Quantum Mechanics (453 Phys)

Problem Set 3

Dr Salwa Alsaleh

August 4, 2017

Problem (1)

Show that the wavefunction $\mathfrak{u}(x)=e^{-x^{2} / 4}$ is an eigenfunction for the differential operator $\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-\frac{1}{4} x^{2}\right)$. Then find its eigenvalue.

Problem (2)

Compute the following commutators for the SHO $[\mathrm{N}, \mathrm{a}],\left[\mathrm{N}, \mathrm{a}^{\dagger}\right],[\mathrm{x}, \mathrm{a}],\left[\mathrm{N}, \mathrm{a}^{2}\right]$. Where N is number operator given by $N=a^{\dagger} a$ and $N \phi_{n}=n \phi_{n}$.

PROBLEM (3)

Calculate $\langle\mathrm{N}\rangle$ and $\Delta \mathrm{N}$. Then show that

$$
\lim _{n \rightarrow \infty} \frac{\Delta N}{\langle\mathrm{~N}\rangle}=0
$$

Problem (4)

Given the operator $\hat{L}_{+}=\hat{\mathrm{L}}_{x}+i \hat{\mathrm{~L}}_{y}$

1. Is it hermitian?
2. Express it in the matrix representation, and find its eigenvalues.
3. Express it in the x representation.
4. let $\Psi=\hat{\mathrm{L}}_{+} \Phi_{\ell, \mathrm{m}}$, find Ψ in terms of the eigenstates $\Phi_{\ell, \mathrm{m}}$.

Problem (5)

Show that the spherical harmonics Y_{1}^{0} and Y_{1}^{1} are orthogonal.

Problem (6)

An electron having $\ell=2$, write and draw all the L_{z} eigenstates m_{ℓ} for this electron, indicating the angles.

