Dr. Vasileios Lempesis 2-1

PHYS 551-505

HANDOUT 2 - On the algebraic method for the angular momentum

1. Prove the relations:

$$\begin{bmatrix} l_z, \ l_+ \end{bmatrix} = l_+, \quad \begin{bmatrix} l_z, \ l_- \end{bmatrix} = -l_-$$

2. Prove the relations:

$$\begin{split} l_{_{+}}\left|lm\right\rangle &=\hbar\sqrt{l\left(l+1\right)-m\left(m+1\right)}\left|l,m+1\right\rangle \\ l_{_{-}}\left|lm\right\rangle &=\hbar\sqrt{l\left(l+1\right)-m\left(m-1\right)}\left|l,m-1\right\rangle \end{split}$$

3. Prove the relations:

$$l_{-}l_{+} = \mathbf{l}^{2} - l_{z}(l_{z} + \hbar), \quad l_{+}l_{-} = \mathbf{l}^{2} - l_{z}(l_{z} - \hbar), \quad \lceil l_{+}, l_{-} \rceil = 2\hbar l_{z}$$

4. Use the algebraic techniques to show that, on a generic state Y_l^m :

$$\langle l_x \rangle = \langle l_y \rangle = 0, \quad \langle l_x^2 \rangle = \langle l_y^2 \rangle = \hbar^2 \left[l(l+1) - m(m+1) \right] / 2.$$

5. Find the eigenvalues and eigenfunctions of the operators:

(a)
$$l_x^2 + l_y^2$$

(b)
$$l_x^2 + l_y^2 - l_z^4$$

(c)
$$l_{-}l_{+}^{2}l_{-}$$

- **6.** Find the average value of the operator l_x^4 at the maximum projection state Y_l^l .
- 7. We know that $Y_2^1(\theta,\phi) = -\sqrt{15/8\pi} \sin\theta \cos\theta e^{i\phi}$. Apply the raising operator to find $Y_2^2(\theta,\phi)$. Hint: You will need the position representation of the operators l_x , l_y .

$$l_{x} = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \frac{\cos \phi}{\tan \theta} \frac{\partial}{\partial \phi} \right), \quad l_{y} = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \frac{\sin \phi}{\tan \theta} \frac{\partial}{\partial \phi} \right)$$

Dr. Vasileios Lempesis 2-2

8. The action of the raising operator l_+ on the maximum projection state Y_l^l gives zero, i.e. $l_+Y_l^l=0$. Use this property to find the analytical form of Y_l^l . Hint: You will need the position representation of the operators l_x , l_y .

- **9.** For a state with angular momentum l=1, find the matrix representation for the operators: \mathbf{l}^2 , l_x , l_y , l_z .
- **10.** Since the components of the angular momentum operator do not commute, their simultaneous measurement is not possible. Show that in a state $|lm\rangle$ the greatest accuracy of measurement of the components l_x , l_y is obtained |m| = l.