

IE-352

Section 1, CRN: 48700/1/2 Section 2, CRN: 48703/4/5 Section 3, CRN: 48706/7/8

Section 3, CRN: 48706/7/8 Second Semester 1434-35 H (Spring-2014) – 4(4,1,2) "MANUFACTURING PROCESSES – 2" Sunday, April 27, 2014 (27/06/1435H) HW 3 (MIDTERM 2) Student Number: Name: **Section:** S/M8/M10 Place the correct letter in the box at the right of each question [Point Each] 1. Classify, respectively, the following geometric symbols: \bigcirc , \bigcirc : A. location, form, location B. form, form, form C. location, location, location D. form, form, location E. location, form, form Questions 2-3. Examine the feature control frame shown below and answer the questions to follow. 2. How do you read the feature control frame shown above? A. position GT of feature is a 0.1-diam. cylind. zone relative to datums A, B, C at B. position GT of feature is a 0.1-diam. cylind. zone relative to datums A, B, C at C. position GT of feature is a 0.1-diam. cylind. zone relative to datums A, B, C at D. cylindricity GT of feature is a 0.1-diam. cylind. zone relative to datum A, B, C at E. cylindricity GT of feature is a 0.1-diam. cylind. zone relative to datums A, B, C at

3.	The feature control frame above can be used for a hole in which type of fit?
	A. interference fits
	B. clearance fits
	C. transition fits
	D. clearance or interference fits
	E. any type of fit
4.	The major difference between flatness and parallelism tolerance for a plane is
	A. parallelism tolerance must have a material condition modifier
	B. parallelism tolerance must be defined relative to a datum
	C. parallelism tolerance must have a material modifier & be defined relative to a datum
	D flatness tolerance must be defined relative to a datum
	E. flatness tolerance must have a material condition modifier
5.	For the system shown below, $GT_{LMC}=$
	A. 0.002
	В. 0.003
	c. 0.005
	D. 0.006 $\bot \phi.002 \boxed{M} \boxed{D}$
	E. 0.008
	/////// *
6.	Repeat P5 above given <i>no</i> material condition modifier is defined in the FCF.
	A. 0.002
	B. 0.003
	C. 0.005
	D. 0.006
	E. 0.008

Page - 2

7.	Which of the following machining parameters is <i>always</i> smaller than unity (< 1)?
	A. r and γ
	B. μ and γ
	C. r and η_{mech}
	D. u_t and η_{mech}
	E. μ and u_t
8.	Which of the following machining parameters is not "unitless" (i.e. has units)?
	A. <i>r</i>
	B. u_t
	C. γ
	D. μ
	E. η_{mech}
9.	Label the cutting tool diagram shown below
	A. ①: flank wear; ②: crater wear; ③: depth-of-cut line; ⑥: thermal cracks
	B. ①: crater wear; ②: flank wear; ③: depth-of-cut line; ⑥: thermal cracks
	C. ①: flank wear; ②: crater wear; ③: thermal cracks; ⑥: depth-of-cut line
	D. ①: flank wear; ②: thermal cracks; ③:depth-of-cut line; ⑥:crater wear
	E. ①: flank wear; ②: crater wear; ③: outer metal chip notch; ⑥: thermal crac
10	. The <i>Taylor Tool Life</i> equation measures time to develop which type of wear?
	A. KT
	B. <i>R</i>
	C. VN
	D. VB
	E. VB_{max}

11.	. Allowable notch wear is given by the symbol:	
	A. KT	
	B. <i>R</i>	
	C. VN	
	D. VB	
	E. VB_{max}	
12.	. Maximum crater wear is given by the following symbol:	
	A. KT	
	B. <i>R</i>	
	C. VN	
	D. VB	
	E. VB_{max}	
Qı	uestions 13-20. In an orthogonal cutting operation using a coated	
са	rbide tool ($n=0.6$), $t_o=0.39~mm$, $V=35~m/min$, $\alpha=18^\circ$ and the	
-	induce tool $(n = 0.0)$, $t_0 = 0.5$) with, $v = 33$ m/min, $\alpha = 10^{\circ}$ and the	
	= 9 mm. It is observed that $t_c=0.85$ mm, $F_c=720$ N and $F_t=345$	N.
w		N.
w	= 9 mm. It is observed that $t_c = 0.85$ mm, $F_c = 720$ N and $F_t = 345$	N.
w	$t=9~mm$. It is observed that $t_c=0.85~mm$, $F_c=720~N$ and $F_t=345~mm$. What is the value of the <i>chip-thickness ratio</i> ?	N.
w	= 9 mm . It is observed that $t_c=0.85\ mm$, $F_c=720\ N$ and $F_t=345$. What is the value of the <i>chip-thickness ratio</i> ? A. 2.18	N.
w	= 9 mm . It is observed that $t_c=0.85\ mm$, $F_c=720\ N$ and $F_t=345$. What is the value of the <i>chip-thickness ratio</i> ? A. 2.18 B. 0.33	N.
w	= 9 mm . It is observed that $t_c=0.85\ mm$, $F_c=720\ N$ and $F_t=345$. What is the value of the <i>chip-thickness ratio</i> ? A. 2.18 B. 0.33 C. 3.02	N.
w 13.	= 9 mm . It is observed that $t_c=0.85\ mm$, $F_c=720\ N$ and $F_t=345$. What is the value of the <i>chip-thickness ratio</i> ? A. 2.18 B. 0.33 C. 3.02 D. 0.46	N.
w 13.	= 9 mm . It is observed that $t_c=0.85\ mm$, $F_c=720\ N$ and $F_t=345$. What is the value of the <i>chip-thickness ratio</i> ? A. 2.18 B. 0.33 C. 3.02 D. 0.46 E. 1.0	N.
w 13.	= 9 mm . It is observed that $t_c=0.85\ mm$, $F_c=720\ N$ and $F_t=345$. What is the value of the $chip$ -thickness $ratio$? A. 2.18 B. 0.33 C. 3.02 D. 0.46 E. 1.0 What is the value of the $shear\ angle$?	N.
w 13.	= 9 mm . It is observed that $t_c=0.85\ mm$, $F_c=720\ N$ and $F_t=345$. What is the value of the <i>chip-thickness ratio</i> ? A. 2.18 B. 0.33 C. 3.02 D. 0.46 E. 1.0 What is the value of the <i>shear angle</i> ? A. 14.1°	N.
w 13.	= 9 mm . It is observed that $t_c=0.85\ mm$, $F_c=720\ N$ and $F_t=345$. What is the value of the $chip$ -thickness $ratio$? A. 2.18 B. 0.33 C. 3.02 D. 0.46 E. 1.0 . What is the value of the $shear\ angle$? A. 14.1° B. 27.0°	N.

15. What is the value of the shear strain?	
A. 1.96	
В. 0.67	
C. 2.12	
D. 1.16	
E. 0.16	
16. What is the value of the chip velocity?	
A. 76.3 m/min	
B. 5.7 <i>m/min</i>	
C. 91.7 m/min	
D. 16.1 m/min	
E. 17.5 <i>m/min</i>	
17. What is the magnitude of the coefficient of friction?	
A. 1.05	
В. 7.49	
C. 0.13	
D. 2.63	
E. 0.95	
18. How much <i>energy</i> is required for 10 minutes of cutting?	
A. 25.2 <i>kJ</i>	
B. 252 <i>kJ</i>	
C. 43.2 <i>kJ</i>	
D. 0.72 <i>kJ</i>	
E. 1512 <i>kJ</i>	

19	. What is the effect on tool life of doubling the cutting speed?	
	A. reduction in tool life by 50.0%	
	B. reduction in tool life by 31.4%	
	C. reduction in tool life by 66.0%	
	D. reduction in tool life by 68.5%	
	E. reduction in tool life by 34.0%	
•		
20	. What is the effect on material removal rate of doubling the cutting speed?	
	A. increase in the MRR by 50%	
	B. decrease in the MRR by 50%	
	C. doubling of the MRR	
	D. increase in the MRR by 200%	
	E. increase in the MRR by 150%	

Rules:

- You must prepare and submit the homework individually.
- Your work must be **neatly written** in pencil (or typed) and in **proper English** (where applicable).
- Show all work, and answer each question on a separate sheet.
- BOX your answer(s) and include the units.

Due date:

- Sunday, May 04, 2014 (S2), 2014 (05/07/1435)
- Monday, May 04, 2014 (S1,S3), 2014 (06/07/1435)

Equations, Data, Diagrams You May Find Useful

$$\log x^p = p \log x, \quad \log xy = \log x + \log y, \quad \log \frac{x}{y} = \log x - \log y$$

$$\tan \phi = \frac{r \cos \alpha}{1 - r \sin \alpha} \Rightarrow r = \frac{t_0}{t_c} = \frac{\sin \phi}{\cos(\phi - \alpha)} \qquad \alpha_e = \sin^{-1} \left(\sin^2 i + \cos^2 i \sin \alpha_n\right)$$

$$r = \frac{t_0}{t_c} = \frac{V_c}{V}$$

$$\gamma = \frac{AB}{OC} = \frac{AO}{OC} + \frac{OB}{OC} \Rightarrow \gamma = \cot \phi + \tan(\phi - \alpha)$$

$$\frac{V}{\cos(\phi - \alpha)} = \frac{V_s}{\cos \alpha} = \frac{V_c}{\sin \phi}$$

$$\phi = 45^\circ + \frac{\alpha}{2} - \frac{\beta}{2} \text{ (when } \mu = 0.5 \sim 2\text{)}$$

$$\Rightarrow \phi = 45^{\circ} + \alpha - \beta$$

$$T = \frac{0.000665Y_f}{\rho c} \sqrt[3]{\frac{Vt_0}{K}}$$

$$T_{mean} \propto V^a f^b$$

- High-speed steel tools: a = 0.5, b = 0.375

$$\eta_{mech} = \frac{Power_c}{Power_{source}}$$

$$\mu = \frac{F}{N} = \frac{F_t + F_c \tan \alpha}{F_c - F_t \tan \alpha}$$

$$F_s = F_c \cos \phi - F_t \sin \phi$$

$$F_n = F_c \sin \phi + F_t \cos \phi$$

$$Power = F_c V$$

Power for friction = FV_c

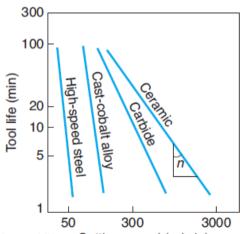
Power for shearing = $F_s V_s$

$$u_t = u_s + u_f \qquad u_s = \frac{F_s V_s}{w t_0 V}$$

$$u_f = \frac{FV_c}{wt_0V} = \frac{Fr}{wt_0}$$

Ranges of n Values for the Taylor Equation (21.20a) for Various Tool Materials

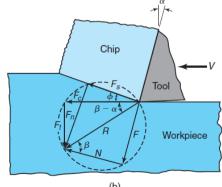
High-speed steels	0.08-0.2
Cast alloys	0.1 - 0.15
Carbides	0.2-0.5
Coated carbides	0.4-0.6
Ceramics	0.5-0.7


Shear Stress =

$$VT^n d^x f^y = C$$

$$T = C^{1/n} V^{-1/n} d^{-x/n} f^{-y/n}$$

$$T \approx C^7 V^{-7} d^{-1} f^{-4}$$


$$R_{t} = \frac{f^{2}}{8R}$$

- Recommended cutting speed is one producing tool life: Cutting speed (m/min)
 - 60-120 min: high-speed steel tools
 - 30-60 min: carbide tools

$$F_t = R \sin(\beta - \alpha)$$
 or $F_t = F_c \tan(\beta - \alpha)$

Chip Workpiece

Approximate Range of Energy Requirements in Cutting Operations at the Drive Motor of the Machine Tool (for Dull Tools, Multiply by 1.25)

	Specific energy	
Material	W·s/mm ³	
Aluminum alloys	0.4-1	
Cast irons	1.1-5.4	
Copper alloys	1.4-3.2	
High-temperature alloys	3.2-8	
Magnesium alloys	0.3-0.6	
Nickel alloys	4.8-6.7	
Refractory alloys	3-9	
Stainless steels	2-5	
Steels	2-9	
Titanium alloys	2-5	