Problem 5

Assuming the elementary properties of the trigonometric functions, show that $\tan x - x$ is strictly increasing on $(0, \frac{\pi}{2})$, while the function $\frac{\sin x}{x}$ is strictly decreasing.

From problem 4, we know that a differentiable real-valued function f is increasing (decreasing) where its derivative is positive (negative).

The derivative of $\tan x - x$ is $\frac{1}{\cos^2 x} - 1$. On the interval $(0, \frac{\pi}{2}), 0 < \cos^2 x < 1$. Therefore, $\frac{1}{\cos^2 x} - 1$ is positive on this interval, so $\tan x - x$ is strictly increasing on this interval.

The derivative of $\frac{\sin x}{x}$ is $\frac{x \cos x - \sin x}{x^2}$. $x^2 > 0$ on this interval, so $\frac{x \cos x - \sin x}{x^2} < 0$ if and only if $\tan x - x > 0$. This is certainly true since at x = 0, this function is equal to 0, and we just saw that $\tan x - x$ is strictly increasing on the interval $(0, \frac{\pi}{2})$. Hence, $\frac{\sin x}{x}$ is decreasing on the interval $(0, \frac{\pi}{2})$.

Problem 6

Prove that a differentiable real-valued function on \mathbb{R} with bounded derivative is uniformly continuous.

Let $f : \mathbb{R} \to \mathbb{R}$ with $|f'(x)| \leq M$, where $M \in \mathbb{R}$. By the Mean Value Theorem, there exists $c \in \mathbb{R}$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. Taking absolute values and rearranging, we see $|f(b) - f(a)| = |f'(c)||b - a| \leq M|b - a|$. Pick $\epsilon > 0$. Set $\delta = \frac{\epsilon}{M}$. Then, it is clear that when $|b - a| < \delta$, $|f(b) - f(a)| \leq \epsilon$

Pick $\epsilon > 0$. Set $\delta = \frac{\epsilon}{M}$. Then, it is clear that when $|b-a| < \delta$, $|f(b)-f(a)| \le M|b-a| < M \cdot \frac{\epsilon}{M} = \epsilon$. Since there is no dependence on the point, f is uniformly continuous.

Problem 8

Let $a, b \in \mathbb{R}$, a < b, and let f, g be continuous real-valued functions on [a, b] that are differentiable on (a, b). Prove that there exists a number $c \in (a, b)$ such that

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).$$

(Hint: Consider the function

$$F(x) = (f(x) - f(a))(g(b) - g(a)) - (g(x) - g(a))(f(b) - f(a))$$

The function F(x) is continuous on [a, b] and differentiable on (a, b) since f and g are. Note that

$$F(a) = (f(a) - f(a))(g(b) - g(a)) - (g(a) - g(a))(f(b) - f(a)) = 0$$

$$F(b) = (f(b) - f(a))(g(b) - g(a)) - (g(b) - g(a))(f(b) - f(a)) = 0$$

By the Mean Value Theorem, we know that there exists $c \in (a, b)$ such that $F'(c) = \frac{F(b) - F(a)}{b - a} = 0$. Computing the derivative of F(x) yields

$$F'(x) = f'(x)(g(b) - g(a)) - g'(x)(f(b) - f(a))$$

So when x = c,

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).$$