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Abstract. We consider weighted path lengths to the extremal leaves in a
random binary search tree. When linearly scaled, the weighted path length to
the minimal label has Dickman’s infinitely divisible distribution as a limit.
By contrast, the weighted path length to the maximal label needs to be
centered and scaled to converge to a standard normal variate in distribution.
The exercise shows that path lengths associated with different ranks exhibit
different behaviors depending on the rank. However, the majority of the
ranks have a weighted path length with average behavior similar to that of
the weighted path to the maximal node.
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1 Introduction

Various sorts of extremal path lengths in binary search trees have been stud-
ied, owing to their importance as interpretations of some analyses of algo-
rithm (mostly in the areas of searching and sorting). For example, the height
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of the binary search tree is considered in various sources for its role as a global
measure of worst case search in a random tree (see Robson, 1979, Mahmoud
and Pittel, 1984, Pittel 1984, Devroye, 1986–7, Drmota 2001–2, and Reed,
2003). At the other end of the spectrum, the length of the shortest root-to-
leaf path is considered as a measure of optimism for the best search time (see
Pittel (1984)). Many of these results are surveyed in sorting textbooks such
as Knuth (1998) and Mahmoud (2000).

The above-mentioned extremal path lengths have a common thread: They
all are the “raw” depth of some extremal leaf in the tree. We are concerned
in this investigation with “weighted” extremal path lengths, where nodes on
the path have types of contribution to the path length other than a mere
count of their incoming edge, such as, for example, contributing their own
value. The path lengths involved have other interpretations as quantities
underlying certain algorithms.

Some algorithm may go down a path from the root of a binary search
tree of size n to the node ranked j, collecting the sum of the values encoun-
tered. We investigate in this paper the distribution of such paths in some
extreme cases. Let Wj(n) be the value of the path length associated with
traversing the tree from its root to the node labeled j, while aggregating the
values on the path. We shall see that W1(n), when appropriately scaled,
has Dickman’s infinitely divisible distribution (a result that parallels in some
way the Dickman distribution associated with finding the smallest item via
th one-sided Quicksort (the so-called Quickselect algorithm)); see Mahmoud,
Modarres, and Smythe (1995), and Hwang and Tsai (2002). By contrast,
Wn(n), when appropriately centered and scaled, converges in distribution
to a normal variate. The exercise demonstrates that there is a variety of
different distributions associated with Wj(n) for different values of j.

2 Scope

A binary tree is a hierarchical structure of nodes each having no children,
one left child, one right child, or two children (one left and one right). The
nodes of such a tree can be labeled from some ordered set, say the natural
numbers. The tree can further be endowed with a search property (to support
fast searching of the items (also called keys) stored in it), which imposes the
restriction on the labeling scheme that the label of any node is larger than
the labels in its left subtree and no greater than any label in its right subtree.
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For definitions and combinatorial properties see Mahmoud (1992), and for
applications in sorting see Knuth (1998) or Mahmoud (2000).

A binary search tree is constructed from the permutation (π1, . . . , πn) of
{1, 2, . . . , n} by the following algorithm. The first element of the permutation
is inserted in an empty tree, a root node is allocated for it. A subsequent
element πj (with j ≥ 2) is directed to the left subtree if πj < π1, otherwise it
is directed to the right subtree. In whichever subtree πj goes, it is subjected
to the same insertion algorithm recursively, until it is inserted in an empty
subtree, in which case a node is allocated for it and linked appropriately as
a left (right) child if its rank is less than (at least as much as) the value of
the last node on the path. Figure 1 illustrates the tree constructed from the
random permutation (5, 8, 7, 3, 9, 1, 6, 2, 4).

Several models of randomness are in common use on binary trees. The
uniform model in which all trees are equally likely has been proposed for ap-
plications in formal languages, compilers, computer algebra, etc. (see Kemp
(1984)). However, for the searching and sorting algorithms alluded to the
random permutation model is considered to be more appropriate. In this
model of randomness we assume that the tree is built from permutations of
{1, . . . , n}, where a uniform probability model is imposed on the permutations
instead of the trees. When all n! permutations are equally likely or random,
binary search trees are not equally likely. Several permutations give rise to
the same tree, favoring shorter and well balanced trees rather than scrawny
and tall shapes, which is a desirable property in searching and sorting algo-
rithms (see Mahmoud (1992)). The term random tree (and occasionally just
the tree) will refer to a binary search tree built from a random permutation.
The random permutation model is not really restrictive, as it covers a rather
wide variety of instances, such as when the input is a sample drawn from
any continuous probability distribution, and the construction algorithm is
concerned only with the ranks of the keys, not their actual values.

We study the weighted path length leading to the rightmost and leftmost
nodes. For instance, in the tree of Figure 1, W1(9) = 5 + 3 + 1 = 9, W2(9) =
5 + 3 + 1 + 2 = 11, . . . , W9(9) = 5 + 8 + 9 = 22.

The paper is organized as follows. In Section 3 we study the weighted
path length leading from the root to the minimal label in the tree and show
that it has Dickman’s distribution (after suitable scaling). The weighted path
length leading to the maximal label n is investigated separately in Section 4
where we explore a useful reflection principle. It is shown in Section 4 that the
weighted path length to the maximal label converges in distribution to the
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Figure 1: A binary search tree.

normal random variate (after appropriate centering and scaling). Section 5
gives some concluding remarks where a brief derivation of the average is given
for the rest of the cases 1 < i < n.

3 Weighted path to the minimal label

Let Ln be the number of items that appear in the left subtree, and thus
Ln + 1 is the value of the root. For n ≥ 1, the stochastic recurrence

W1(n) = Ln + 1 +W1(Ln)

represents the weighted path length from the root to the node labeled 1 (that
is, the sum of the collection of values on the leftmost path in the tree). Let
φn(t) be the characteristic function of W1(n). By conditioning the stochastic
recurrence, we obtain

φn(t) = E[e(Ln+1+W1(Ln))it]

=
n−1∑
`=0

E[e(`+1+W1(`))it]P(Ln = `)

4



=
1

n

n∑
k=1

ekt φk−1(t),

valid for all n ≥ 1. This telescoping sum is amenable to the differencing
scheme—subtract a version of the last recurrence with n − 1 from one with
n to obtain

φn(t) =
n− 1 + eint

n
φn−1(t),

which can be unwound by direct iteration to give

φn(t) =
n∏

k=1

k − 1 + eikt

k
.

By differentiating this latter form once and twice (then evaluating at t = 0)
we obtain the mean and the second moment.

Proposition 1 Let W1(n) be the weighted path length from the root to the
least ranked label in a binary search tree built from a random permutation.
We then have

E[W1(n)] = n;

Var[W1(n)] =
n(n+ 1)

2
∼ 1

2
n2.

Guided by the rate of growth of the variance, we next proceed to argue
the infinite divisibility of n−1W1(n). We take the natural logarithm of the
characteristic function, and write it in asymptotic form (as t→ 0)

ln(φn(t)) =
n∑

k=1

ln
(
1 +

eikt − 1

k

)
=

n∑
k=1

[eikt − 1

k
+O

((eikt − 1

k

)2)]
= O(nt2) +

n∑
k=1

eikt − 1

k
.

Since the rate of growth of the standard deviation is n, one expects that
W1(n)/n converges to a limit in distribution. At the level of characteristic
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function, this means changing the scale from t to t/n. Let v = t/n. This
entails (for fixed v)

ln
(
φn

(v
n

))
= O

( 1

n

)
+

n∑
k=1

eikv/n − 1

k
.

The O term converges to 0, and the remaining sum approaches∫ 1

0

eiuv − 1

u
du.

We thus have the convergence

φn

(v
n

)
→ exp

(∫ 1

0

eiuv − 1

u
du

)
, as n→∞.

The characteristic function

ψX(v) = exp
(∫ 1

0

eiuv − 1− iuv

u
dv

)
is that of Dickman’s infinitely divisible random variable X in Kolmogorov’s
canonical form (see Billingsley (1995; P. 372)). That is,

φn

(v
n

)
→ e

R 1
0 (iv−iv) du exp

(∫ 1

0

eiuv − 1

u
du

)
= eiv exp

(∫ 1

0

eiuv − 1− iuv

u
du

)
= E[ei(1+X)v].

We have arrived at the main result of this section.

Theorem 1 Let W1(n) be the weighted path length from the root to the least
ranked label in a binary search tree built from a random permutation. Then,

W1(n)

n

D−→ 1 +X,

where X is Dickman’s random variable.
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Remark: The limiting random variable for n−1W1(n) bears some similarity

to the limiting random variable for n−1C
[1]
n , the normalized number of com-

parisons required by Quickselect to find the least item in a random input (of
size n) with ranks following the random permutation model. It is shown in

Mahmoud, Modarres and Smythe (1995) that n−1C
[1]
n converges in distribu-

tion to 2 +X. Thus, asymptotically, the distribution of n−1C
[1]
n behaves like

that of 1 + n−1W1(n).

4 Weighted path to the maximal label

Let us introduce a reflection operation, which may generally be useful in
this type of problems. In a binary search tree Tn of size n, exchange the
right and left children of every node, starting at the root and progressing
recursively toward the leaves to obtain the reflected tree T ′

n. This reflection
concerns only the shape of the tree, and not the labels. One can think of this
operation as if a two-sided mirror has been placed on a vertical axis passing
through the root, then one sees the right subtree of T ′

n as the reflection in
the left side of the mirror of the left subtree of Tn, and the left subtree of T ′

n

as the reflection in the right side of the mirror of the right subtree of Tn. To
maintain the binary search property in T ′

n, we reinsert the numbers 1, . . . , n
in a manner consistent with the search property. For example, the reflected
tree of that in Figure 1, is shown in Figure 2.

Note that, by the symmetry of binary search trees, T ′
n has the same

probability as Tn. That is, there are as many permutations of {1, 2, . . . , n}
producing Tn as those producing T ′

n. Observe that a key K in Tn corresponds
to the value n+1−K in the reflection. Let the length of the rightmost path
in Tn be Qn, and suppose the chain of values appearing on it from the root
to the rightmost node (containing n) is Y1, Y2, . . . , YQn+1. Observe that the
rightmost path in Tn becomes a leftmost one (of the same length) in T ′

n, and
suppose that the corresponding labels in the reflection are Y ′

1 , Y
′
2 , . . . , Y

′
Qn+1.

This connection suggests that we can use the distribution of the path to the
minimal value, which was established in Section 3, for the rightmost path as
follows. We have

Wn(n) =

Qn+1∑
j=1

Yj
L
=

Qn+1∑
j=1

(n+ 1− Y ′
j ) = (Qn + 1)(n+ 1)−W1(n). (1)

7



n4BB
B
B

n8��
�
�

n1









n3J
J

J
J

n6









n9J
J

J
J

n2�
�

�
�

��

n7Z
Z

Z
Z

ZZ

n5

Figure 2: The reflection of the tree of Figure 1

We can now quickly develop a Gaussian law for Wn(n), from known re-
sults about Qn. The latter variable is known to be asymptotically normal,
satisfying

Qn − lnn√
lnn

D−→ N (0, 1);

see Devroye (1988). This indicates that centering and scaling the relation (1)
with asymptotic mean and standard deviation of nQn will yield a limit dis-
tribution. Let

W ∗
n :=

Wn(n)− n lnn

n
√

lnn

L
=
nQn − n lnn

n
√

lnn
+

Qn

n
√

lnn
+

n+ 1

n
√

lnn
− W1(n)

n
√

lnn
.

According to Theorem 1, we have

W1(n)

n
√

lnn

a.s.−→ 0,

indicating that the main contribution in Wn(n) comes from the length of the
rightmost path. Also, according to the limit law of Qn, Qn/(n

√
lnn)

a.s.−→ 0,
and of course (n+ 1)/(n

√
lnn)

a.s.−→ 0. Hence,

W ∗
n

D−→ N (0, 1).
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5 Conclusion

The useful notation j . k will stand for the event that the label j is en-
countered on the path to k, thus contributing its value to the weighted path
length Wk(n). In view of this notation, the weighted path length of the node
k is

Wk(n) =
n∑

j=1

j1{j . k}. (2)

The indicators involved are dependent, and it is not easy to determine
limit distributions from this representation. Even computations such as the
variance are daunting. But of course, the representation being a sum, the
average is no major obstacle. We develop this average, to use as a benchmark
for what falls between the two extremes.

Lemma 1

P (j . k) =
1

|k − j|+ 1
.

Proof . Suppose j < k. A property of binary search trees is that when
j . k, all the numbers in Akj = {j, j+1, . . . , k} appear after j (See Devroye
and Neininger (2004) for a discussion via the theory of records). It suffices
to count Bn, the number of permutations favorable to the event j . k. If j
appears at position p in a favorable permutation, there must be at least k−j
positions past p to receive the numbers in Akj − {j}. Thus, n − p ≥ k − j.
To complete the construction of a favorable permutation, choose any of these
j− k positions for the elements of Akj −{j}, and permute its j− k numbers
over these positions in (k−j)! ways. Now permute the remaining n−(k−j+1)
elements in an unrestricted way over the remaining n− (k− j+1) positions.
Therfore,

Bn =
n∑

p=1

(
n− p

k − j

)
(k − j)! (n− k + j − 1)!

= (k − j)! (n− k + j − 1)!

(
n

k − j + 1

)
=

n!

k − j + 1
.
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The argument for j > k is symmetrical, with j and k exchanging roles. �

It follows from Lemma 1 and the representation (2) that

E[Wk(n)] =
k−1∑
j=1

j

k − j + 1
+ k +

n∑
j=k+1

j

j − k + 1
.

The substitution m = k− j + 1 in the first sum together with a symmetrical
one in the second sum gives the result in a simple form:

E[Wk(n)] = (k − 1)Hn−k+1 + n− 3k + 1 + (k + 1)Hk,

where Hr is the rth harmonic number
∑r

s=1 1/s.
The form for E[Wk(n)] is for the entire spectrum of nodes. For low-

indexed nodes k = o(n), we have

E[Wk(n)] ∼ n,

whereas for nodes with high index k = n− o(n),

E[Wk(n)] ∼ n lnn,

but if k ∼ αn, for 0 < α < 1, the asymptotic approximation is

E[Wk(n)] ∼ 2αn lnn,

which indicates that the majority of the medium range indexes lean toward
the behavior of the weight of the path length to the maximal node, rather
than the linear order of magnitude associated with the minimal node. This
may ultimately be reflected in the average distribution across all the nodes.
For instance, if we select a node randomly in the tree, its index Kn will be
uniformly distributed on the set {1, . . . , n}, and consequently its weighted
path length has the average

E[WKn(n)] =
n∑

j=1

E[Wj(n)]

n
∼ n lnn

∫ 1

0

2α dα = n lnn.

with an order of magnitude just like that of the weight of the path length to
the maximal node
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