prove that a group of order 9 is abelian.

>

>Thax

Here is an elementary proof, assuming no more than Lagrange's Thm (every element has order that divides 9).

If an element c has order 9, then 1, c, $c^2 \dots c^8$ is the whole group, and is obviously Abelian.

If not, then every element except 1 has order 3, $x^3 = 1$ and $x^2 = -1$. Say 'a' is such an element, and 'b' is another, different from 1, a, a². So you also have b and b².

Now ab is distinct from the above 5 elements (e.g. $ab = b^2$ implies a = b). Same for ab^2 , $(a^2)b$, and $(a^2)b^2$. Likewise, these elements are distinct from each other; so that's the whole group. [eg $b = ab^2 - b(b^{-1}) = (ab^2)(b^{-1}) = ab$, but then b must be the (unique!) inverse of a, which is a^2 , as $a^3 = 1$; and so on.]

So ba must be one of the last 4 elements. If $ba = ab^{2}$ then $bab = ab^{3} = a$. But ababab = 1; so aaab = 1 or b = 1, which cannot be. Likewise you show $ba = (a^{2})b$ leads to contradiction, and so does $ba = (a^{2})b^{2}$. Hence ba = ab, and easily any two elements commute. [eg $(a^{2})b = aab = aba = baa = b(a^{2})$ and so on]