PHYS 551-505

HANDOUT 3 - On spin

1. Show that spin cannot correspond to a rotation of an electron around an axis passing through its center of mass.
2. Calculate the average values of the spin components when its state is described by the vector

$$
X=\frac{1}{\sqrt{5}}\binom{1}{2}
$$

3. The average value of the z component of the spin of a particle with $s=1 / 2$ is $-\hbar / 6$. What are the probabilities to find the particle with its spin "up" or "down" along z axis.
4. Show that when a particle is at a state with a certain projection of spin along z-axis - let's say spin "up" - the average values of the two other components (along x and y) are equal to zero. What happens with the corresponding uncertainties $\Delta s_{x}, \Delta s_{y}$?
5. A particle with $\operatorname{spin} s=1 / 2$ is in a spin "up" state along z. Calculate the probabilities to find it with spin "up" or spin "down" along an axis in the direction of unit vector \mathbf{n} which makes an angle θ with the z -axis.
6. Construct the spin states with a certain projection along x axis $s_{x}= \pm \hbar / 2$. Repeat the same problem along y .
7. The state of a particle with $\operatorname{spin} s=1 / 2$ is described by the vector

$$
X=\frac{1}{3}\binom{1+2 i}{2} .
$$

What are the probabilities to find the particle with spin $+1 / 2$ or $-1 / 2$ along the x axis?
8. Construct the spin matrices for particles with $s=1$.
9. A particle with spin $s=1$ is at a state with a definite projection $s_{x}=+\hbar$ along x axis. Calculate the probabilities to find the particle with spin "up" $\left(s_{z}=+\hbar\right)$, spin "down" $\left(s_{z}=-\hbar\right)$ and spin "horizontal" $\left(s_{z}=0\right)$. Also calculate the corresponding uncertainty Δs_{z}.
10. For the generic spin state of a particle with $s=1$

$$
X=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

write the general expressions for:
(a) the probabilities to find the particle with $s_{z}=0$, $s_{z}=+\hbar, s_{z}=-\hbar$.
(b) the probabilities to find the particle with $s_{x}=0$, $s_{x}=+\hbar, s_{x}=-\hbar$.
(c) Show the above results in the specific case where

$$
X \approx\left(\begin{array}{c}
2+i \\
\sqrt{2} \\
1+i
\end{array}\right)
$$

11. Construct the spin matrices for particles with $s=3 / 2$.
12. The state of a particle with $\operatorname{spin} s=1 / 2$ is described by the vector

$$
X=\frac{1}{\sqrt{6}}\binom{1+i}{2}
$$

What are the probabilities to find the particle with spin $+1 / 2$ or $-1 / 2$ along the z and along the x axis?
13. The state of a particle with $\operatorname{spin} s=1 / 2$ is described by the vector

$$
X=A\binom{3 i}{4} .
$$

(a) Determine the constant A.
(b) Find the expectation values $\left\langle s_{x}\right\rangle,\left\langle s_{y}\right\rangle,\left\langle s_{z}\right\rangle$.
(c) Find the "uncertainties" $\Delta s_{x}, \Delta s_{y}, \Delta s_{z}$.
14. Find the matrices $\mathbf{S}^{2}, \mathbf{S}_{z}, \mathbf{S}_{x}, \mathbf{S}_{y}$ (in the base of the common eigenvectors of $\mathbf{S}_{z}, \mathbf{S}^{2}$).
15. Find the eigenvalues and eigenvectors of the operator \mathbf{S}_{x}.
16. The state of a spin of a particle $(s=1 / 2)$ is:

$$
|\psi(t)\rangle=\frac{1}{\sqrt{2}} e^{i \omega t}|+\rangle+\frac{1}{\sqrt{2}} e^{-i \omega t}|-\rangle
$$

where $| \pm\rangle$ the common eigen-states of $\mathbf{S}^{2}, \mathbf{S}_{z}$. A) What is the probability a time instant t to measure $S_{y}= \pm \hbar / 2$; B) What is the average value of $\left\langle S_{y}\right\rangle$?
17. a) For a particle with spin $1 / 2$ write the projection of the spin $S_{n}=\hat{S} \hat{\mathbf{n}}$ on an axis n (where $\hat{\mathbf{n}}$ the unit vector) in a matrix form in Cartesian coordinates. b) Show that the projection has eigenvalues $\pm \hbar / 2$. c) Express the operator in spherical coordinates. d) Find the eigenvectors of this operator.

