HENDERSONHASSELBALCH EQUATION

pH of solutions of weak acids cont'd

Example pH of solutions of weak acids

- The K_{a} for a weak acid, is 1.6×10^{-6}. The molarity of acid is $10^{-3} \mathrm{M}$. What are the:
A) pH .
B) Calculate pK_{a} and pK_{b}.
A)

$$
\begin{aligned}
& \mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a}}+\mathrm{p}[\mathrm{HA}]\right) \\
& \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} \\
& \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log 1.6 \times 10^{-6} \\
& \mathrm{pK}_{\mathrm{a}}=5.796
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}[\mathrm{HA}]=-\log [\mathrm{HA}]=-\log 10^{-3} \\
& \mathrm{P}[\mathrm{HA}]=3 \\
& \mathrm{pH}=1 / 2(\mathrm{pK} \\
& \mathrm{pH} \\
& \mathrm{pH}=1 / 2(5.79+3 \\
& \mathrm{pH}=4.398
\end{aligned}
$$

B)

$$
\begin{aligned}
& \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} \\
& \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log 1.6 \times 10^{-6} \\
& \mathrm{pK}_{\mathrm{a}}=5.796 \\
& \mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=14 \\
& \mathrm{pK}_{\mathrm{b}}=14-\mathrm{pK}_{\mathrm{a}}=14-5.796 \\
& \mathrm{pK}_{\mathrm{b}}=8.204
\end{aligned}
$$

Henderson-Hasselbach equation

- A buffer is a solution that can resist changes in pH when small amounts of acid or base is added.
- It is a mixture of a weak acid and its salt of a strong base (an acidic buffer) OR it is a mixture of a weak base and it's salt of a strong acid (a basic buffer).

Handerson-Hasselbalch equation cont'ed

For acidic: HA $\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]^{+}+\mathrm{A}^{-}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}={ }_{[H A]}{ }_{[H A]} \\
& {\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \quad[\mathrm{~A}] \quad[\mathrm{HA}]} \\
& \log \left[\mathrm{H}^{+}\right]=\log \mathrm{K}_{\mathrm{a}}+\log \quad[\mathrm{A}] \\
& -\log \left[\mathrm{H}^{+}\right]=-\log \mathrm{K}_{\mathrm{a}}-\mathrm{LQ} \text { [A] } \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \quad[\mathrm{HA}]
\end{aligned}
$$

Handerson-Hasselbalch equation cont'ed

For basic: MOH
$\mathrm{M}^{+}+\mathrm{OH}^{-}$

$$
\left.\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{b}} \stackrel{[\mathrm{MOHH}]}{\left[\mathrm{M}^{+}\right]}\right][\mathrm{MOH}]
$$

$$
\begin{aligned}
& \log \left[\mathrm{OH}^{-}\right]=\log \mathrm{K}_{\mathrm{b}}+\log \\
& -\log \left[\mathrm{OH}^{-}\right]=-\log \mathrm{K}_{\mathrm{b}}-\operatorname{Liqg} \\
& { }^{\left[\mathrm{M}^{+}\right]}{ }_{[\mathrm{MOH}]} \\
& \text { [} \mathrm{M}^{+} \text {] } \\
& \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log [\mathrm{MOH}]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{+}\right]} \\
& \mathrm{K}_{\mathrm{b}}=[\mathrm{MOH} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{K}^{\mathrm{MO}}[\mathrm{MOH}]}
\end{aligned}
$$

Handerson-Hasselbalch equation cont'ed

- When the condensation of conjugate acid = conjugate base, $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \underline{\mathbf{O R}} \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}$

Buffers

- Buffer Capacity:
- It is the ability of buffer to resist changes in pH .
- It is the number of moles of H^{+}ions that can be added to one liter of the buffer that can decrease the pH by one unit OR the number of moles of OH^{-}ions that can be added to one liter of the buffer that can increase the pH by one unit.
- Unit buffer capacity = mole.

Buffers cont'ed

How does a buffer resist changes in pH ?

- For Example: in the acetate buffer which is made of acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$ and sodium acetate.
- When H^{+}are added it will react with the salt:

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \quad \Longleftrightarrow \mathrm{CH}_{3} \mathrm{COOH}
$$

Thus the buffer converted the free H^{+}into acetic acid which does not affect the pH because it is a weak acid, so the pH is not effected.

Buffers cont'ed

- When OH^{-}are added it will react with the acetic acid:

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \Longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Thus the buffer converted the free OH^{-}in the into water and salt which does not affect the pH .

Preparation of buffers

- Example 1: What is the concentration of acetic acid and acetate in 0.2 M acetate buffer, and which has a pH = 5 and $\mathrm{pK}_{\mathrm{a}}=4.77$

Acetate buffer

Acetic acid + Acetate

$$
\begin{gathered}
\mathrm{HA}+\mathrm{A}^{-} \\
{[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]=0.2 \mathrm{M}}
\end{gathered}
$$

$$
\begin{aligned}
& \stackrel{[\mathrm{HA}]=?}{[\mathrm{~A}]=?} \\
& \mathrm{HA} \underset{\mathrm{~K}_{\mathrm{a}}=}{\stackrel{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{ }} \mathrm{H}^{+}+\mathrm{A}^{-} \\
& \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}^{[\mathrm{HA}]} \\
& 4.77=-\log \mathrm{K}_{\mathrm{a}} \\
& \log \mathrm{~K}_{\mathrm{a}}=\mathrm{anti} \log -4.77 \\
& \mathrm{~K}_{\mathrm{a}}=1.7 \times 10^{-5} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& 5=-\log \left[\mathrm{H}^{+}\right] \\
& {\left[\mathrm{H}^{+}\right]=\mathrm{anti} \log -5} \\
& {\left[\mathrm{H}^{+}\right]=1 \times 10^{-5}}
\end{aligned}
$$

Let us assume $[A-]=y$
Since $[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]=0.2 \mathrm{M}$

$$
[\mathrm{HA}]=0.2-\mathrm{y}
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

$$
\begin{gathered}
1.7 \times 10^{-5}=\left[\left(1 \times 10^{-5}\right)(\mathrm{y})\right] /(0.2-\mathrm{y}) \\
1.7 \times 10^{-5}(0.2-\mathrm{y})=1 \times 10^{-5} \mathrm{y} \\
\left(3.4 \times 10^{-6}\right)-\left(1.7 \times 10^{-5} \mathrm{y}\right)=1 \times 10^{-5} \mathrm{y} \\
3.4 \times 10^{-6}=1 \times 10^{-5} \mathrm{y}+1.7 \times 10^{-5} \mathrm{y} \\
3.4 \times 10^{-6}=2.7 \times 10^{-5} \mathrm{y} \\
\mathrm{y}=\left(3.4 \times 10^{-6} / 2.7 \times 10^{-5}\right) \\
\mathrm{y}=0.126 \mathrm{M}=[\mathrm{A}] \\
{[\mathrm{HA}]=0.2-0.126=0.074 \mathrm{M}}
\end{gathered}
$$

Example 2

- Describe the preparation of 3 L of 0.2 M acetate buffer. Starting from solid sodium acetate trihydrate (A^{-}), Mwt = 136 and a 1 M solution of acetic acid (HA) the $\mathrm{pK}_{\mathrm{a}}=4.77$; The concentration of $\left[\mathrm{A}^{-}\right]=0.126 \mathrm{M},[\mathrm{HA}]=0.074 \mathrm{M}$ in 0.2 M solution in 1 L .

The no. of moles in buffer $=3 \times 0.2=0.6$ moles

The no. of moles of $\mathrm{A}^{-}+$the no. of moles of $\mathrm{HA}=0.6$ moles

SINCE the concentration of $\left[\mathrm{A}^{-}\right]=0.126 \mathrm{M}$ in 1 L ; the Total no. of moles in buffer $=0.126 \times 3=0.378$ moles

SINCE the concentration of [HA] $=0.073 \mathrm{M}$ in 1 L ; the Total no. of moles in buffer $=0.073 \times 3=0.222$ moles OR The no. of moles of $\mathrm{HA}=0.6-$ no. of moles of $\mathrm{A}^{-}=0.222$ moles

SINCE A- is solid the wt needed $=M \times M w t=0.378 \times 136$ $=51.4 \mathrm{~g}$

The volume if HA needed $=$ no. of moles $/ \mathrm{M}=0.222$ / $1=$ $0.222 \mathrm{~L}=222 \mathrm{ml}$
51.4 g of solid sodium acetate trihydrate is added to 222 ml of acetic acid and the volume is brought up to 3 L .

