947   0.4503   1.6347   0.0759   0.9357    99.83   205.67   211.15 

 

IPLB    0.3032   0.9454   1.0530   0.0796   0.9104   100.49   206.98   212.46 

 

EIL     1.1316   0.00001  1.0127   0.0798   0.9085   100.69   207.38   212.87 

 

GIW     0.4788   1.0127   2.3380   0.0803   0.905    100.69   207.38   212.87 
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Figure 6. Plots of fitted models of the repair times data. 

Table 5: Parameter estimates, KS statistics, P-value, log likelihood, AIC, and BIC the flood levels data. 

Dist.        ̂              ̂               ̂            K-S         p-value      -log(L)        AIC           BIC          

IPLP    1.1918   0.0583   3.2719   0.1295   0.8491   -16.23   -26.47   -23.48 

 

IPLG    0.5622   0.0460   3.4086   0.1250   0.8757   -16.26   -26.52   -23.54 

 

IPLL    0.8379   0.0390   3.5432   0.1274   0.8615   -16.27   -26.53   -23.55 

 

IPLB    0.1324   0.0602   3.2555   0.1302   0.8444   -16.23   -26.46   -23.47 

 

EIL     0.1056   4.2781   2.9546   0.1388   0.7865   -16.23   -26.47   -23.48 

 

GIW     0.1214   4.3143   0.5842   0.1546   0.6698   -16.10   -26.19   -23.28 
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Figure 7. Plots of fitted models of the flood levels data. 

9. Concluding remarks  

The purpose of this paper was to define a new family of lifetime distributions called 

the GILPS family of distributions. The GILPS class contains some lifetime subclasses and has 

the ability to produce many useful and flexible distributions for modeling lifetime data. The 

properties of the GILPS class of distributions have been derived in flexible and useful forms, 

including density, hazard function, quantile function, moments, moments generating 

function, distribution of order statistics and maximum likelihood estimates. Some subclasses 

and models were introduced to show the beneficiary of the proposed class. A simulation was 

conducted to test the estimating method performance for the model parameters. In addition, 

some of the GILPS distributions applied to three real data sets and then compared to some 

existing distributions.  
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