PHYS 505

HANDOUT 7 - On the Born approximation in quantum scattering theory.

1. Show that in the scattering by a Yukawa potential given by $V(r)=-g \frac{e^{-\lambda r}}{r}$ the scattering amplitude is given by $f_{B}=\frac{2 m g}{\hbar^{2}\left(\lambda^{2}+q^{2}\right)}$.
2. Find the differential cross section area, in the Born approximation, for the Gaussian potential that has the form: $V(r)=V_{0} e^{-a^{2} r^{2}}$.
3. Compare the differential cross-section of a Gaussian potential
$V_{G}(r)=\frac{V_{0}}{\sqrt{4 \pi}} e^{-r^{2} / 4 a^{2}}$ with that for Yukawa potential $V_{\hat{r}}(r)=\frac{V_{0} a}{r} e^{-r / a}$.
Make a plot for both quantities against $q a$. Also check the case $q a \ll 1$.
4. Find in the Born approximation the differential and total cross-section for scattering in the field $V(r)=V_{0} e^{-r / a}$.
5. Using the Born approximation express the differential cross-section for the scattering of an electron from a spherical symmetric charge distribution $\rho(r)$ in the following two cases:
(a) A uniform charge distribution

$$
\rho(r)=\left\{\begin{array}{cc}
3 q / 4 \pi R^{3} & r \leq R \\
0 & r>R
\end{array}\right.
$$

(b) A Gaussian charge distribution

$$
\rho(r)=\left\{\begin{array}{cc}
q e^{-r^{2} / R^{2}} / \pi^{3 / 2} R^{3} & r \leq R \\
0 & r>R
\end{array}\right.
$$

6. For the scattering in the spherically symmetric potential $V(\mathbf{r})=g \delta(\mathbf{r})$, (where $g>0$ a positive constant and $\delta(\mathbf{r})$ the 3-dimensional δ function, we have $f_{B}(\theta)=-\frac{m g}{2 \pi \hbar^{2}}$.
7. A particle of mass m is scattered from a spherical repelling potential of radius R :

$$
V(r)=\left\{\begin{array}{cc}
V_{0}, & r \leq R \\
0, & r>R .
\end{array}\right.
$$

Calculate the total cross-section using the Born approximation in the limit of low energies $(q R \rightarrow 0)$.
8. Show that if the scattering potential has a translation invariance property $V(\mathbf{r}+\mathbf{R})=V(\mathbf{r})$ where \mathbf{R} is a constant vector, then the Born approximation scattering vanishes unless $\mathbf{q} \cdot \mathbf{R}=2 \pi n$ with $n=0,1,2, \ldots$

You may use for calculations of indefinite integrals the Wolfram OnLine Integrator at: http://integrals.wolfram.com/index.jsp.

