PHYS 551-505

HANDOUT 2 - On the algebraic method for the angular momentum

1. Prove the relations:

$$
\left[l_{z}, l_{+}\right]=l_{+}, \quad\left[l_{z}, l_{-}\right]=-l_{-}
$$

2. Prove the relations:

$$
\begin{aligned}
& l_{+}|l m\rangle=\hbar \sqrt{l(l+1)-m(m+1)}|l, m+1\rangle \\
& l_{-}|l m\rangle=\hbar \sqrt{l(l+1)-m(m-1)}|l, m-1\rangle
\end{aligned}
$$

3. Prove the relations:

$$
l_{-} l_{+}=\mathbf{1}^{2}-l_{z}\left(l_{z}+\hbar\right), l_{+} l_{-}=\mathbf{l}^{2}-l_{z}\left(l_{z}-\hbar\right),\left[l_{+}, l_{-}\right]=2 \hbar l_{z}
$$

4. Use the algebraic techniques to show that, on a generic state Y_{l}^{m} :

$$
\left\langle l_{x}\right\rangle=\left\langle l_{y}\right\rangle=0, \quad\left\langle l_{x}^{2}\right\rangle=\left\langle l_{y}^{2}\right\rangle=\hbar^{2}[l(l+1)-m(m+1)] / 2 .
$$

5. Find the eigenvalues and eigenfunctions of the operators:
(a) $l_{x}^{2}+l_{y}^{2}$
(b) $l_{x}^{2}+l_{y}^{2}-l_{z}^{4}$
(c) $l_{-} l_{+}^{2} l_{-}$
6. Find the average value of the operator l_{x}^{4} at the maximum projection state Y_{l}^{l}.
7. We know that $Y_{2}^{1}(\theta, \phi)=-\sqrt{15 / 8 \pi} \sin \theta \cos \theta e^{i \phi}$. Apply the raising operator to find $Y_{2}^{2}(\theta, \phi)$. Hint: You will need the position representation of the operators l_{x}, l_{y}.

$$
l_{x}=i \hbar\left(\sin \phi \frac{\partial}{\partial \theta}+\frac{\cos \phi}{\tan \theta} \frac{\partial}{\partial \phi}\right), \quad l_{y}=i \hbar\left(-\cos \phi \frac{\partial}{\partial \theta}+\frac{\sin \phi}{\tan \theta} \frac{\partial}{\partial \phi}\right)
$$

8. The action of the raising operator l_{+}on the maximum projection state Y_{l}^{l} gives zero, i.e. $l_{+} Y_{l}^{l}=0$. Use this property to find the analytical form of Y_{l}^{l}. Hint: You will need the position representation of the operators l_{x}, l_{y}.
9. For a state with angular momentum $l=1$, find the matrix representation for the operators: $\mathbf{1}^{2}, l_{x}, l_{y}, l_{z}$.
10. Since the components of the angular momentum operator do not commute, their simultaneous measurement is not possible. Show that in a state $|l m\rangle$ the greatest accuracy of measurement of the components l_{x}, l_{y} is obtained $|m|=l$.
