Quantum Mechanics H.W №4

Salwa Alsaleh

Problem (1) The Algebra of angular momentum

Construct a table that contains the set of operators of angular momentum $L^{2}, L_{z}, L_{y}, L_{x}$ with the operation of commutation between each possible pair of them. And an other one containing the set $L_{z}, L_{+}, L-$.
What are the main observations from these two tables?

Problem (2) Parity and Central-Body problem

We define the Parity transformation as an operator Π. That transforms the position vector ${ }^{\text {' }}$ operator'

$$
\vec{r} \longrightarrow-\vec{r}
$$

Recall that to transform an operator A by the parity we preform $\Pi A \Pi^{-1}$

1. Show that the linear momentum operator \vec{p} transform under parity as

$$
\vec{p} \longrightarrow-\vec{p}
$$

What so called the radial vector
2. Show that the angular momentum operator \vec{L} transform under parity as

$$
\vec{L} \longrightarrow \vec{L}
$$

What so called ' axial-vector' .
3. The eigenstates of the parity operator satisfy the relations:

$$
\begin{aligned}
& \Pi|+\rangle=+|+\rangle \\
& \Pi|-\rangle=-|-\rangle
\end{aligned}
$$

Does L commute with Π ? Hint : Make use of the relation $\Pi L \Pi^{-1}=L$
4. Since in a Central body problem, we have seen that the set of mutually operators are H, L^{2}, L_{z} Is parity conserved observable in this problem?

Problem (3) Building the angular momentum states

Use the ladder operators L_{-}and/or L_{+}to construct the states of $\ell=2$, then compute the angle of the angular momentum vector with respect to the z - direction.

Problem (4) Orthogonality of Spherical harmonics

Show that the spherical harmonics $Y_{0}^{1}(\theta, \phi)$ and Y_{1}^{1} are orthogonal

$$
\begin{array}{r}
Y_{0}^{1}=\frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \vartheta \\
Y_{1}^{1}=-\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \sin \vartheta e^{i \varphi}
\end{array}
$$

