Tutorial #2 Dr. Khalid A.

OR 441: Simulation and Modeling Tutorial Handout #2: Introduction to Simulation

Q.1

Define

- 1. Manufacturing system (TV manufacture)
- 2. Transportation system (Train System)
- 3. Health-Care system (a Clinic)
- 4. Service system (Call Center)

a. For each of the system find:

- 1. System Inputs
- 2. System Components/Elements
- 3. System Outputs
- 4. System Environment/ Boundary

b. Find the state, entity, the attributes of the entities?

Q.2:

Consider a **two-line** customer service call center

- If line is idle, any new call is accepted
- If line is busy, any new call is lost

	Arrival	Service		Arrival	Service		Arrival	Service
call#	time	time	call #	time	time	call #	time	time
1	2	3	11	29	1	21	54	5
2	3	8	12	30	3	22	55	2
3	4	3	13	31	4	23	57	5
4	5	3	14	32	2	24	58	3
5	10	3	15	33	4	25	59	6
6	14	2	16	36	13	26	60	2
7	17	1	17	38	4	27	61	3
8	18	4	18	43	1	28	63	2
9	20	1	19	48	1	29	65	1
10	23	3	20	50	3	30	66	2

Do the discrete-event simulation and Complete the details of the calls center and compute:

- 1. Define the events of the system
- 2. The lost calls probability
- 3. Percentage of time <u>line-1</u> is busy
- 4. Average arrival rate
- 5. Average service time

Tutorial #2 Dr. Khalid A.

<u>Q.3:</u>

Consider a parking lot with **three** parking spaces:

- If a space is available, any new car is accepted
- If all paces are full, any new car is lost

	Arrival	Parking		
car#	time	time		
1	2.00	4.00		
2	5.00	5.00		
3	13.00	2.00		
4	17.00	4.00		
5	18.00	2.00		
6	19.00	6.00		
7	21.00	11.00		
8	23.00	3.00		
9	28.00	12.00		
10	31.00	2.00		
11	33.00	8.00		
12	35.00	2.00		
13	37.00	2.00		
14	39.00	13.00		
15	40.00	4.00		
16	42.00	4.00		
17	46.00	11.00		
18	48.00	12.00		
19	50.00	12.00		
20	51.00	6.00		

Do the discrete-event simulation and Complete the details of the parking lot:

- 1. Define the events of the system
- 2. The lost cars probability
- 3. Average arrival rate
- 4. Average parking time
- 5. Probability empty parking (No one in the parking)