KING SAUD UNIVERSITY. DEPARTMENT OF PHYSICS AND ASTRONOMY

QUANTUM MECHANICS (453 PHYS) Problem Set 1

Dr Salwa Alsaleh

July 24, 2017

PROBLEM (1)

If Ψ is a wavefunction for a quantum system, if we preformed the transformation $\Psi\to\Psi'=e^{i\varphi}\Psi\,\varphi=\text{const.}$

Show that this transformation does not affect the physical description.

PROBLEM (2)

Given the wavefunction

$$\psi(\mathbf{x}) = \mathrm{N}e^{-\xi \mathbf{x}^2/2}$$

Compute the uncertainty in position for this system Δx Provided that

$$\int_{-\infty}^{+\infty} x^{2n} e^{-\lambda x^2} = \frac{1 \cdot 3 \cdots (2n-1)}{(2\lambda^n)} \times \sqrt{\frac{\pi}{\lambda}}$$

PROBLEM (3)

A quantum system state vector is given by the eigenvector decomposition

$$\Psi = A(\Phi_1 + 2\Phi_2 + \Phi_3)$$

The corresponding eigenvalues are $\lambda_1 = -1, \lambda_2 = 0$ and $\lambda_3 = 1$, respectively.

- 1. Find the normalisation constant A
- 2. If $\hat{\Omega}$ is the operator that posses the eigenvectors Φ_i , compute its expected value w.r.t the full state Φ .

PROBLEM (4)

Show - using the position representation- that for any given $\psi(x)$ a real wavefunction , the quantity $\langle \hat{p} \rangle$ always vanishes.

PROBLEM (5)

Show that the function e^{-ikx} and e^{+ikx} are eigenfunctions to the momentum operator.

PROBLEM (6)

Find the eigenfunctions to the operator

$$\hat{O} = \hat{x} - \frac{\hat{p}}{i\hbar}$$

PROBLEM (7)

Show that the functions f(x) = 2x and $x^2 + 1$ are orthogonal over the interval [-1, +1].

PROBLEM (8)

If the state of a quantum particle is decomposed to

$$\Psi = \sum_{i} \alpha_{i} \psi_{i},$$

find $||\Psi||^2$.