## CEN352 Home work

Name: ID:

## Exercise1

Consider three analog signals sampled at the same rate of 8000 Hz given by:

$$
\begin{array}{cc}
x_{1}(t)=6 \cos (4000 \pi t)+3 \cos (6000 \pi t) & \text { for } t \geq 0 \\
x_{2}(t)=6 \cos (4000 \pi t)+3 \cos (8000 \pi t) & \text { for } t \geq 0 \\
x_{3}(t)=6 \cos (10000 \pi t)+3 \cos (15000 \pi t) & \text { for } t \geq 0
\end{array}
$$

1. Plot these signals in time domain using MATLAB.
2. Sketch the spectrum of these three original signals.
3. Sketch the spectrum of sampled signals up to 20 KHz .
4. Sketch the recoverd analog signals spectgrum if an ideal lowpass filter with cuatoff frequency of 4 kHz is used to filter the above sampled signals in order to recover the original signals.

## Exercise2

Consider the difference equation with an initial condition $x(-2)=x(-1)=0$.

$$
y(n)=0.75 x(n)+0.5 x(n-1)-0.25 x(n-2)
$$

1. Determine the unit-impulse response $h(n)$.
2. Draw the system block diagram.
3. Write the output using the obtained impulse response.

## Exercise 3

Given a sequence $\boldsymbol{x}(\boldsymbol{n})$ for $0 \leq n \leq 3$, where $\mathbf{x}(\mathbf{0})=\mathbf{0 . 8}, \mathbf{x}(\mathbf{1})=\mathbf{0 . 6}, \mathbf{x}(\mathbf{2})=\mathbf{0 . 4}$, and $\mathbf{x}(3)=\mathbf{0 . 2}$, assuming fs $=100 \mathrm{~Hz}$,
a. evaluate its DFT $\mathbf{X}(\mathbf{k})$.
b. compute the amplitude spectrum, phase spectrum, and power spectrum.
c. evaluate its inverse DFT $\boldsymbol{x}(\boldsymbol{n})$.

## Exercise 4

Using the partial fraction expansion method, find the inverse of the following ztransforms:
a. $X(z)=\frac{1}{z^{2}-0.3 z-0.24}$
b. $X(z)=\frac{z}{(z-0.2)(z+0.4)}$
c. $X(z)=\frac{z}{(z+0.2)\left(z^{2}-z+0.5\right)}$
d. $X(z)=\frac{z(z+0.5)}{(z-0.1)^{2}(z-0.6)}$

