Homework Assignment 1

Exercise 1

Give the regular expression of the following automata

Exercise 2

For the regular expression $(a \mid b)^{*} b a c(a \mid b c)^{*}$ over the alphabet $\Sigma=\{a, b, c\}$ construct:
a) a nondeterministic finite automaton,
b) a deterministic finite automaton, and
c) a minimal deterministic finite automaton

Exercise 3

Write regular expressions that define the strings recognized by the FAs in the following figures

Exercise 4
Given the grammar

$$
\begin{aligned}
& \exp \rightarrow \exp \text { addop term } \mid \text { term } \\
& \text { addop } \rightarrow+\mid- \\
& \text { term } \rightarrow \text { term mulop factor } \mid \text { factor } \\
& \text { mulop } \rightarrow * \\
& \text { factor } \rightarrow(\exp) \mid \text { number }
\end{aligned}
$$

write down leftmost derivations, parse trees for the following expressions:
a. 3+4*5-6
b. 3 * $(4-5+6)$
c. $3-(4+5 * 6)$

Exercise 5

Given the following grammar

$$
\begin{aligned}
& \text { statement } \rightarrow \text { if-stmt } \mid \text { other } \mid \varepsilon \\
& \text { if-stmt } \rightarrow \text { if }(\exp) \text { statement else-part } \\
& \text { else-part } \rightarrow \text { else statement } \mid \varepsilon \\
& \exp \rightarrow 0 \mid 1
\end{aligned}
$$

a. Draw a parse tree for the string

if(0) if(1) other else else other

b. What is the purpose of the two else's?
c. Is similar code permissible in C? Explain.

