We need to use the following rules :

1.Demorgan rules:

$$
\begin{aligned}
& P(A \cup B)^{C}=P\left(A^{C} \cap B^{C}\right) \\
& P(A \cap B)^{C}=P\left(A^{C} \cup B^{C}\right)
\end{aligned}
$$

2. Addition Rule :

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

We can write it as

$$
P(A \cap B)=P(A)+P(B)-P(A \cup B)
$$

3.Complement rule :

$$
P(A)^{C}=1-P(A)
$$

4. Probability of an event

$$
P(C)=P(C \cap A)+P\left(C \cap A^{C}\right)
$$

5.Conditional rule :

$$
P(A / B)=\frac{P(A \cap B)}{P(B)}
$$

6. Disjoint : A , B are disjoined if and only if $P(A \cap B)=0$
7. Independent: A , B are disjoined if and only if

$$
\begin{array}{ll}
P(A \cap B)=P(A) x P(B) \\
\text { or } & P(A / B)=P(A) \\
\text { Or } & P(A / B)=P(A)
\end{array}
$$

2. PROBABILITY, CONDITIONAL PROBABILITY, AND INDEPENDENCE

Q1. Let A, B, and C be three events such that: $P(A)=0.5, P(B)=0.4, P\left(C \cap A^{c}\right)=0.6, \quad P(C \cap A)=0.2$, and $P(A \cup B)=0.9$. Then
(a) $P(C)=$

$$
\begin{aligned}
P(C) & =P(C \cap A)+P\left(C \cap A^{C}\right) \\
& =0.2+0.6=0.8
\end{aligned}
$$

(b) $P(B \cap A)=$

$$
\begin{aligned}
P(A \cap B) & =P(A)+P(B)-P(A \cup B) \\
& =0.5+0.4-0.9=0
\end{aligned}
$$

(c) $P(C / A)=$

$$
P(C / A)=\frac{P(A \cap C)}{P(A)}=\frac{0.2}{0.5}=0.4
$$

(d) $P\left(A^{C} \cap B^{C}\right)=$

$$
\mathrm{P}\left(\mathrm{~A}^{\mathrm{C}} \cap \mathrm{~B}^{\mathrm{C}}\right)=\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})^{\mathrm{C}}=1-\mathrm{P}(\mathrm{AUB})=1-0.9=0.1
$$

Q2. Consider the experiment of flipping a balanced coin three times independently.
(a) The number of points in the sample space is
$S=\{H, T\} \times\{H, T\} \times\{H, T\}$
$S=\{H H H, H H T, H T H, T H H, T T H, H T T, T H T, T T T\}$

$$
n(S)=2 \times 2 \times 2=8 \quad \text { (Answer: } C \text {) }
$$

(b) The probability of getting exactly two heads is

$$
\begin{aligned}
A & =\{H H T, H T H, T H H\} \\
P(A) & =3 / 8=0.375
\end{aligned}
$$

(Answer :B)
(c) The events 'exactly two heads' and 'exactly three heads' are

$$
\begin{array}{ll}
A=\text { exactly two head }=\{H H T, H T H, T H H\} & \rightarrow P(A)=3 / 8 \\
B=\text { Exactly three head }=\{H H H\} & \rightarrow P(B)=1 / 8
\end{array}
$$

$$
A \cap B=\varnothing \quad \rightarrow P(A \cap B)=0
$$

A, B are disjoint since $P(A \cap B)=0 \quad$ (Answer B)
(d) The events 'the first coin is head' and 'the second and the third coins are tails' are
$A=$ First coin head $=\{$ HHT,HTH, HHH, HTT $\} \rightarrow P(A)=4 / 8=1 / 2$
$B=$ Second and third coin tail $=\{T T T, H T T\} \rightarrow P(A)=2 / 8=1 / 4$

$$
A \cap B=\{H T T\} \quad \rightarrow P(A \cap B)=1 / 8
$$

A, B are not disjoint (Disjoint) since $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq 0$
A, B are independent since
(Answer A)

$$
\begin{gathered}
P(A \cap B)=P(A) \times P(B) \\
1 / 8=1 / 2 \times 1 / 4
\end{gathered}
$$

H.W

Q3. Suppose that a fair die is thrown twice independently, then

1. the probability that the sum of numbers of the two dice is less than or equal to 4 is;
$S=\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}$
$n(S)=6 \times 6=36$ outcome
$A=\{$ sum $\leq 4\}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\}$
$P(A)=6 / 36=1 / 6=0.1667$
2. the probability that at least one of the die shows 4 is;
$B=\{(1,4),(2,4),(3,4),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,4),(6,4)\}$
$P(A)=11 / 36=0.3056$
3. the probability that one die shows one and the sum of the two dice is four is;

$$
\begin{aligned}
& C=\{(1,3),(3,1)\} \\
& P(C)=2 / 36=0.0556
\end{aligned}
$$

4. the event $\mathrm{A}=\{$ the sum of two dice is 4$\}$ and the event $\mathrm{B}=\{$ exactly one die shows two $\}$ are,

$$
\begin{aligned}
& A=\{(1,3),(3,1),(2,2)\} \quad \cdots \cdots-\cdots(A)=3 / 36=1 / 12 \\
& B=\{(1,2),(2,1),(2,3),(2,4),(2,5),(2,6),(3,2),(4,2),(5,2),(6,2)\}---P(B)=10 / 36=5 / 18
\end{aligned}
$$

$$
A \cap B=\phi \quad-\cdots-\cdots \cdots-\cdots(A \cap B)=0
$$

A, B disjoint

Q13. From a box containing 4 black balls and 2 green balls, 3 balls are drawn independently in succession, each ball being replaced in the box before the next draw is made. The probability of drawing 2 green balls and 1 black ball is: (Let G:Green, B:Black)

نهتم بالترتيب لسحب الكرات ولهذا يكون لدينا 3 اختيارات
$\mathrm{P}(\mathrm{G} \cap G \cap B)+\mathrm{P}(\mathrm{G} \cap B \cap G)+\mathrm{P}(\mathrm{B} \cap G \cap G)=$
$2 / 6 \times 2 / 6 x 4 / 6+2 / 6 \times 4 / 6 \times 2 / 6+4 / 6 x 2 / 6 \times 2 / 6=3 \times(2 / 6 \times 2 / 6 \times 4 / 6)=3 \times 2 / 27=6 / 27$
Q18. Suppose that the experiment is to randomly select with replacement 2 children and register their gender ($B=$ boy, $G=$ girl) from a family having 2 boys and 6 girls.
(1) The number of outcomes (elements of the sample space) of this experiment equals to
$\mathrm{S}=\{\mathrm{B}, \mathrm{G}\} \times\{\mathrm{B}, \mathrm{G}\}=2 \times 2=4$ outcomes $($ Answer $=(\mathrm{A}) 4)$
$S=\{B B, B G, G B, G G\}----P(B)=2 / 8=1 / 4, P(G)=6 / 8=3 / 4$
(2) The event that represents registering at most one boy is
$\{\mathrm{BG}, \mathrm{GB}, \mathrm{GG}\} \quad($ Answer $=(\mathrm{A})$
(3) The probability of registering no girls equals to

$$
\mathrm{P}(\{\mathrm{BB}\})=\mathrm{P}(\mathrm{~B}) \times \mathrm{P}(\mathrm{~B})=1 / 4 \times 1 / 4=1 / 16=0.0625(\mathrm{~B})
$$

(4) The probability of registering exactly one boy equals to
$P(\{B G, G B\})=P(B G)+P(G B)=1 / 4 \times 3 / 4+3 / 4 \times 1 / 4=2 x(1 / 4 \times 3 / 4)=6 / 16=0.375(B)$
(5) The probability of registering at most one boy equals to
$P(\{\{B G, G B, G G\})=P(B G)+P(G B)+P(G G)=1 / 4 \times 3 / 4+3 / 4 \times 1 / 4+3 / 4 \times 3 / 4=0.9375$

