## PHYS 551-505

## HANDOUT 5 - Composition of angular momenta

1. Show in the expression for the Clebsch-Gordan coefficients that $m=m_{1}+m_{2}$.
2. Show the orthonormality relation:

$$
\sum_{j, m}\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m\right\rangle \cdot \sum_{j, m}\left\langle j_{1} j_{2} j m \mid j_{1} j_{2} m_{1} m_{2}\right\rangle=\delta_{m_{1}^{\prime} m_{1}} \delta_{m_{2} m_{2}}
$$

3. Show that the Clebsch-Gordan coefficient is non-zero if $j_{1}^{\prime}=j_{1}$ and $j_{2}=j_{2}$.
4. Show the orthonormality relation:

$$
\sum_{m_{1}, m_{2}}\left\langle j_{1} j_{2} j m \mid j_{1} j_{2} m_{1} m_{2}\right\rangle \cdot\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j^{\prime} m^{\prime}\right\rangle=\delta_{j j} \delta_{m m i}
$$

5. Construct the eigenstates of total angular momentum of a hydrogen atom at the excited state $2 p$.
6. Find the Clebsch-Gordan coefficients for two $p$ electrons.
7. In the external orbit of the carbon Catom there are two electrons with $l=1$ for each of them and of course with $\operatorname{spin} s=1 / 2$. For reasons that have a deep physical meaning, but we do not explain them here the combination of these for angular momenta is done in two stages as follows: a) first the partial angular momenta $\mathbf{I}_{1}, \mathbf{l}_{2}$ are composed to give the total orbital angular momentum 1. b) after that the partial angular momenta $\mathbf{s}_{1}, \mathbf{s}_{2}$ are composed to give the total spin $\mathbf{s}$. Then we get the total angular momentum $\mathbf{j}=\mathbf{l}+\mathbf{s}$.

Follow the above steps to calculate all the possible values of the total angular momentum $j$. Confirm that the number of states before and after the composition remains the same.
8. Show that the product $\mathbf{I} \cdot \mathbf{s}$ has well defined eigenvalues at states with definite total angular momentum $\mathbf{j}$.
9. Two particles with spin $s_{1}=3 / 2$ and interact with the Hamiltonian $H=A \mathbf{s}_{1} \cdot \mathbf{s}_{2}$ where $A$ is a given constant. Calculate the energy eigenvalues of the system and the degree of degeneracy of the system.
10. For two particles with spins $s_{1}=s_{2}=1 / 2$ find the common eigenstates of the operators $\mathbf{S}^{2}, \mathbf{S}_{z}, \mathbf{s}_{1}^{2}, \mathbf{s}_{2}^{2}$ as a linear combination of the eigenstates of the operators $s_{1 z}, s_{2 z}, \mathbf{s}_{1}^{2}, \mathbf{s}_{2}^{2}$, if you are given the following table of Glebsch-Gordan coefficients (Menis 333):

|  | $J=1$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} M=1 \\ 1 \end{gathered}$ | $\begin{aligned} & J=1 \\ & M=0 \end{aligned}$ | $\begin{aligned} & J=0 \\ & M=0 \end{aligned}$ |  |
| $m_{s 1}=1 / 2, m_{s 2}=-1 / 2$ |  |  |  |  |
|  | $m_{s 1}=1 / 2, m_{s 2}=-1 / 2$ | $\begin{aligned} & 1 / \sqrt{2} \\ & 1 / \sqrt{2} \end{aligned}$ | $1 / \sqrt{2}$ | $J=1$ |
|  | $m_{s 1}=-1 / 2, m_{s 2}=1 / 2$ |  | $-1 / \sqrt{2}$ |  |
|  |  | $m_{s 1}=-1 / 2, m_{s 2}=-1 / 2$ |  | 1 |

11. Show that for the particles of the previous problem: $\left|0,0 ; \frac{1}{2}, \frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right\rangle$ (Menis 337).
12. In the hydrogen atom there is an additional spin-orbit interaction which is described by the Hamiltonian:

$$
H^{\prime}=\frac{2 a}{\hbar^{2}} \mathbf{L} \cdot \mathbf{S}
$$

Calculate the energy spectrum of the hydrogen atom (Lag 68).
13. Two atoms have angular momenta $j_{1}=j_{2}=2$ and move in one dimension with a potential given by $V(x)=\lambda \mathbf{J}_{1} \cdot \mathbf{J}_{2} x^{2}$ with $\lambda>0$. The two atoms can form a molecule if their potential energy is given by $V(x)=a x^{2}$ with $a>0$. Find the energies for which a molecule may be formed (Lag 70).
14. Three particles with spins $s_{1}=s_{2}=s_{3}=1 / 2$ interact through the so called Heisenberg Hamiltonian given by (Lag 78):

$$
\hat{H}=A \sum_{i<j} \mathbf{S}_{i} \cdot \mathbf{S}_{j} \quad(i, j=1,2,3)
$$

15. You are given the matrices:

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
5 & 4 \\
2 & 1
\end{array}\right)
$$

Find the tensorial product $\mathbf{A} \otimes \mathbf{B}$.
16. Form the states $|++\rangle,|+-\rangle,|-+\rangle,|--\rangle$ where (menis 341 ):

Where $|+\rangle,|-\rangle$ the known eigenvectors of the spin operators $\mathbf{s}^{2}, s_{z}$.
17. For a particle with spin $s=1 / 2$ we know that:

$$
\mathbf{s}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Find the matrices which represent the operators: $\mathbf{s}_{1 z}=\mathbf{s}_{z} \otimes \mathbf{I}$ and $\mathbf{s}_{2 z}=\mathbf{I} \otimes \mathbf{s}_{z}$ and verify their action on the common eigenvectors (Menis 342).
18. For a particle with spin $s=1 / 2$ we know that:

$$
\mathbf{s}^{2}=\frac{3 \hbar^{2}}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Find the matrices which represent the operators: $\mathbf{s}_{1}^{2}=\mathbf{s}^{2} \otimes \mathbf{I}$ and $\mathbf{s}_{1}^{2}=\mathbf{I} \otimes \mathbf{s}^{2}$. (Menis 343).
19. Find the matrices which represent the operators: $\mathbf{s}_{1 y}, \mathbf{s}_{1 y}, \mathbf{s}_{2 x}, \mathbf{s}_{2 y}$ in the space of two particles of spin $s=1 / 2$ (Menis 344 ).
20. Find the matrices which represent the operators: $\mathbf{s}^{2}, \mathbf{s}_{z}$ in the space of two particles of spin $s=1 / 2$ (Menis 345).
21. What are the eigenstates of $\mathbf{s}^{2}, \mathbf{s}_{z}$ in the space of two particles of spin $s=1 / 2$ (Menis 346).
22. The Hamiltonian of a system of two electrons is given by:

$$
\mathbf{H}=\left(2 \varepsilon_{0} / \hbar^{2}\right) \mathbf{s}_{1} \cdot \mathbf{s}_{2} .
$$

The time instant $t=0$, the system is at the state:

$$
|\psi(0)\rangle=\frac{1}{\sqrt{3}}\left|\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|\frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right\rangle .
$$

a) Find the energy spectrum and the degeneracy.
b) Find the state at $t>0$.
c) What is the probability the system to be found at the states of total spin.

