HENDERSON-HASSELBALCH EQUATION

pH of solutions of weak acids cont'd

Example pH of solutions of weak acids

- The K_a for a weak acid, is 1.6 ×10⁻⁶. The molarity of acid is 10⁻³ M. What are the:
- A) pH.
- B) Calculate pK_a and pK_b.

A)
$$pH = \frac{1}{2} (pK_a + p [HA])$$

 $pK_a = -\log K_a$
 $pK_a = -\log K_a = -\log 1.6 \times 10^{-6}$
 $pK_a = 5.796$

P [HA] = - log [HA] = - log
$$10^{-3}$$

P [HA] = 3
pH = $\frac{1}{2}$ (pK_a + p [HA])
pH = $\frac{1}{2}$ (5.79 + 3
pH = 4.398

B)
$$pK_a = -\log K_a$$

 $pK_a = -\log K_a = -\log 1.6 \times 10^{-6}$
 $pK_a = 5.796$
 $pK_a + pK_b = 14$

$$pK_a + pK_b = 14$$

 $pK_b = 14 - pK_a = 14 - 5.796$
 $pK_b = 8.204$

Henderson-Hasselbach equation

- A buffer is a solution that can resist changes in pH when small amounts of acid or base is added.
- It is a mixture of a weak acid and its salt of a strong base (an acidic buffer) <u>OR</u> it is a mixture of a weak base and it's salt of a strong acid (a basic buffer).

Handerson-Hasselbalch equation cont'ed

For acidic: HA

$$K_a = [HA]_{[HA]}$$
 $[H^+] = K_a [A^-]$
 $Log[H^+] = Log K_a + Log [A^-]_{[HA]}$
 $-Log[H^+] = -Log K_a - Lpg [A^-]$
 $pH = pK_a + Log [HA]$

Handerson-Hasselbalch equation cont'ed

For basic: MOH
$$M^+ + OH^ K_b = [M^+][OH^-]$$
 $[OH^-] = K_b [M^+] [MOH]$
 $Log[OH^-] = Log K_b + Log [M^+]$
 $- Log[OH^-] = - Log K_b - Log [M^+]$
 $pOH = pK_b + Log [MOH]$

Handerson-Hasselbalch equation cont'ed

 When the condensation of conjugate acid = conjugate base, pH = pK_a <u>OR</u> pOH = pK_b

Buffers

- Buffer Capacity:
- It is the ability of buffer to resist changes in pH.
- It is the number of moles of H⁺ ions that can be added to one liter of the buffer that can decrease the pH by one unit **OR** the number of moles of OH⁻ ions that can be added to one liter of the buffer that can increase the pH by one unit.
- Unit buffer capacity = mole.

Buffers cont'ed

How does a buffer resist changes in pH?

- For Example: in the acetate buffer which is made of acetic acid CH₃COOH and sodium acetate.
 - When H⁺ are added it will react with the salt:

Thus the buffer converted the free H⁺ into acetic acid which does not affect the pH because it is a weak acid, so the pH is not effected.

Buffers cont'ed

When OH⁻ are added it will react with the acetic acid:

$$CH_3COOH + OH^ CH_3COO^- + H_2O$$

Thus the buffer converted the free OH⁻ in the into water and salt which does not affect the pH.

Preparation of buffers

 Example 1: What is the concentration of acetic acid and acetate in 0.2 M acetate buffer, and which has a pH = 5 and pK_a = 4.77

$$[HA] = ?$$
 $[A^{-}] = ?$
 $HA \iff H^{+} + A^{-}$
 $K_{a} = \underbrace{[H^{+}][A^{-}]}$
 $[HA]$
 $pK_{a} = -\log K_{a}$
 $4.77 = -\log K_{a}$
 $\log K_{a} = \text{anti log} - 4.77$
 $K_{a} = 1.7 \times 10^{-5}$
 $pH = -\log [H^{+}]$
 $5 = -\log [H^{+}]$
 $[H^{+}] = \text{anti log} - 5$
 $[H^{+}] = 1 \times 10^{-5}$

Let us assume [A-] = y
Since [HA] + [A-] = 0.2 M
[HA] = 0.2 - y

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

 $1.7 \times 10^{-5} = [(1 \times 10^{-5})(y)] / (0.2 - y)$
 $1.7 \times 10^{-5} (0.2 - y) = 1 \times 10^{-5} y$
 $(3.4 \times 10^{-6}) - (1.7 \times 10^{-5} y) = 1 \times 10^{-5} y$
 $3.4 \times 10^{-6} = 1 \times 10^{-5} y + 1.7 \times 10^{-5} y$
 $3.4 \times 10^{-6} = 2.7 \times 10^{-5} y$
 $y = (3.4 \times 10^{-6} / 2.7 \times 10^{-5})$
 $y = 0.126 M = [A^-]$
[HA] = 0.2 - 0.126 = 0.074 M

Example 2

• Describe the preparation of 3 L of 0.2 M acetate buffer. Starting from solid sodium acetate trihydrate (A-), Mwt = 136 and a 1 M solution of acetic acid (HA) the pK_a = 4.77; The concentration of [A-] = 0.126 M, [HA] = 0.074 M in 0.2 M solution in 1 L.

The no. of moles in buffer = $3 \times 0.2 = 0.6$ moles

The no. of moles of A^- + the no. of moles of HA = 0.6 moles

SINCE the concentration of $[A^-] = 0.126$ M in 1 L; the **Total** no. of moles in buffer = $0.126 \times 3 = 0.378$ moles

SINCE the concentration of $[HA] = 0.073 \, \text{M}$ in 1 L; the *Total* no. of moles in buffer = $0.073 \times 3 = 0.222 \, \text{moles}$ OR The no. of moles of HA = 0.6 - no. of moles of $A^- = 0.222 \, \text{moles}$

SINCE A⁻ is solid the wt needed = $M \times Mwt = 0.378 \times 136$ = 51.4 g

The **volume** if HA needed = no. of moles / M = 0.222 / 1 = 0.222 L = 222 ml

51.4 g of solid sodium acetate trihydrate is added to 222 ml of acetic acid and the volume is brought up to 3 L.