KING SAUD UNIVERSITY. DEPARTMENT OF PHYSICS

Quantum Mechanics H.W $N^{\circ}4$

Salwa Alsaleh

PROBLEM (1) THE ALGEBRA OF ANGULAR MOMENTUM

Construct a table that contains the set of operators of angular momentum L^2 , L_z , L_y , L_x with the operation of commutation between each possible pair of them. And an other one containing the set L_z , L_+ , L_- .

What are the main observations from these two tables ?

PROBLEM (2) PARITY AND CENTRAL-BODY PROBLEM

We define the **Parity** transformation as an operator Π . That transforms the position vector ' operator'

 $\vec{r} \longrightarrow -\vec{r}$

Recall that to transform an operator A by the parity we preform $\Pi A \Pi^{-1}$

1. Show that the linear momentum operator \vec{p} transform under parity as

$$\vec{p} \longrightarrow -\vec{p}$$

What so called the radial vector

2. Show that the angular momentum operator \vec{L} transform under parity as

$$\vec{L} \longrightarrow \vec{L}$$

What so called ' axial-vector' .

3. The eigenstates of the parity operator satisfy the relations:

$$\Pi |+\rangle = + |+\rangle$$
$$\Pi |-\rangle = - |-\rangle$$

Does *L* commute with Π ? *Hint* : Make use of the relation $\Pi L \Pi^{-1} = L$

4. Since in a Central body problem, we have seen that the set of mutually operators are H, L^2, L_z Is parity conserved observable in this problem ?

PROBLEM (3) BUILDING THE ANGULAR MOMENTUM STATES

Use the ladder operators L_- and/or L_+ to construct the states of $\ell = 2$, then compute the angle of the angular momentum vector with respect to the z- direction.

PROBLEM (4) ORTHOGONALITY OF SPHERICAL HARMONICS

Show that the spherical harmonics $Y_0^1(\theta, \phi)$ and Y_1^1 are orthogonal

$$Y_0^1 = \frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\vartheta$$
$$Y_1^1 = -\frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\vartheta \ e^{i\varphi}$$