Problem Set (2)

Dr Salwa Alsaleh
PHYS 453: Quantum mechanics

October 14, 2018

Problem 2.1. Given the Hamiltonian operator for a 2-level system :

$$
\hat{H}=\left(\begin{array}{cc}
2-\Omega & -i \tag{1}\\
i & 3
\end{array}\right)
$$

Find the energy-levels of this system.
Problem 2.2. We have the eingenfunction $\psi(x)=A x^{1 / 2} e^{-x / 2 \lambda}$ defined over the interval $[0, \infty]$, with eigenenergy $\epsilon=0$.
(i) Find the value of A
(ii) Show that $\langle\hat{p}\rangle=0$
(iii) Find the potential energy operator for this system

Problem 2.3. The Hamiltonian operator for an electron in a magnetic field $\vec{B}=B_{z} \vec{e}_{z}$ is given by

$$
\begin{equation*}
\hat{H}=-\mu_{B} \frac{\sigma_{z} B_{z}}{2} \tag{2}
\end{equation*}
$$

Where σ_{z} is Pauli matrix and μ_{B} is a positive constant.
(i) Calculate $\langle\hat{H}\rangle$ with respect to the state $\left|\chi_{+}\right\rangle=\binom{1}{0}$.
(ii) Show that if we transformed the Hamiltonian as the following:

$$
\begin{equation*}
\hat{H} \rightarrow\left(I-\sigma_{y}^{\dagger}\right) \hat{H}\left(I+\sigma_{y}\right) \tag{3}
\end{equation*}
$$

It remains unchanged.
(This corresponds to rotating the system by the y -axis)
Problem 2.4. Prove the first part of Ehrenfest theorem,

$$
\begin{equation*}
m \frac{d}{d t}(\langle x\rangle)=\langle p\rangle \tag{4}
\end{equation*}
$$

Using Shrödinger's equation

Useful formulae

\dagger Pauli Matrices:

$$
\sigma_{1}=\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

\dagger Gamma function

$$
\begin{aligned}
& \Gamma(n)=(n-1)!\text { if } \mathrm{n} \text { is integer } \\
& \Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x \quad z \in \mathbb{C}
\end{aligned}
$$

Particular values

$$
\Gamma\left(\frac{n}{2}\right)=\sqrt{\pi} \frac{(n-2)!!}{2^{\frac{n-1}{2}}}
$$

\dagger Trigonometric identities

$$
\begin{aligned}
\sin (2 \theta) & =2 \sin \theta \cos \theta \\
\sin ^{2} \frac{\theta}{2} & =\frac{1-\cos \theta}{2} \\
\cos ^{2} \frac{\theta}{2} & =\frac{1+\cos \theta}{2}
\end{aligned}
$$

\dagger Integrals involving exponential functions

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-a x^{2}+b x} d x & =\sqrt{\frac{\pi}{a} e^{\frac{b^{2}}{4 a}} \quad(a>0)} \\
\int_{0}^{\infty} x^{n} e^{-a x^{2}} d x & = \begin{cases}\frac{\left.\Gamma \frac{n+1}{2}\right)}{2 a^{\frac{n+1}{2}}} & (n>-1, a>0) \\
\frac{(2 k-1)!!}{2^{k+1} a^{k}} \sqrt{\frac{\pi}{a}} & (n=2 k, k \text { integer, } a>0) \\
\frac{k!}{2 a^{k+1}} & (n=2 k+1, k \text { integer, } a>0)\end{cases}
\end{aligned}
$$

