*These are notes + solutions to herstein problems(second edition TOPICS IN
ALGEBRA) on groups,subgroups and direct products.It is a cute pdf print of a MS word doc which explains er..:P

Group theory

Group: closure, associative, identity, inverse
a' denotes inverse of a
identity is unique:
Let e,e' be two identity elements
e.e'=e (e' is identity)
e.e'=e' (e is identity)
e=e’
unique inverse:
let a, a^{\prime} be two inverses of b
$a \cdot b=e=b \cdot a=a^{\prime} \cdot b=b \cdot a^{\prime}$
(a.b). $a^{\prime}=e \cdot a^{\prime}=a^{\prime}$
a.(b.a') $=\mathrm{a} . \mathrm{e}=\mathrm{a}$
$a=a$ '
$\left(a^{\prime}\right)^{\prime}=\mathrm{a}:$
$a^{\prime} .\left(a^{\prime}\right)^{\prime}=e$
$a^{\prime} \cdot a=e$
(a.b)' $=b^{\prime} . a^{\prime}:$
(a.b).b'.a'=a.(b.b').a' $=a . a^{\prime}=e$

Problems (some preliminary lemmas on grp theory): (Pg 35 Herstein)
1)See whether group axioms hold for the following:
a) $\mathrm{G}=\mathrm{Z} \quad \mathrm{a} \cdot \mathrm{b}=\mathrm{a}-\mathrm{b}$
associativity fails: (4-3)-1=0,4-(3-1)=2
b) $\mathrm{G}=\mathrm{Z}+\mathrm{a} \cdot \mathrm{b}=\mathrm{a}$ * b
inverse may not exist:
2' doesn't exist
c) $\mathrm{G}=\mathrm{a}_{0}, \mathrm{a}_{1}, . . \mathrm{a}_{6}$ where $\mathrm{a}_{\mathrm{i}} . \mathrm{a}_{\mathrm{j}}=\mathrm{a}_{\mathrm{i}+\mathrm{j}} \quad(\mathrm{i}+\mathrm{j})<7$
$\mathrm{a}_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{j}}=\mathrm{a}_{\mathrm{i}+\mathrm{j}-7}(\mathrm{i}+\mathrm{j})>=7$
It is a group
Closure satisfied by definition
($\mathrm{a}_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{j}}$). a_{k} :
If $\mathrm{i}+\mathrm{j}<7$

$$
\text { If } \mathrm{i}+\mathrm{j}>=7
$$

$$
\begin{aligned}
& \text { If } \mathrm{i}+\mathrm{j}+\mathrm{k}>=7 \\
& =a_{i+j+k-7} \\
& \text { (if } \mathrm{j}+\mathrm{k}<7 \text {, ai. }\left(\mathrm{a}_{\mathrm{j}} \cdot \mathrm{a}_{\mathrm{k}}\right)=\mathrm{a}_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{j}+\mathrm{k}} \text { and done) } \\
& \text { (if } \mathrm{j}+\mathrm{k}>=7, \mathrm{a}_{\mathrm{i}} \cdot\left(\mathrm{a}_{\mathrm{j}} \cdot \mathrm{a}_{\mathrm{k}}\right)=\mathrm{a}_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{j}+\mathrm{k}-7} \text { but note that } \backslash \\
& \mathrm{i}+\mathrm{j}+\mathrm{k}-7<7 \text { as } \mathrm{i}+\mathrm{j}<7 \text { and so done) } \\
& \text { If } \mathrm{i}+\mathrm{j}+\mathrm{k}<7\left(=>\mathrm{j}+\mathrm{k}<7 \text {, so } \mathrm{a}_{\mathrm{i}} \cdot\left(\mathrm{a}_{\mathrm{j}} \cdot \mathrm{a}_{\mathrm{k}}\right)=\mathrm{a}_{\mathrm{i}+\mathrm{j}+\mathrm{k}}\right) \\
& =a_{i+j+k} \\
& \text { If } i+j+k-7>=7 \\
& =a_{i+j+k-14}
\end{aligned}
$$

($\mathrm{j}+\mathrm{k}$ cant be less than 7 and so done)
If $\mathrm{i}+\mathrm{j}+\mathrm{k}-7<7$
$=a_{i+j+k-7}$
(if $\mathrm{j}+\mathrm{k}>=7$. done..If $\mathrm{j}+\mathrm{k}<7$, note as $\mathrm{i}+\mathrm{j}>=7$. done)
Indentity: a_{0}
Inverse:

$$
a_{i}^{\prime}=a_{7-i^{\prime}}^{\prime}
$$

d) $\mathrm{G}=$ rational numbers with odd denominators, $a \cdot b=a+b$
it is a group
2)PT if G is abelian, then $(a \cdot b)^{n}=a^{n} \cdot b^{n}$

By induction assume (a.b) $)^{n-1}=a^{n-1} b^{n-1}$
(a.b) $=a^{n-1} b^{n-1}$. $\left.a \cdot b\right)=a^{n} \cdot b^{n}$
3)PT if (a.b) ${ }^{2}=a^{2} \cdot b^{2}$ for all a, b, G is abelian

$$
\text { (a.b).(a.b) }=a^{2} b^{2}
$$

Cancelling we get $b . a=a . b$
4)If G is a group such that $(a . b)^{i}=a^{i} . b^{i}$ for 3 consecutive integers for all $a, b . P T G$ is abelian
(a.b) ${ }^{\mathrm{i}}=\mathrm{a}^{\mathrm{i}} \cdot \mathrm{b}^{\mathrm{i}},(\mathrm{a} . \mathrm{b})^{\mathrm{i}+1}=\mathrm{a}^{\mathrm{i}+1} \cdot \mathrm{~b}^{\mathrm{i}+1},(\mathrm{a} . \mathrm{b})^{\mathrm{i}+2}=\mathrm{a}^{\mathrm{i}+2} \cdot \mathrm{~b}^{\mathrm{i}+2}$
$a^{i+2} \cdot b^{i+2}=(a . b)^{i+2}=(a . b)^{i+1}(a \cdot b)=a^{i+1} \cdot b^{i+1}(a \cdot b)$
a. $b^{i+1}=b^{i+1} \cdot a$
$(a \cdot b)^{i}(b \cdot a)=a^{i} \cdot b^{i} \cdot(b \cdot a)=a^{i} \cdot b^{i+1} \cdot a=a^{i+1} b^{i+1}=(a \cdot b)^{i}(a \cdot b)$
b. $a=a . b$
5)PT conclusion of 4 is not attained when we assume the relation for just 2 consecutive integers
6)In S_{3} give example of 2 elements x, y such that ($\left.x . y\right)^{2}!=x^{2} y^{2}$
$S_{3}=\left\{e, x, x^{2}, y, y x, y x^{2}\right\}$ x.y.x.y=e
x, y are the required elements
7)In S_{3} PT there are 4 elements satisfying $x^{2}=e$ and 3 elements satisfying $x^{3}=e$
$\mathrm{e}, \mathrm{y}, \mathrm{yx}, \mathrm{yx}^{2}$ and $\mathrm{e}, \mathrm{x}, \mathrm{x}^{2}$
8)If G is a finite group, PT there exists a positive integer N such that $\mathrm{a}^{\mathrm{N}}=\mathrm{e}$ for all a

As G is finite, for all x in G, there exists $n(x)$ where $x^{n(x)}=e$
$N=L C M$ of $\{n(x)$ for all x in $G\}$
9)If order of G is 3,4 or 5 PT G is abelian
a) $\quad \mathrm{G}=\left\{\mathrm{e}, \mathrm{x}_{1}, \mathrm{X}_{2}\right\}$
$x_{1} \cdot x_{2}=e$ (as else one of x_{1}, x_{2} will be e)
hence cyclic-done
b) $\mathrm{G}=\left\{\mathrm{e}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$
if $x_{1} \cdot x_{1}=e$ then $x_{1} \cdot x_{2}=x_{3}$ (it cant be e, x_{1}, x_{2}) so $x_{1} \cdot x_{1} \cdot x_{2}=x_{1} \cdot x_{3}$ so $x_{2}=x_{1} \cdot x_{3}$
$\mathrm{x}_{1} \cdot \mathrm{x}_{2}=\mathrm{x}_{1} \cdot \mathrm{x}_{1} \cdot \mathrm{x}_{3}=\mathrm{x}_{3}$ So $\mathrm{x}_{1} \cdot \mathrm{x}_{2}=\mathrm{x}_{3}$.then $\mathrm{x}_{1} \cdot \mathrm{x}_{4}$ poses a problem
so $\mathrm{x}_{1} \cdot \mathrm{x}_{1}=\mathrm{x}_{2}$
$\mathrm{x}_{1} \cdot \mathrm{x}_{1}=\mathrm{x}_{2}$ and so $\mathrm{x}_{2} \cdot \mathrm{x}_{2}=\mathrm{x}_{3}$ (it cant be e by above reasoning and if $\mathrm{x}_{2} \cdot \mathrm{x}_{2}=\mathrm{x}_{1}$ then $x_{1}{ }^{3}=e$ and as $x_{1} \cdot x_{3}$ cant be $x_{1}{ }^{2}$, so $x_{1} \cdot x_{3}=x_{4} \cdot x_{1}{ }^{2} x_{3}$ poses problem) $x_{3} \cdot x_{3}$ can only be x_{4} or x_{1}. It cant be x_{1} as then $x_{1}{ }^{7}=e x_{1} \cdot x_{3}=x_{1}{ }^{5}=x_{4}$
$\left(x_{1}{ }^{5}=x_{1}{ }^{2}\right.$ will lead to $x_{1}=x_{3}$) so $x_{1} \cdot x_{4}$ will pose a problem.
So group is $\left\{e, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ which is cyclic
c) $G=\left\{e, x_{1}, x_{2}, x_{3}\right\}$
$\mathrm{x} 1 . \mathrm{x} 1=\mathrm{x} 2$ or $\mathrm{x} 1 . \mathrm{x} 1=\mathrm{e}$

1) $x_{1} \cdot x_{1}=e$ then $\mathrm{x}_{1} \cdot \mathrm{x}_{2}=\mathrm{x}_{3}$ (it cant be $\mathrm{x}_{1}, \mathrm{x}_{2}$ or e) similarly $\mathrm{x}_{2} \cdot \mathrm{x}_{1}=\mathrm{x}_{3}$ likewise $\mathrm{x}_{1} \cdot \mathrm{x}_{3}=\mathrm{x}_{3} \cdot \mathrm{x}_{1}=\mathrm{x}_{2}$ so $\mathrm{x}_{2} \cdot \mathrm{x}_{3}=\mathrm{x}_{1} \cdot \mathrm{x}_{3} \cdot \mathrm{x}_{3} \quad \mathrm{x}_{3} \cdot \mathrm{x}_{2}=\left(\mathrm{x}_{3} \cdot \mathrm{x}_{1}\right) \cdot \mathrm{x}_{3}=\mathrm{x}_{1} \cdot \mathrm{x}_{3} \cdot \mathrm{x}_{3}$ so abelian
2) $x_{1} \cdot x_{1}=x_{2}$ then $\mathrm{x}_{1} \cdot \mathrm{x}_{2}=\mathrm{x}_{3}$ so group is cyclic $\left\{\mathrm{e}, \mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3}\right\}$
10)PT if every element of G is its own inverse, then G is abelian

$$
\begin{aligned}
& a=a^{\prime} b=b^{\prime} \\
& x=a b \\
& x=x^{\prime} \text { so }(a b)^{\prime}=b^{\prime} a^{\prime}=b a=a b
\end{aligned}
$$

11) If G is a group of even order PT it has an element $a!=e$ such that $a^{2}=e$

If there exists an element of even order, $a!=e$ say $a^{2 x}=e$ then $b=a^{x}$ satisfies condition.
If all elements except e have odd order,then list down group as the following $\mathrm{G}=\{\mathrm{e}\} \mathrm{U}\{\mathrm{a} \ldots \mathrm{a} 2 \mathrm{x}\} \mathrm{U}\{\mathrm{b} \ldots \mathrm{b} 2 \mathrm{y}\} \ldots .$.
So G has odd order which is a contradiction
12)Let G be a nonempty set closed under associative product which also satisfies
a)e such that a.e=a for all a
b) given $a, y(a)$ exists in G such that $a . y(a)=e$

PT G is a group
Its closed, associative
PT a.e=e. a for all a

> If e.a=x
e. $a . y(a)=x . y(a)$
e.a. $y(a)=e . e=e$
$x . y(a)=e=a . y(a)$
$x . y(a) \cdot y(y(a))=a . y(a) . y(y(a))$
x.e=a.e
$\mathrm{x}=\mathrm{a}$
PT $y(a) . a=e$ for all a
Let $y(a) . a=x$
$x \cdot y(a)=y(a) \cdot a \cdot y(a)=y(a) . e=y(a)=e \cdot y(a)$
(Cancellation law: $a . b=c . b$ a.b. $y(b)=c . b . y(b)$ so $a . e=c . e$ so $a=c$)
So $x=e$
13)Prove by example that if $a . e=a$ for all a and there exists $y(a) . a=e$ that G neednt be a group
14)Suppose a finite set G is closed under associative product and both cancellation laws hold. PT G is a group

Since G is finite let $G=\left\{x_{1}, x_{2} . . x_{n}\right\}$
Look at $S\left(x_{1}\right)=\left\{x_{1} \cdot x_{1}, x_{1} \cdot x_{2}, x_{1} \cdot x_{3}, \ldots . . x_{1} \cdot x_{n}\right\}$
All these are distinct because of left cancellation law
So $S\left(x_{1}\right)$ in some order is G
Let x_{i} be the element such that $x_{1} \cdot x_{i}=x_{1}$
Claim:For all y in G y. $\mathrm{x}_{\mathrm{i}}=\mathrm{y}$
Proof:
Any y can be written as $\mathrm{y}_{1} \cdot \mathrm{x}_{1}$ (because look at
$\mathrm{Z}\left(\mathrm{x}_{1}\right)=\left\{\mathrm{x}_{1} \cdot \mathrm{x}_{1}, \mathrm{x}_{2} \cdot \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}} \cdot \mathrm{x}_{1}\right\}$. By similar reasoning $\mathrm{Z}=\mathrm{G}$ (right cancellation law). So $y \cdot x_{i}=y_{1} \cdot x_{1} \cdot x_{i}=y_{1} \cdot x_{1}=y$.
Also by looking at $S(y)$, we know that given any y,there exists y ' such that $y . y^{\prime}=x_{1}$.
Hence done by prev problems
15) So look at nonzero integers relatively prime to n.PT they form a group under multiplication mod n

Multiplication is associative.And a, b relatively prime to $n=>a b$ is also relatively prime to n . There are only finite residues mod n . And cancellation laws hold (because of "relative primeness")Hence by 14 done
18)Construct a non abelian group of order $2 n(n>2)$
$D(n)=\left\{e, x, . . x^{n-1}, y, y x, y x^{2} . . y^{n-1}\right\} x y x y=e$
*26)Done in vector spaces chapter
*PT e=e'
e.e=e
hence done

Examples of some groups:

* 1 a (gen by 11)
$01 \quad 01$
* $\left\{\mathrm{n} \ln\right.$ in $\left.\mathrm{Z}, \mathrm{x}^{\mathrm{n}}=1\right\}$

Subgroup:Nonempty subset H of G forms a group under the same operation
$\Rightarrow\left(\mathrm{G},{ }^{*}\right)$ is a group. H is a subset of G is a subgrp iff it is closed under * and for all a, a' belongs to H

If H is a subgrp then by def true
Reverse way:
Associativity holds as it holds for operation in G
$\mathrm{a}, \mathrm{a}^{\prime}$ is in H
$\Rightarrow \mathrm{a} \cdot \mathrm{a}^{\prime}=\mathrm{e}$ is in H
=> if H is a finite subset of G closed under *, it is a subgrp

Some problems done in class:

1) PT every subgroup of ($\mathrm{Z},+$) consists of only multiples of some integers

If a is in S (subgrp),then a' is in S.if $S!=\{0\}$
So assume $\mathrm{a}>0$ which is the smallest + ve number in S
$a+a^{\prime}=0$
qa in S for all q in Z
If possible let $b=q a+r$ be in Z
$\Rightarrow r$ is in Z but $0<=r<a$
$\Rightarrow \mathrm{r}=0$
2) If $(a, b)=c P T c=n a+m b$

Wlog assume $\mathrm{a}>\mathrm{b}$
$\mathrm{a}=\mathrm{q}_{1} \mathrm{~b}+\mathrm{r}_{1}$
$\mathrm{b}=\mathrm{r}_{1} \mathrm{q}_{2}+\mathrm{r}_{2}$
$r_{1}=r_{2} q_{3}+r_{3}$
..
$\mathrm{r}_{\mathrm{n}-1}=\mathrm{r}_{\mathrm{n}} \mathrm{q}_{\mathrm{n}+1}$
$=>r_{n} / r_{n-1} \ldots=>r_{n} / a \quad r_{n} / b=>r_{n} / d$
Where $\mathrm{d}=(\mathrm{a}, \mathrm{b})$
$\mathrm{d} / \mathrm{ad} / \mathrm{b}=>\mathrm{d} / \mathrm{r}_{1} . . \mathrm{d} / \mathrm{r}_{\mathrm{n}}$
$\Rightarrow>d=r_{n}$

Equivalence relations,partitions:

Partitions:

S = union of nonempty disjoint subsets.the set of these subsets forms a partition of S

Relation:

Relation on S is a subset of S X S

Equivalence relation:

a~a(reflexive)
$\mathrm{a} \sim \mathrm{b}=>\mathrm{b} \sim \mathrm{a}$ (symmetric)
$\mathrm{a} \sim \mathrm{b}, \mathrm{b} \sim \mathrm{c}=>\mathrm{c} \sim \mathrm{a}$ (transitive)
An eq relation on a set S defines a partition of S :
Eqclass $(a)=\{x$ in $S \mid x \sim a\}$
Note that a is in Eqclass(a)
And if x belongs to Eqclass(a) and Eqclass(b)
$=>\mathrm{x} \sim \mathrm{b}, \mathrm{x} \sim \mathrm{a}$
$\Rightarrow \mathrm{a} \sim \mathrm{b}$
$=>$ Eqclass(a) $=$ Eqclass (b)
So Eqclasses form a partition of S
A partition of S defines an Eq relation
$\mathrm{a} \sim \mathrm{b}$ iff a and b belong to the same partition

Cosets:

H is a subgrp of G
$\mathrm{aH}=\{$ ahlh in H$\}$ is a left coset of H . Similarly right cosets can be defined
Properties:

1) $\mathrm{eH}=\mathrm{H}$
2) $\mathrm{hH}=\mathrm{H}$
3) $\mathrm{aH}=\mathrm{bH}$ iff b ' a is in H

If $\mathrm{aH}=\mathrm{bH}$

- $a=b h$
- b'a $=h$
if b' $a=h$
- $a=b h$
- $\mathrm{ah}_{1}=\mathrm{bhh}_{1}=\mathrm{bh}_{2}$
- aH is a subset of bH

$$
\mathrm{bh}_{1}=\text { bhh' }^{\prime} h_{1}=\mathrm{ah}^{\prime} \mathrm{h}_{1}=\mathrm{ah}_{2}
$$

- bH is a subset of aH
4)every coset of a subgrp has the same number of elements
$\mathrm{X}: \mathrm{aH} \rightarrow \mathrm{bH}$
ah \rightarrow bh.
This map is one one onto
5)G is union of left(right)cosets of H

Claim:cosets form equivalence classes (verify)
6) $\mathrm{laH\mid}=\mid \mathrm{Hal}($ ah \rightarrow ha)

Index:No of left(right) cosets of a subgrp in a grp is called index of the subgrp in the grp

Index of H in G $=[\mathrm{G}: \mathrm{H}]$

Lagrange's theorem:

$|\mathrm{G}|=|\mathrm{H}|[\mathrm{G}: \mathrm{H}]$
Proof:
$\mathrm{G}=\mathrm{U}($ left cosets of H$)$
$|\mathrm{aH}|=|\mathrm{H}|$
So $\mathrm{G}=($ no of cosets $)|\mathrm{H}|$

Problems done in class:

1) If G has p (prime) no. of elements , PT it is cyclic
$|G|!=1$
So let $\mathrm{a}!=\mathrm{e}$ belong to G .
$\mathrm{H}=$ subgrp generated by a
$|\mathrm{HI} /|\mathrm{G}|$
And $|\mathrm{H}|>1=>|\mathrm{H}|=|\mathrm{G}|$
2) Write down the multiplication table for groups of order 2,3,4

$*$	e	A
e	e	A
a	a	E

$*$	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

$*$	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

$*$	e	a	B	c
e	e	a	B	c
a	a	e	C	b
b	b	c	A	e
c	c	b	E	a

From Lagrange's theorem

1) If G is finite, a in G then $o(a) / o(G)$
2) $\mathrm{a}^{\mathrm{o}(\mathrm{G})}=\mathrm{e}\left(\mathrm{a}^{\mathrm{o}(\mathrm{a})}=\mathrm{e}\right.$. and $\left.\mathrm{o}(\mathrm{G})=\mathrm{k} . \mathrm{o}(\mathrm{a})\right)$
so euler's theorem follows $\left(\mathrm{a}^{\text {phi(}(\mathrm{n})}=1 \bmod \mathrm{n}(\mathrm{a}, \mathrm{n})=1\right)$
fermat's little theorem is a corollary ($\mathrm{n}=\mathrm{p}$ (prime))

Some "flavour" of group theory:

$\mathrm{HK}=\mathrm{KH} \longleftrightarrow \rightarrow \mathbf{H K}$ is a subgroup

HK=KH
Closure: $\mathrm{h}_{1} \mathrm{k}_{1} \cdot \mathrm{~h}_{2} \mathrm{k}_{2}=\mathrm{h}_{1} \mathrm{k}_{1}\left(\mathrm{k}^{2} \mathrm{~h}^{2}\right)=\mathrm{h}_{1} \mathrm{k}_{\mathrm{x}} \mathrm{h}_{2}=\mathrm{h}_{1} \mathrm{~h}_{\mathrm{x}} \mathrm{k}^{\mathrm{x}}=\mathrm{h}_{\mathrm{y}} \mathrm{k}^{\mathrm{x}}$
Associativity - as * in G is associative
Identity : e. $\mathrm{e}=\mathrm{e}$
Inverse: $\left(\mathrm{h}_{1} \mathrm{k}_{1}\right)^{\prime}=\mathrm{k}_{1}{ }^{\prime} \mathrm{h}_{1}{ }^{\prime}=\mathrm{h}_{2} \mathrm{k}_{2}$
HK is a subgrp:
kh = (h'k')' which belongs to HK. So KH is contained in HK
let x be in $H K, x^{\prime}$ is in $H K, x^{\prime}=h k$ so $x^{\prime \prime}=x=k^{\prime} h \prime$ in $K H$.so $H K$ contained in KH

© the one theorem I keep on using

$\mathbf{O}(\mathbf{H K})=\mathbf{o}(\mathbf{H}) \mathbf{o}(\mathbf{K}) / \mathbf{o}(\mathbf{H} \cap K)$
Supposing $(H \cap K)=\{e\}$
Now if $h_{1} \mathrm{k}_{1}=\mathrm{h}_{2} \mathrm{k}_{2}$
$\Rightarrow \mathrm{h}_{2}{ }^{\prime} \mathrm{h}_{1}=\mathrm{k}_{2} \mathrm{k}_{1}$,
$\Rightarrow \mathrm{h}_{1}=\mathrm{h}_{2}, \mathrm{k}_{1}=\mathrm{k}_{2}$
so $\mathrm{o}(\mathrm{HK})=\mathrm{o}(\mathrm{H}) \mathrm{o}(\mathrm{K})$
Claim: an element hk appears as many times as $\mathrm{o}(\mathrm{H} \cap \mathrm{K})$ times
$\mathrm{hk}=\left(\mathrm{hh}_{1}\right)\left(\mathrm{h}_{1}{ }^{\prime} \mathrm{k}\right)$ which belongs to HK if h_{1} belongs to $\mathrm{H} \cap \mathrm{K}$
so hk duplicated at least $\mathrm{o}(\mathrm{H} \cap \mathrm{K})$ times
if $\mathrm{hk}=\mathrm{h}_{1} \mathrm{k}_{1}$
$\Rightarrow \mathrm{h}_{1}{ }^{\prime} \mathrm{h}=\mathrm{k}_{1} \mathrm{k}^{\prime}=\mathrm{u}$
$\Rightarrow \mathrm{u}$ is in $\mathrm{H} \cap \mathrm{K}$
$\Rightarrow \mathrm{h}_{1}=\mathrm{hu}$,
$\Rightarrow \mathrm{k}_{1}=\mathrm{uk}$
\Rightarrow
Corollary:
If sqrt $o(G)<o(H), o(K)=>H \cap K$ is non empty
$\mathrm{o}(\mathrm{HK})<\mathrm{o}(\mathrm{G})$
$\mathrm{o}(\mathrm{HK})=\mathrm{o}(\mathrm{H}) \mathrm{o}(\mathrm{K}) / \mathrm{o}(\mathrm{H} \cap \mathrm{K})<\mathrm{o}(\mathrm{G}) / \mathrm{o}(\mathrm{H} \cap \mathrm{K})$
So o $(\mathrm{G})>\mathrm{o}(\mathrm{G}) / \mathrm{o}(\mathrm{H} \cap \mathrm{K})$
$\mathrm{O}(\mathrm{G})=\mathrm{pq}(\mathrm{p}>\mathrm{q}$ are primes) then there is atmax one subgrp of order p
If H, K are different order p subgrps
Then they are cyclic
So $\mathrm{H} \cap \mathrm{K}$ is $\{\mathrm{e}\}$
So o $(\mathrm{HK})=\mathrm{p}^{2}>\mathrm{pq}=\mathrm{o}(\mathrm{G})-><-$

Herstein (subgrps) Pg 46:

Problems

1) If H, K are subgroups, $\mathrm{PT} \mathrm{H} \cap \mathrm{K}$ is a subgroup

Closure: h is in $\mathrm{H} \cap \mathrm{K}, \mathrm{k}$ is in $\mathrm{H} \cap \mathrm{K}$
$\Rightarrow \mathrm{h}, \mathrm{k}$ is in H
\Rightarrow h.k is in H
\Rightarrow similarly h.k is in K
\Rightarrow h.k is in $\mathrm{H} \cap \mathrm{K}$
associativity - * in G is associative
identity: e is in H, e is in K
inverse : h is in $\mathrm{H} \cap \mathrm{K}$
$\Rightarrow h$ is in H, h is in K
$\Rightarrow h^{\prime}$ is in H, h^{\prime} is in K (this can be extended to any number of groups)
2) Let G be a group such that intersection of all non $\{e\}$ subgrps is non $\{e\} . P T$ every element in G has a finite order
If x is an element with infinite order, $\left\{\ldots . x^{\prime}, e, x, x^{2}, x^{3} \ldots\right\}$ is a subgrp
So intersection of all subgrps contain x^{k}.
Now consider subgrp generated by $\mathrm{x}^{\mathrm{k}+1}$
x^{k} belongs to the above subgrp
$\mathrm{x}^{(\mathrm{k}+1) \mathrm{m}}=\mathrm{x}^{\mathrm{k}}$
so x has finite order -><-
3) If G has no nontrivial subgrps,PT G must be cyclic of prime order
$\mathrm{G}!=\{\mathrm{e}\}$
Let a !=e belong to G
$\mathrm{H}=$ subgrp generated by a
H ! $=\{\mathrm{e}\}$
So $\mathrm{H}=\mathrm{G}$
G is cyclic
Now if G is finite, let $\mathrm{d} / \mathrm{o}(\mathrm{G})$
Look at subgrp generated by a ${ }^{\mathrm{d}}$-><-
If G is infinite look at subgrp generated by $\mathrm{a}^{2}-><-$
4) If H is a subgrp of G and a is in G,let $\mathrm{aHa}{ }^{\prime}=\left\{\right.$ aha' $^{\prime} \mathrm{lh}$ in H$\}$.PT $\mathrm{aHa}{ }^{\prime}$ is a subgrp, what is order of o(aHa')

Proving it is a subgrp is left as an exercise (yawn!)
$o\left(\mathrm{aHa}^{\prime}\right)=\mathrm{o}(\mathrm{H})$
aha' \rightarrow h
it is one one ,onto
5) PT there is a one one corr bet left cosets and right cosets $\mathrm{aH} \rightarrow \mathrm{Ha}$
6,7,8 - enumeration , boring
9) If H is a subgrp of G such that whenever $\mathrm{Ha}!=\mathrm{Hb}$, then $\mathrm{aH}!=\mathrm{bH}$.

PT gHg^{\prime} is contained in H for all g

$$
\mathrm{Ha}!=\mathrm{Hb}=>\mathrm{aH}!=\mathrm{bH}
$$

$\Rightarrow \mathrm{aH}=\mathrm{bH}=>\mathrm{Ha}=\mathrm{Hb}$
$\Rightarrow a^{\prime} b$ is in $H=>a b^{\prime}$ is in H
$\Rightarrow \mathrm{a}=\mathrm{g} \mathrm{b}=\mathrm{gh}$,
\Rightarrow So ghg' is in H
10) $H(n)=\{k n \mid k$ in $Z\}$.index of $H(n)$? right cosets of $H(n)$

Index $\mathrm{H}(\mathrm{n})=\mathrm{n}$
Cosets $=0+\mathrm{H}, 1+\mathrm{H}, 2+\mathrm{H}, . . \mathrm{n}-1+\mathrm{H}$
11) what is $\mathrm{H}(\mathrm{n}) \cap \mathrm{H}(\mathrm{k})$?
$\mathrm{l}=[\mathrm{k}, \mathrm{n}]$
\{mllm in Z \}
12) If G is a grp, H, K are finite index subgrps.PT $\mathrm{H} \cap \mathrm{K}$ is of finite index in G.can you find an upper bound

$$
\begin{aligned}
& a_{1} H U a_{2} H \ldots U a_{h} H=G \\
& b_{1} K U b_{2} K \ldots U b_{k} K=G \\
& \Rightarrow\left(a_{1} H U a_{2} H \ldots U a_{h} H\right) \cap\left(b_{1} K U b_{2} K \ldots U b_{k} K\right)=G \\
& \Rightarrow U\left(a_{i} H \cap b_{j} K\right)=G
\end{aligned}
$$

Claim : $\left(a_{i} H \cap b_{j} K\right),\left(a_{m} H \cap b_{n} K\right)$ are disjoint
If x is in intersection
$\Rightarrow \mathrm{x}=\mathrm{a}_{\mathrm{i}} \mathrm{h}=\mathrm{b}_{\mathrm{j}} \mathrm{k}=\mathrm{a}_{\mathrm{m}} \mathrm{h}_{1}=\mathrm{b}_{\mathrm{n}} \mathrm{k}_{1}$
$\Rightarrow a_{m}{ }^{\prime} a_{i}$ is in $H, b_{n}{ }^{\prime} b_{j}$ is in K
$\Rightarrow a_{i} H=a_{m} H$ and $b_{j} K=b_{n} K$
Claim: if $\left(a_{i} H \cap b_{j} K\right)!=\{ \}$, it is contained in a coset of $(H \cap K)$
a is in $\left(a_{i} H \cap b_{j} K\right)$
$\Rightarrow \mathrm{a}_{\mathrm{i}} \mathrm{H}=\mathrm{aH}$
$\Rightarrow b_{j} \mathrm{~K}=\mathrm{aK}$
So $\left(\mathrm{a}_{\mathrm{i}} \mathrm{H} \cap \mathrm{b}_{\mathrm{j}} \mathrm{K}\right)=(\mathrm{aH} \cap \mathrm{aK})$
Claim: $(\mathrm{aH} \cap \mathrm{aK})$ is contained $a(H \cap K)$
Let b be in $(\mathrm{aH} \cap \mathrm{aK})$
$\Rightarrow \mathrm{b}=\mathrm{ah}=\mathrm{ak}$
$\Rightarrow \mathrm{h}=\mathrm{k}$ and belongs to $(\mathrm{H} \cap \mathrm{K})$
$\Rightarrow>b$ is in $a(H \cap K)$
So as the former is finite in no. so will the latter be
some trivial stuff - so just convert to definitions
Following are some subgroups
Normalizer of $a: N(a)=\{x \mid x$ in $G, x a=a x\}$
Centralizer of $H=\{x \mid x$ in $G, x h=h x$ for all h in $H\}$
Center of $G=Z=$ centralizer of G
$\mathrm{N}(\mathrm{H})=\{\mathrm{a} \mid \mathrm{aHa}=\mathrm{H}\}$
H is contained in $\mathrm{N}(\mathrm{H})$
$\mathrm{C}(\mathrm{H})$ is contained in $\mathrm{N}(\mathrm{H})$
In $D_{3}, C\left(\left\{1, x, x^{2}\right\}\right)!=N\left(\left\{1, x, x^{2}\right\}\right)$
18) If H is a subgrp of G , let $\mathrm{N}=\cap_{\mathrm{x} \text { in } \mathrm{G}} \mathrm{xHx}$. PT N is a subgrp and $\mathrm{aNa}=\mathrm{N}$ for all a

Proving it is a subgrp is boring
Now $\mathrm{aNa}^{\prime}=\mathrm{a}\left(\cap_{\mathrm{x} \text { in } \mathrm{G}} \mathrm{xH} \mathrm{x}^{\prime}\right)^{\prime} \mathrm{a}^{\prime}=\cap_{\mathrm{x} \text { in } \mathrm{G}} \mathrm{axHx} \mathrm{a}^{\prime}=\cap_{\mathrm{x} \text { in } \mathrm{G}}(\mathrm{ax}) \mathrm{H}(\mathrm{ax})^{\prime}$
$=\cap_{\mathrm{ax} \text { in } \mathrm{G}}(\mathrm{ax}) \mathrm{H}(\mathrm{ax})^{\prime}=\mathrm{N}$
19)If H is a subgrp of finite index in G,PT there is only a finite no. of distinct subgrps in G of form aHa'
$\mathrm{aH}=\mathrm{bH}$
$\leftrightarrow \rightarrow a^{\prime} b$ is in H
$\leftrightarrow \rightarrow \mathrm{a}^{\prime} \mathrm{b}=\mathrm{k}$
$\leftarrow \rightarrow$ (aha' = akk'hkk'a' = (ak) (k'hk) (ak)'
$\leftarrow \rightarrow \mathrm{aHa}$ ' is contained in $\mathrm{bHb}{ }^{\prime}$
20) If H is of finite index, PT there is a subgrp N of H and of finite index in G such that $\mathrm{aNa}{ }^{\prime}=\mathrm{N}$ for all a in G . Upper bound for [G:N]?

Let $\mathrm{N}=\cap_{\mathrm{xing}} \mathrm{xHx}$ '
N is contained in xHx ' for all x (put $\mathrm{x}=\mathrm{e}$, so N is in H)
H is of finite index, then only finite subgrps of form aHa '
If we PT xHx' is of finite index in G, then by prob 12, and above we are done
TPT xHx' is of finite index if H is of finite index:
(involves quotienting $)^{}$ though)
Phi : G/H -> G/aHa’

$$
\mathrm{gH} \rightarrow \mathrm{ga}(\mathrm{aHa})
$$

this map is well defined!!
Why?
If $\mathrm{bH}=\mathrm{cH}$
$\Rightarrow b^{\prime} c$ is in H
PT ba' ${ }^{\left(a H a^{\prime}\right)}=c a^{\prime}\left({ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}\right)$
PT (ba')'(ca') is in aHa'
PT ab'ca' is in aHa' (but b'c is in H ©)
Phi is onto : $\mathrm{k}\left(\mathrm{aHa}^{\prime}\right)=\mathrm{kaa}^{\prime}\left(\mathrm{aHa}^{\prime}\right)=\operatorname{phi}(\mathrm{kaH})$
Hence done
21-23 again boring enumerative stuff
24) Let G be a finite group whose order is not divisible by 3.If $(a b)^{3}=a^{3} b^{3}$ for all a,b.

PT G is abelian

```
\(\left(a b a^{\prime} b^{\prime}\right)^{3}=(a b)^{3}\left(a^{\prime} b^{\prime}\right)^{3}=a^{3} b^{3} a^{\prime 3} b^{3}=a^{3}(b a b)^{3}\)
\(\Rightarrow b^{2} a^{3}=a^{3} b^{2}\)
\(\Rightarrow\) so \(x^{2} y^{3}=y^{3} x^{2}\) for any \(x, y\)
\(\Rightarrow\) so \(a^{6} b^{6}=b^{6} a^{6}\)
\(\Rightarrow\left(\mathrm{a}^{2} \mathrm{~b}^{2}\right)^{3}=\left(\mathrm{b}^{2} \mathrm{a}^{2}\right)^{3}\)
if \(x^{3}=y^{3}=>x^{3} y^{\prime 3}=e=>\left(x y^{\prime}\right)^{3}=e\)
\(\Rightarrow x y \prime=e\) as order not div by 3
\(\Rightarrow x=y\)
so \(a^{2} b^{2}=b^{2} a^{2}\)
proved \(b f r a^{2} b^{3}=b^{3} a^{2}\)
\(\left(a^{2} b^{2}\right)\left(b^{3} a^{\prime 2}\right)=\left(b^{2} a^{2}\right)\left(a^{2} b^{\prime 3}\right)\)
\(\Rightarrow a^{2} b^{\prime} a^{\prime 2}=b^{\prime}\)
\(\Rightarrow x^{2} y=y x^{2}\) for any \(x, y\)
\(\Rightarrow x y=x^{\prime} y x^{2}\)
Now \((y x)^{3}=y^{3} x^{3}\)
\(\Rightarrow\) yxyxyx \(=y^{3} x^{3}\)
\(\Rightarrow\) xyxy \(=y^{2} x^{2}=y y x x=y\left(x x^{\prime}\right) y x x=(y x)\left(x^{\prime} y x^{2}\right)=y x(x y)\left(\right.\) as \(\left.x y=x^{\prime} y x^{2}\right)\)
\(\Rightarrow\) xyxy \(=(\mathrm{yx})(\mathrm{xy})\)
\(\Rightarrow x y=y x\)
```

($25,26 \rightarrow$ I got discouraged inspite of what herstein had to say : P (see exercises on finite abelian groups for this)
27)PT subgrp of a cyclic grp is cyclic
let $\mathrm{G}=$ cyclic grp generated by a , H be a subgrp
let $\mathrm{H}^{\prime}=\left\{\mathrm{xl} \mathrm{a}^{\mathrm{x}}\right.$ is in H$\}$
and $\mathrm{d}=\mathrm{HCF}$ of elements in H^{\prime}
claim : $\mathrm{H}=<\mathrm{a}^{\mathrm{d}}>$
if we PT a ${ }^{\mathrm{d}}$ belongs to H , then we are done as H is a subgrp and any element of $H=a^{x}=\left(a^{d}\right)^{x^{\prime}}$

Note that if a^{x}, a^{y} belongs to H , then $\mathrm{a}^{\operatorname{HCF}(\mathrm{x}, \mathrm{y})}$ belongs to H

Hence done
28) How many generators does a cyclic grp of order n have?
$\mathrm{U}(\mathrm{n})=\{\mathrm{x} \mid \mathrm{x}<=\mathrm{n},(\mathrm{x}, \mathrm{n})=1\}$
$|\mathrm{U}(\mathrm{n})|$ is the answer
let $\mathrm{G}=<\mathrm{a}>$ and $\mathrm{o}(\mathrm{a})=\mathrm{n}$
if $G=<a x>$ then a is in G, so $(a x) y=e$
$\Rightarrow x y=1 \bmod n$
$\Rightarrow(\mathrm{x}, \mathrm{n})=1$
and once a is in G , then rest are in G
35)Hazard a guess at what all n such that U_{n} is cyclic
chk no. theory book as herstein suggests $: P$
36)If a is in $\mathrm{G}, \mathrm{a}^{\mathrm{m}}=\mathrm{e} . \mathrm{PT}$ o(a) $/ \mathrm{m}$.
$o(a)$ is the smallest integer such that $a^{o(a)}=e$
let $m=q o(a)+r$
$\Rightarrow a^{r}=e$
$\Rightarrow \mathrm{r}=0$
37) If in group G, $a^{5}=e, a b a a^{\prime}=b^{2}$. for some a, b. Find $o(b)$

$$
\mathrm{aba}^{\prime}=\mathrm{b}^{2}
$$

$$
\Rightarrow a b^{2} a^{\prime}=b^{4}
$$

$\Rightarrow a\left(a b a a^{\prime}\right) a^{\prime}=b^{4}$
$\Rightarrow a^{2} b a^{2}=b^{4}$
$\Rightarrow a^{2} b^{2} a^{, 2}=b^{8}$
$\Rightarrow a^{2}\left(a b a^{\prime}\right) a^{\prime 2}=b^{8}$
$\Rightarrow a^{3} b^{3}=b^{8}$
$\Rightarrow a^{3} b^{2} a^{3}=b^{16}$
$\Rightarrow a^{4} \mathrm{ba}^{, 4}=b^{16}$
$\Rightarrow a^{4} b^{2} a^{4}=b^{32}$
$\Rightarrow a^{5} a^{, 5}=b^{32}$
$\Rightarrow \mathrm{b}=\mathrm{b}^{32}$
$\Rightarrow \mathrm{b}^{31}=\mathrm{e}$
\Rightarrow as 31 is a prime, $o(b)=31$
38) Let G be a finite abelian grp in which the number of solutions in G for $\mathrm{x}^{\mathrm{n}}=\mathrm{e}$ is at most n for all n . PT G is cyclic
now let $o(a)=m, o(b)=n$ and b is not in <a>
there exists an element x such that $\mathrm{o}(\mathrm{x})=\operatorname{lcm}(\mathrm{m}, \mathrm{n})$ (see exercise on finite abelian
grp)
so for $\operatorname{lcm}(m, n)$ there are solutions $\mathrm{e}, \mathrm{x}, \mathrm{x}^{2} \ldots \mathrm{x}^{[\mathrm{m} . \mathrm{n}]-1}$
but a, b are also solutions
so a is in $\langle x\rangle, b$ is in $\langle x\rangle$
39) Double coset AxB.
$\{\mathrm{axbl} \mathrm{a}$ in A, b in B$\}$
40)If G is finite, $P T$ no. of elements in $A x B$ is $o(A) o(B) / o\left(A \cap x B x^{\prime}\right)$
imitating proof for $\mathrm{o}(\mathrm{AB})$
if y in $A \cap x B x^{\prime}$, say $y=x b x$ '

```
    axb* = ayxb'b*
    so each axb* repeated A \cap xBx' times
also if axb = a*xb*
    => a*'a = xb* '' 'x' which is in A \cap xBx'
41)If G is finite and A is a subgrp such that all AxA have same number number of
elements,PT gAg' = A for all g
|AxA| =o(A)o(A)/0(A \cap xAx')
so o(A\cap xAx') = o(A \cap x*Ax*')
    putting x =e,o(A\cap 的*A*')}=\textrm{o}(\textrm{A}
    |}*Ax*' contains A
    but |xAx'| = |A|
    map xax' }->\mathrm{ a
    so xAx' = A
```


Direct product

External direct product:

$\mathrm{G}=\mathrm{A} \mathbf{X}$ B.
A, B are groups $=>$ under pointwise multiplication G is also a group
(can be extended to any finite number of groups)
e, f are identity elements in A, B respectively
$A^{\prime}=\{(\mathrm{a}, \mathrm{f}) \mid \mathrm{a}$ in A$\}$
A' is normal in G :
$(a, b) \cdot\left(a_{1}, f\right) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a_{1} a^{\prime}, f\right)$ and $a_{1} a^{\prime}$ belongs to A
A^{\prime} is isomorphic to A :

$$
\left(a_{1}, f\right)->a_{1}
$$

Internal direct product

G is internal direct product of $\mathrm{N}_{\mathrm{i}} \mathrm{s}$ when:
$\mathrm{G}=\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3} . . \mathrm{N}_{\mathrm{n}}$ where N_{i} is normal in G for all i
Any g in G can be written in a unique way as $n_{1} n_{2} . . n_{n}$ where n_{i} is in N_{i}
Lemma: $N_{i} \cap N_{j}=\{e\}$ and if a is in N_{i}, b in $N_{j}=>a b=b a$
If x belongs to $N_{i} \cap N_{j}$, then $x=$ e.e....(x)...e...e $=$ ee....e...x....e
$\Rightarrow x=e$
look at aba'b' . ba'b' is in N_{i} as it is normal. So aba'b' belongs to N_{i}
Similarly aba'b' belongs to N_{j}. So $a b a^{\prime} \mathrm{b}^{\prime}=\mathrm{e}$ So $\mathrm{ab}=\mathrm{ba}$

Isomorphism

If T is internal direct product of $\mathrm{A}_{\mathrm{i}} \mathrm{s}$, and G is external direct product of them
Then T is isomorphic to G
$\left(a_{1}, a_{2} \ldots a_{n}\right)->a_{1} a_{2} . . a_{n}$
This map is well defined clearly
It is one one because of the unique way in which each element of G can be expressed.
It is clearly onto

Herstein Pg :108 (direct products)

Problems:

1)If A,B are groups,PT A \mathbf{X} B isomorphic to B \mathbf{X} A
(a,b)->(b,a)
2)G,H,I are groups.PT (G X H) X I isomorphic to G X H X I
$((\mathrm{g}, \mathrm{h}), \mathrm{i})->(\mathrm{g}, \mathrm{h}, \mathrm{i})$
3) $T=G_{1} \mathbf{X ~ G} G_{2} \ldots X G_{n} . P T$ for all i there exists an onto homomorphism $h(i)$ from T to G_{i}

What is the kernel of $h(i)$?
$\mathrm{h}(\mathrm{i}):\left(\mathrm{g}_{1}, \mathrm{~g}_{2} . . \mathrm{g}_{\mathrm{n}}\right)->\mathrm{g}_{\mathrm{i}}$
Kernel of $h(i)=\left\{\left(g_{1}, g_{2 . .} g_{i-1}, e_{i}, g_{i+1}, \ldots g_{n}\right) \mid g_{j}\right.$ in $\left.G_{j}\right\}$
4) $\mathrm{T}=\mathrm{GX} \mathrm{X} . \mathrm{D}=\{(\mathrm{g}, \mathrm{g}) \mid \mathrm{g}$ in G$\}$.PT D is isomorphic to G and normal in T iff G is abelian $\mathrm{x}:(\mathrm{g}, \mathrm{g})->\mathrm{g}$.
if D is normal in T
$\Rightarrow(a, b)(g, g)\left(a^{\prime}, b^{\prime}\right)$ is in D
\Rightarrow aga' $=b g b$ ' for any a, b
\Rightarrow put $b=$ e . so aga' $=g$
If G is abelian
$\Rightarrow(\mathrm{a}, \mathrm{b})(\mathrm{g}, \mathrm{g})\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right)=\left(\mathrm{aga}, \mathrm{b}^{\prime} \mathrm{b}^{\prime}\right)=(\mathrm{g}, \mathrm{g})$ which is in D.
5)Let G be finite abelian group.PT G is isomorphic to direct product of its sylow subgroups

Now since G is abelian, every subgroup is normal.In particular all sylow subgroups are normal.Let $O(G)=p_{1}{ }^{a(1)} \cdot p_{2}{ }^{a(2)} . . \mathrm{p}_{\mathrm{n}}{ }^{\mathrm{an}(\mathrm{n})}$ and H_{i} denote the p_{i} th sylow subgroup.
As G is abelian, $\mathrm{H}_{\mathrm{i}} \mathrm{H}_{\mathrm{j}}=\mathrm{H}_{\mathrm{j}} \mathrm{H}_{\mathrm{i}}$. So $\mathrm{H}_{\mathrm{i}} \mathrm{H}_{\mathrm{j}}$ is a subgroup
And $\mathrm{H}_{\mathrm{i}} \cap \mathrm{H}_{\mathrm{j}}=\{\mathrm{e}\}$ as they are different sylow subgroups
So $\mathrm{O}\left(\mathrm{H}_{\mathrm{i}} \mathrm{H}_{\mathrm{j}}\right)=\mathrm{p}_{\mathrm{i}} \mathrm{a}(\mathrm{i}) \mathrm{p}_{\mathrm{j}} \mathrm{a}(\mathrm{j})$
Like wise $\mathrm{O}\left(\mathrm{H}_{1} \mathrm{H}_{2} . . \mathrm{H}_{\mathrm{n}}\right)=\mathrm{O}(\mathrm{G})$
So $G=H_{1} \mathrm{H}_{2} . . \mathrm{H}_{\mathrm{n}}$

If $g=h_{1} h_{2} \ldots h_{n}=x_{1} x_{2} \ldots x_{n}$
Rearranging terms(Note G is abelian) we get $h_{1} x_{1}{ }^{\prime}=\left(h_{2}{ }^{\prime} x_{2}\right) \ldots\left(h_{n}{ }^{\prime} x_{n}\right)$
Order of $h_{1} x_{1}{ }^{\prime}$ is a power of p_{1} whereas RHS term's order is product of powers of
$\mathrm{p}_{2}, . . \mathrm{p}_{\mathrm{n}}$
$\Rightarrow \mathrm{h}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}$
Hence done
6)PT G $=\mathrm{Z}_{\mathrm{m}} \mathbf{X} \mathrm{Z}_{\mathrm{n}}$ is cyclic iff $(\mathrm{m}, \mathrm{n})=1$

If $(m, n)=1$ then n is $1 \bmod m$ and $m b$ is $1 \bmod n$
Claim: $(1,1)$ generates group
$(1,0)=(1,1)^{\mathrm{na}}$
$(0,1)=(1,1)^{\mathrm{mb}}$
$(\mathrm{x}, \mathrm{y})=(1,0)^{\mathrm{x}}(0,1)^{\mathrm{y}}$
If $(\mathrm{m}, \mathrm{n})=\mathrm{d}$
If (x, y) generates G
$=>(1,0)=(x, y)^{k}$
Note y cant be 0 as then elements like $(1,1)$ cant be generated
$\Rightarrow k$ is a multiple of n say k ' n
$\Rightarrow \mathrm{x}\left(\mathrm{k}^{\prime} \mathrm{n}\right)$ is $1 \bmod \mathrm{~m}$
$\Rightarrow \mathrm{xnk}^{\prime}=\mathrm{qm}+1$
$\Rightarrow \mathrm{d} / \mathrm{n}, \mathrm{d} / \mathrm{m}=>\mathrm{d} / 1$
7)Using 6 PT chinese reminder theorem(ie) (m, n) $=1$ and given u, v in Z there exists x in Z such that $\mathrm{x}=\mathrm{u} \bmod \mathrm{m}$ and $\mathrm{x}=\mathrm{v} \bmod \mathrm{n}$

As (1,1) generates $\mathrm{Z}_{\mathrm{m}} \mathbf{X} \mathrm{Z}_{\mathrm{n}}$,
$\left(u^{\prime}, v^{\prime}\right)=(1,1)^{x}$ where $u=u^{\prime} \bmod m\left(u^{\prime}<m\right)$ and $v=v^{\prime} \bmod n\left(v^{\prime}<n\right)$
$\Rightarrow x^{\prime}=u^{\prime} \bmod m$
$\Rightarrow x=v^{\prime} \bmod n$
8)Give an ex of a group G and normal subgroups $N_{1}, N_{2} . . N_{k}$ such that $G=N_{1} N_{2} . . N_{k}$ and $\mathrm{N}_{\mathrm{i}} \cap \mathrm{N}_{\mathrm{j}}=\{\mathrm{e}\}$ for $\mathrm{i}!=\mathrm{j}$ and G in not the internal direct product
$G=\left\{e, a, a^{2}, b, b^{2}, a b, a^{2} b^{2}\right\} \quad\left(a b=b a, a^{3}=b^{3}=e\right)$
$N_{1}=\left\{e, a, a^{2}\right\} N_{2}=\left\{e, a b, a^{2} b^{2}\right\} N_{3}=\left\{e, b, b^{2}\right\}$
All are normal as G is abelian
$\mathrm{ab}=\mathrm{a} . \mathrm{e} . \mathrm{b}=\mathrm{e} . \mathrm{ab} . \mathrm{e}$ (no unique representation)
9)PT G is internal direct product of $\mathrm{N}_{\mathrm{i}} \mathrm{S}$ (normal) iff $\mathrm{G}=\mathrm{N}_{1} . . \mathrm{N}_{\mathrm{k}}$ and $N_{i} \cap N_{1} N_{2} . . N_{i-1} N_{i+1} . . N_{k}=\{e\}$ for all i

Note : x_{i} belongs to N_{i} for any variable x in the following
If G is internal product ,then clearly $\mathrm{G}=\mathrm{N}_{1} \mathrm{~N}_{2} . . \mathrm{N}_{\mathrm{k}}$
If the second condition isn't true
$\Rightarrow n_{i}=n_{1} n_{2} . . n_{i-1} n_{i+1} . . n_{k}=$ e.e.e....n n_{i}.e.e.e..e $=n_{1} n_{2} \ldots n_{i-1}$. .e. $n_{i+1} \ldots . n_{k}$
(no unique rep)
If the two conditions hold, PT any g in G has a unique rep as $\mathrm{n}_{1} \mathrm{n}_{2} . . \mathrm{n}_{\mathrm{k}}$
If $\mathrm{n}_{1} \mathrm{n}_{2} . . \mathrm{n}_{\mathrm{k}}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{k}}$

$$
\begin{aligned}
& \Rightarrow \mathrm{n}_{1}{ }^{\prime} \mathrm{w}_{1}=\mathrm{n}_{2} . . \mathrm{n}_{\mathrm{k}} \cdot \mathrm{w}_{\mathrm{k}}{ }^{\prime} \ldots \mathrm{w}_{2}{ }^{\prime} \\
& \Rightarrow \mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{k}-1}\left(\mathrm{n}_{\mathrm{k}} \mathrm{~W}_{\mathrm{k}}{ }^{\prime}\right) . . \mathrm{w}_{2}{ }^{\prime}=\mathrm{n}_{2} . . \mathrm{n}_{\mathrm{k}-1}\left(\mathrm{x}_{\mathrm{k}}\right) \mathrm{w}_{\mathrm{k}-1}{ }^{\prime} . . \mathrm{w}_{2}{ }^{\prime} \\
& \Rightarrow=\mathrm{n}_{2} \ldots\left(\mathrm{n}_{\mathrm{k}-1}\left(\mathrm{x}_{\mathrm{k}}\right) \mathrm{n}_{\mathrm{k}-1^{\prime}}\right) \mathrm{n}_{\mathrm{k}-1} \mathrm{~W}_{\mathrm{k}-1}{ }^{\prime} \ldots \mathrm{W}_{2}^{\prime}=\mathrm{n}_{2} . . \mathrm{n}_{\mathrm{k}-2}\left(\mathrm{y}_{\mathrm{k}}\right)\left(\mathrm{x}_{\mathrm{k}-1}\right) \mathrm{w}_{\mathrm{k}-2}, . . \mathrm{w}_{2}{ }^{\prime} \text { (as } \mathrm{N}_{\mathrm{k}} \text { is } \\
& \text { normal) } \\
& \Rightarrow=\mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{k}-3}\left(\mathrm{n}_{\mathrm{k}-2} \mathrm{y}_{\mathrm{k}} \mathrm{n}_{\mathrm{k}-2}{ }^{\prime}\right)\left(\mathrm{n}_{\mathrm{k}-2} \mathrm{X}_{\mathrm{k}-1} \mathrm{n}_{\mathrm{k}-2}{ }^{\prime}\right)\left(\mathrm{n}_{\mathrm{k}-2} \mathrm{~W}_{\mathrm{k}-2}{ }^{\prime}\right) \mathrm{W}_{\mathrm{k}-3}{ }^{\prime} . . \mathrm{W}_{2}{ }^{\prime} \\
& \Rightarrow=\mathrm{n}_{2 .} \cdot \mathrm{n}_{\mathrm{k}-3}\left(\mathrm{l}_{\mathrm{k}}\right)\left(\mathrm{y}_{\mathrm{k}-1}\right)\left(\mathrm{Z}_{\mathrm{k}-2}\right) \mathrm{w}_{\mathrm{k}-3}{ }^{\prime} . . \mathrm{w}_{2}{ }^{\prime} \\
& \Rightarrow \quad \ldots=\mathrm{s}_{\mathrm{k}} \mathrm{~s}_{\mathrm{k}-1} . . \mathrm{s}_{2} \\
& \Rightarrow \mathrm{w}_{1}{ }^{\prime} \mathrm{n}_{1}=\mathrm{s}_{2}{ }^{\prime} \ldots \mathrm{s}_{\mathrm{k}}{ }^{\prime} \\
& \Rightarrow \mathrm{w}_{1}=\mathrm{n}_{1} \text { etc(due to second cond) }
\end{aligned}
$$

10)Let G be a group $. K_{1}, K_{2} . . K_{n}$ be normal subgroups. $K_{1} \cap K_{2} . . \cap K_{n}=\{e\} . V_{i}=G / K_{i}$

PT there is an isomorphism from G into $V_{1} X^{2} . . . V_{n}$

$$
\begin{aligned}
\text { Phi }: G \rightarrow V_{1} X V_{2} . & X V_{n} \\
g & \rightarrow\left(\mathrm{gK}_{1}, \mathrm{gK}_{2} \ldots \mathrm{gK}_{\mathrm{n}}\right)
\end{aligned}
$$

Phi is a homomorphism
It is one one as
If $\left(\mathrm{gK}_{1}, \mathrm{gK}_{2} \ldots \mathrm{gK} \mathrm{K}_{\mathrm{n}}\right)=\left(\mathrm{hK}_{1}, . . \mathrm{hK} \mathrm{K}_{\mathrm{n}}\right)$
$\Rightarrow \mathrm{h}$ ' g is in $\mathrm{K}_{1}, \mathrm{~K}_{2} . . \mathrm{K}_{\mathrm{n}}$
$\Rightarrow h^{\prime} g=\mathrm{e}$
$\Rightarrow \mathrm{h}=\mathrm{g}$
11,12 - I don't know
13)Give an example of a finite nonabelian group G which contains a subgroup H_{0} != $\{\mathrm{e}\}$ such that H_{0} is contained in all subgroups $H!=\{e\}$
$\mathrm{G}=\left\{\mathrm{e}, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}, \mathrm{~b}, \mathrm{~b}^{2}, \mathrm{~b}^{3}, \mathrm{ab}, \mathrm{ba}, \mathrm{ab}^{3}, \mathrm{ba}^{3}\right\}$
Where $a^{2}=b^{2}, a^{4}=b^{4}=e$ and $a b^{3}=b a$
(Hopefully this is a group © . And $\mathrm{H}_{0}=\left\{\mathrm{e}, \mathrm{a}^{2}=\mathrm{b}^{2}\right\}$)
Note $\left\{\mathrm{e}, \mathrm{ab}, \mathrm{a}^{2}, \mathrm{a}^{3} \mathrm{~b}\right\}$ is a group etc
14)PT every group of order p^{2} is cyclic or direct product of 2 cyclic groups of order p(prime)

G of order p^{2} is abelian(proved earlier..using conjugacy of classes)
And any element has order $1, \mathrm{p}$ or p^{2}
If there is one element of order p^{2} then cyclic
Else pick an element g of order p, let H be the subgrp generated by g
And pick h not in H and let K be the subgrp generated by h
As G is abelian, H, K are normal
Also $\mathrm{H} \cap \mathrm{K}=\{\mathrm{e}\}$.So $\mathrm{G}=\mathrm{HK}$ (the usual $\mathrm{o}(\mathrm{G})=\mathrm{o}(\mathrm{H}) \mathrm{o}(\mathrm{K})$)
Also if $\mathrm{x}=\mathrm{g}^{\mathrm{a}} \mathrm{h}^{\mathrm{b}}=\mathrm{g}^{\mathrm{c}} \mathrm{h}^{\mathrm{d}}=>\mathrm{g}^{\mathrm{a}-\mathrm{c}}=\mathrm{h}^{\mathrm{d}-\mathrm{b}}=>\mathrm{a}=\mathrm{c}, \mathrm{b}=\mathrm{d}$ (unique rep)
\Rightarrow internal direct product
15) Let $\mathrm{G}=\mathrm{A} \mathrm{X}$ A where A is cyclic of order p, p a prime. How many automorphisms?
$\mathrm{p}^{2} ?()_{\text {this is a star problem !! })}$
$(\mathrm{e}, \mathrm{a}) \rightarrow\left(\mathrm{e}, \mathrm{a}^{\mathrm{i}}\right)(\mathrm{a}, \mathrm{e}) \rightarrow\left(\mathrm{a}^{\mathrm{j}}, \mathrm{e}\right)$ fixes the automorphism
16) If $G=K_{1} \times K_{2} . . X_{n}$ what is center of G ?
$Z_{i}=$ center of K_{i}
\Rightarrow center of $G=Z_{1} X Z_{2} \ldots \mathrm{Z}_{\mathrm{n}}$
$\left(\left(k_{1}, . . k_{n}\right)\left(g_{1}, . . g_{n}\right)=\left(g_{1}, . . g_{n}\right)\left(k_{1}, . . k_{n}\right)\right.$ for all $\left.g_{i}\right)$
17) Describe $N(g)=\{x$ in G| $x g=g x\}$

$$
\mathrm{g}=\mathrm{k}_{1} \mathrm{k}_{2} . . \mathrm{k}_{\mathrm{n}}
$$

$\mathrm{N}(\mathrm{g})=\mathrm{N}\left(\mathrm{k}_{1}\right) X \mathrm{~N}\left(\mathrm{k}_{2}\right) . . \mathrm{X} \mathrm{N}\left(\mathrm{k}_{\mathrm{n}}\right)$
(or so I think..verify)
18) If G is a finite group and $N_{1}, . . N_{k}$ are normal subgrps such that $G=N_{1} N_{2} . . N_{k}$ and $\mathrm{o}(\mathrm{G})=\mathrm{o}\left(\mathrm{N}_{1}\right) \mathrm{o}\left(\mathrm{N}_{2}\right) . . \mathrm{o}\left(\mathrm{N}_{\mathrm{k}}\right)$, PT G is the direct product of these $\mathrm{N}_{\mathrm{i}}{ }^{\prime} \mathrm{s}$

Note : x_{i} belongs to N_{i} for any variable x in the following by prob 9 enough to PT $\mathrm{N}_{\mathrm{i}} \cap \mathrm{N}_{1} \mathrm{~N}_{2} . . \mathrm{N}_{\mathrm{i}-1} \mathrm{~N}_{\mathrm{i}+1} . . \mathrm{N}_{\mathrm{k}}=\{\mathrm{e}\}$ for all i Since all N_{i} 's are normal, $\mathrm{N}_{\mathrm{i}} \mathrm{N}_{\mathrm{j}} \mathrm{N}_{\mathrm{k}} . . \mathrm{N}_{\mathrm{m}}$ is a subgrp
$\mathrm{O}(\mathrm{G})=\mathrm{o}\left(\mathrm{N}_{1} \mathrm{~N}_{2} . . \mathrm{N}_{\mathrm{k}}\right)=\mathrm{o}\left(\mathrm{N}_{1}\right) \mathrm{o}\left(\mathrm{N}_{2} . . \mathrm{N}_{\mathrm{k}}\right) / \mathrm{o}\left(\mathrm{N}_{1} \cap \mathrm{~N}_{2} \ldots . . \mathrm{N}_{\mathrm{k}}\right)=$ $\mathrm{o}\left(\mathrm{N}_{1}\right) \mathrm{o}\left(\mathrm{N}_{2}\right) \mathrm{o}\left(\mathrm{N}_{3} . . \mathrm{N}_{\mathrm{k}}\right) / \mathrm{o}\left(\mathrm{N}_{1} \cap \mathrm{~N}_{2} \ldots . \mathrm{N}_{\mathrm{k}}\right) \mathrm{o}\left(\mathrm{N}_{2} \cap \mathrm{~N}_{3} \ldots . \mathrm{N}_{\mathrm{k}}\right)$ and so on $=o\left(\mathrm{~N}_{1}\right) \mathrm{o}\left(\mathrm{N}_{2}\right) \mathrm{o}\left(\mathrm{N}_{3}\right) \ldots \mathrm{o}\left(\mathrm{N}_{\mathrm{k}}\right) / \mathrm{o}\left(\mathrm{N}_{1} \cap \mathrm{~N}_{2} \ldots . \mathrm{N}_{\mathrm{k}}\right) \mathrm{o}\left(\mathrm{N}_{2} \cap \mathrm{~N}_{3} \ldots . \mathrm{N}_{\mathrm{k}}\right) . . \mathrm{o}\left(\mathrm{N}_{\mathrm{k}-1} \cap \mathrm{~N}_{\mathrm{k}}\right)$
$\Rightarrow o\left(N_{i} \cap N_{i+1} \ldots . N_{k}\right)=1$ for all i
if x is in $\mathrm{N}_{\mathrm{i}} \cap \mathrm{N}_{1} \cdot \mathrm{~N}_{\mathrm{i}-1} \mathrm{~N}_{\mathrm{i}+1} \ldots \mathrm{~N}_{\mathrm{k}}$
$\Rightarrow x=n_{1} \ldots n_{i-1} n_{i+1} . . n_{k}$
$\Rightarrow \mathrm{n}_{1}^{\prime}=\mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{k}} \cdot \mathrm{x}^{\prime}=\mathrm{n}_{2} . . \mathrm{n}_{\mathrm{k}-1} \mathrm{x}^{\prime} \mathrm{x}\left(\mathrm{n}_{\mathrm{k}}\right) \mathrm{x}^{\prime}=\mathrm{n}_{2} . . \mathrm{n}_{\mathrm{k}-1} \mathrm{x}^{\prime} \mathrm{m}_{\mathrm{k}}$ (as N_{k} is normal)
\Rightarrow and so on $\ldots=n_{2} \ldots n_{i-1}\left(s_{i}\right) s_{i+1} \ldots \mathrm{~s}_{\mathrm{k}}$
$\Rightarrow \mathrm{n}_{1}{ }^{\prime}=\mathrm{e}$ as $\mathrm{o}\left(\mathrm{N}_{1} \cap \mathrm{~N}_{2} \ldots . \mathrm{N}_{\mathrm{k}}\right)=1$
\Rightarrow and so $\mathrm{x}=\mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{i}-1} \mathrm{n}_{\mathrm{i}+1} \ldots \mathrm{n}_{\mathrm{k}}$ and we can follow the same procedure to establish $\mathrm{n}_{2}=\mathrm{e}$ etc
$\Rightarrow \mathrm{x}=\mathrm{e}$

* No idea abt : Prob 11,12 in direct products
* Prob 25,26 in subgrps solved in finite abelian grps chapter

