

Sum of angles for triangle is $\pi=180^{\circ}$

Non Euclidean geomety : Spherical \& Hyperbolic (Gauss-Bolyai-Lobatchevski)

Case : Spherical Geometry:

The distance between 2 points in the unit sphere is $d(A, B)=A \hat{O} B$.

$$
r=R \sin \theta \text { So } L_{A B}=\pi R \sin \theta \text { but } \ell_{A B}=R 2 \theta
$$

As $\pi \sin \theta \geq 2 \theta$ on the interval $[0, \pi / 2]$ then $L_{A B} \geq \ell_{A B}$.

Spherical triangle

The area surface of shaded triangle is $S=R^{2}(\alpha+\beta+\gamma-\pi)$.

Trigonometric Properties
$\cos \mathrm{a}=\cos \mathrm{b} \cos \mathrm{c}+\sin \mathrm{b} \sin \mathrm{c} \cos \alpha$
$\cos b=\cos a \cos c+\sin a \sin c \cos \beta$ $\cos c=\cos b \cos a+\sin b \sin a \cos \gamma$
$\cos \alpha=-\cos \beta \cos \gamma+\sin \beta \sin \gamma \cos \mathrm{a}$ $\cos \beta=-\cos \alpha \cos \gamma+\sin \alpha \sin \gamma \cos b$ $\cos \gamma=-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cos \mathrm{c}$

$$
\frac{\sin \alpha}{\sin a}=\frac{\sin \beta}{\sin b}=\frac{\sin \gamma}{\sin c}
$$

When the spherical triangle is rectangle at C we have:

$$
\begin{aligned}
& \cos c=\cos a \cos b \\
& \sin \alpha=\frac{\sin a}{\sin c}
\end{aligned}
$$

Polar spherical triangle

Isometry of 2 triangles by 3 reflections

Case Hyperbolic Geometry

Graph of hyperbola equation: $y^{2}-x^{2}=1$.

Graph of hyperboloid with 2 sheets equation: $x^{2}+y^{2}=z^{2}-1$.

Poincare Disk $D=\{z \in \mathbb{C},|z|<1\}$.

Half plane Poincare H (by Mobius transform: $z \mapsto \frac{z+i}{z+i}$)

