Quantum Mechanics H.W №1

Salwa Al Saleh

Problem (1)

Given the operators $\hat{X}=x$ and $\hat{P}=d / d x$, show that they do not commute. I.e $X P \neq P X$.

Problem (2)

If two operators do not commute, show that we cannot simultaneously diagonalise them .

Problem (3)

A particle of a mass m is described by the normalised wave function:

$$
\psi(x, t)=A e^{-a\left[\left(m x^{2} / \hbar\right)+i t\right]}
$$

1. Find A
2. For what potential energy function $V(x)$ does ψ satisfy the Scrödinger equation?
3. Calculate the expected value for x, x^{2}, p and p^{2}.
4. find σ_{x} and σ_{p}, and their product $\sigma_{x} \sigma_{p}$.

Problem (4)

Show that if $\psi(x)$ is real, then $\langle\hat{p}\rangle=0$.

Problem (5)

It is known that multiplying ψ with a constant phase $e^{i \phi}$ does not affect the physical system. Show, however, if $\phi=\phi(x)$ a function of x, then this is no longer true.

Problem (6)

For $|\psi\rangle=\left(\begin{array}{c}i \\ -2 \\ 1\end{array}\right)$ and $|\phi\rangle=\left(\begin{array}{c}-1 \\ 3 i \\ \sqrt{2}\end{array}\right)$.

1. Calculate $4|\psi\rangle-i|\phi\rangle$
2. Find $\langle\phi \mid \psi\rangle$ and $\langle\psi \mid \phi\rangle$, what do you observe ?
3. Express the vector $|\psi\rangle$ in terms of the basis:

$$
\left|\varepsilon_{1}\right\rangle=\left(\begin{array}{c}
1 \\
-2 i \\
1
\end{array}\right),\left|\varepsilon_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \text { and }\left|\varepsilon_{3}\right\rangle=\left(\begin{array}{c}
-i \\
1 \\
-i
\end{array}\right)
$$

4. Normalise the vector $|\phi\rangle$.

Problem (7)

Evaluate the following integrals :

1. $\int_{0}^{\infty}[\sin (3 x)+2] \frac{d}{d x} \delta(x-\pi) d x$.
2. $\int_{-1}^{+1} e^{|x|+3} \delta(x-2) d x$.
3. $\int_{-\infty}^{+\infty} \Gamma(x) \delta\left(x-\frac{1}{2}\right) d x$.

Use the property of the delta function :

$$
\begin{gathered}
f(x) \delta(x-a)=f(a) \\
\int_{a}^{b} \delta(x-c) d x= \begin{cases}1 & \text { if } c \in[a, b] \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

and its derivative:

$$
\int d x \delta^{\prime}(x-a) f(x)=-\int d x \delta(x-a) f^{\prime}(x)
$$

Problem (8)

Given the operator :

$$
\hat{A}=\left(\begin{array}{ll}
.8 & .3 \\
.2 & .7
\end{array}\right)
$$

Find its eigenvalues and eigenvectors.

Problem (9)

Guess a solution to the differential equation based on your study to the eigenvalue problem:

$$
\left(\frac{d^{2}}{d x^{2}}-\lambda^{2}\right) f(x)=0
$$

Problem (10)

An electron can take 3 possible energy states $E_{1}=0.5 \mathrm{eV}, E_{2}=1.2 \mathrm{eV}$ and $E_{3}=1.6 \mathrm{eV}$. With probabilitie: $P_{1}=0.8, P_{2}=0.13$ and $P_{3}=0.07$.
a) Write the Hamiltonian in matrix form.
b) Write the normalised eigenbasis .
c) Find $\langle E\rangle$ and $\sigma(E)$.
d) What is the state vet after measuring the system and finding it taking the second energy state?
e) Show that $\langle\psi \mid \psi\rangle=1$

PRoblem (11)

Let the state $|\psi\rangle=N\left|\psi_{1}\right\rangle+2 i N\left|\psi_{2}\right\rangle+i N\left|\psi_{3}\right\rangle$, where the gets $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$ and $\left|\psi_{3}\right\rangle$ are orthonormaI. Find N such that so $|\psi\rangle$ is normalised.

