prove that a group of order 9 is abelian.
$>$
$>$ Thax
Here is an elementary proof, assuming no more than Lagrange's Thm (every element has order that divides 9).

If an element c has order 9 , then $1, \mathrm{c}, \mathrm{c}^{\wedge} 2 \ldots \mathrm{c}^{\wedge} 8$ is the whole group, and is obviously Abelian.

If not, then every element except 1 has order $3, x^{\wedge} 3=1$ and $x^{\wedge} 2$ $=/=1$. Say 'a' is such an element, and ' b ' is another, different from $1, a, a^{\wedge} 2$. So you also have b and $b^{\wedge} 2$.

Now $a b$ is distinct from the above 5 elements (e.g. $a b=b^{\wedge} 2$ implies $a=b$). Same for $a b b^{\wedge} 2$, ($\left.a^{\wedge} 2\right) b$, and $\left(a^{\wedge} 2\right) b^{\wedge} 2$. Likewise, these elements are distinct from each other; so that's the whole group.
[eg $b=a b^{\wedge} 2-->1=b\left(b^{\wedge}(-1)\right)=\left(a b^{\wedge} 2\right)\left(b^{\wedge}(-1)=a b\right.$, but then b must be the (unique!) inverse of a, which is $a^{\wedge} 2$, as $a^{\wedge} 3=1$; and so on.]

So ba must be one of the last 4 elements. If $\mathrm{ba}=\mathrm{ab}^{\wedge} 2$ then $\mathrm{bab}=\mathrm{ab}^{\wedge} 3=\mathrm{a}$. But $\mathrm{ababab}=1$; so $\mathrm{aaab}=1$ or $\mathrm{b}=1$, which cannot be. Likewise you show $\mathrm{ba}=\left(\mathrm{a}^{\wedge} 2\right) \mathrm{b}$ leads to contradiction, and so does $\mathrm{ba}=$ $\left(a^{\wedge} 2\right) b^{\wedge} 2$. Hence $b a=a b$, and easily any two elements commute.
[eg $\left(\mathrm{a}^{\wedge} 2\right) \mathrm{b}=\mathrm{aab}=\mathrm{aba}=\mathrm{baa}=\mathrm{b}\left(\mathrm{a}^{\wedge} 2\right)$ and so on]

