Dr. Vasileios Lempesis 3-1

PHYS 551-505

HANDOUT 3 - On spin

1. Show that spin cannot correspond to a rotation of an electron around an axis passing through its center of mass.

2. Calculate the average values of the spin components when its state is described by the vector

$$X = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

- 3. The average value of the z component of the spin of a particle with s = 1/2 is $-\hbar/6$. What are the probabilities to find the particle with its spin "up" or "down" along z axis.
- **4.** Show that when a particle is at a state with a certain projection of spin along z-axis let's say spin "up" the average values of the two other components (along x and y) are equal to zero. What happens with the corresponding uncertainties Δs_x , Δs_y ?
- 5. A particle with spin s = 1/2 is in a spin "up" state along z. Calculate the probabilities to find it with spin "up" or spin "down" along an axis in the direction of unit vector \mathbf{n} which makes an angle θ with the z-axis.
- **6.** Construct the spin states with a certain projection along x axis $s_x = \pm \hbar/2$. Repeat the same problem along y.
- 7. The state of a particle with spin s=1/2 is described by the vector

$$X = \frac{1}{3} \binom{1+2i}{2}.$$

What are the probabilities to find the particle with spin +1/2 or -1/2 along the x axis?

- **8.** Construct the spin matrices for particles with s = 1.
- 9. A particle with spin s=1 is at a state with a definite projection $s_x=+\hbar$ along x axis. Calculate the probabilities to find the particle with spin "up" $(s_z=+\hbar)$, spin "down" $(s_z=-\hbar)$ and spin "horizontal" $(s_z=0)$. Also calculate the corresponding uncertainty Δs_z .
- **10.** For the generic spin state of a particle with s = 1

Dr. Vasileios Lempesis 3-2

$$X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

write the general expressions for:

(a) the probabilities to find the particle with $s_z=0$, $s_z=+\hbar$, $s_z=-\hbar$.

(b) the probabilities to find the particle with $s_x=0$, $s_x=+\hbar \,,\; s_x=-\hbar \,.$

(c) Show the above results in the specific case where

$$X \approx \begin{pmatrix} 2+i \\ \sqrt{2} \\ 1+i \end{pmatrix}.$$

11. Construct the spin matrices for particles with s = 3/2.

12. The state of a particle with spin s = 1/2 is described by the vector

$$X = \frac{1}{\sqrt{6}} \binom{1+i}{2}.$$

What are the probabilities to find the particle with spin +1/2 or -1/2 along the z and along the x axis?

13. The state of a particle with spin s = 1/2 is described by the vector

$$X = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}.$$

(a) Determine the constant A.

(b) Find the expectation values $\langle s_x \rangle$, $\langle s_y \rangle$, $\langle s_z \rangle$.

(c) Find the "uncertainties" Δs_x , Δs_y , Δs_z .

14. Find the matrices S^2 , S_z , S_x , S_y (in the base of the common eigenvectors of S_z , S^2).

15. Find the eigenvalues and eigenvectors of the operator S_x .

16. The state of a spin of a particle (s=1/2) is:

Dr. Vasileios Lempesis 3-3

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}}e^{i\omega t}|+\rangle + \frac{1}{\sqrt{2}}e^{-i\omega t}|-\rangle$$

where $|\pm\rangle$ the common eigen-states of \mathbf{S}^2 , \mathbf{S}_z . A) What is the probability a time instant t to measure $S_y = \pm \hbar/2$; B) What is the average value of $\langle S_y \rangle$?

17. a) For a particle with spin 1/2 write the projection of the spin $S_n = \hat{S}\hat{\mathbf{n}}$ on an axis n (where $\hat{\mathbf{n}}$ the unit vector) in a matrix form in Cartesian coordinates. b) Show that the projection has eigenvalues $\pm \hbar/2$. c) Express the operator in spherical coordinates. d) Find the eigenvectors of this operator.