Dr. Vasileios Lempesis 3-1 ## PHYS 551-505 ## HANDOUT 3 - On spin 1. Show that spin cannot correspond to a rotation of an electron around an axis passing through its center of mass. **2.** Calculate the average values of the spin components when its state is described by the vector $$X = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$ - 3. The average value of the z component of the spin of a particle with s = 1/2 is $-\hbar/6$. What are the probabilities to find the particle with its spin "up" or "down" along z axis. - **4.** Show that when a particle is at a state with a certain projection of spin along z-axis let's say spin "up" the average values of the two other components (along x and y) are equal to zero. What happens with the corresponding uncertainties Δs_x , Δs_y ? - 5. A particle with spin s = 1/2 is in a spin "up" state along z. Calculate the probabilities to find it with spin "up" or spin "down" along an axis in the direction of unit vector \mathbf{n} which makes an angle θ with the z-axis. - **6.** Construct the spin states with a certain projection along x axis $s_x = \pm \hbar/2$. Repeat the same problem along y. - 7. The state of a particle with spin s=1/2 is described by the vector $$X = \frac{1}{3} \binom{1+2i}{2}.$$ What are the probabilities to find the particle with spin +1/2 or -1/2 along the x axis? - **8.** Construct the spin matrices for particles with s = 1. - 9. A particle with spin s=1 is at a state with a definite projection $s_x=+\hbar$ along x axis. Calculate the probabilities to find the particle with spin "up" $(s_z=+\hbar)$, spin "down" $(s_z=-\hbar)$ and spin "horizontal" $(s_z=0)$. Also calculate the corresponding uncertainty Δs_z . - **10.** For the generic spin state of a particle with s = 1 Dr. Vasileios Lempesis 3-2 $$X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$ write the general expressions for: (a) the probabilities to find the particle with $s_z=0$, $s_z=+\hbar$, $s_z=-\hbar$. (b) the probabilities to find the particle with $s_x=0$, $s_x=+\hbar \,,\; s_x=-\hbar \,.$ (c) Show the above results in the specific case where $$X \approx \begin{pmatrix} 2+i \\ \sqrt{2} \\ 1+i \end{pmatrix}.$$ **11.** Construct the spin matrices for particles with s = 3/2. **12.** The state of a particle with spin s = 1/2 is described by the vector $$X = \frac{1}{\sqrt{6}} \binom{1+i}{2}.$$ What are the probabilities to find the particle with spin +1/2 or -1/2 along the z and along the x axis? **13.** The state of a particle with spin s = 1/2 is described by the vector $$X = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}.$$ (a) Determine the constant A. (b) Find the expectation values $\langle s_x \rangle$, $\langle s_y \rangle$, $\langle s_z \rangle$. (c) Find the "uncertainties" Δs_x , Δs_y , Δs_z . **14.** Find the matrices S^2 , S_z , S_x , S_y (in the base of the common eigenvectors of S_z , S^2). **15.** Find the eigenvalues and eigenvectors of the operator S_x . **16.** The state of a spin of a particle (s=1/2) is: Dr. Vasileios Lempesis 3-3 $$|\psi(t)\rangle = \frac{1}{\sqrt{2}}e^{i\omega t}|+\rangle + \frac{1}{\sqrt{2}}e^{-i\omega t}|-\rangle$$ where $|\pm\rangle$ the common eigen-states of \mathbf{S}^2 , \mathbf{S}_z . A) What is the probability a time instant t to measure $S_y = \pm \hbar/2$; B) What is the average value of $\langle S_y \rangle$? **17.** a) For a particle with spin 1/2 write the projection of the spin $S_n = \hat{S}\hat{\mathbf{n}}$ on an axis n (where $\hat{\mathbf{n}}$ the unit vector) in a matrix form in Cartesian coordinates. b) Show that the projection has eigenvalues $\pm \hbar/2$. c) Express the operator in spherical coordinates. d) Find the eigenvectors of this operator.