Quantum Mechanics H.W №4

Salwa Al Saleh

Problem (1)

We can represent the angular momentum operators \hat{L}_{i} as matrices as follows

$$
\hat{L}_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \hat{L}_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad \hat{L}_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Using this matrix representation Show that

1. $\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}$
2. $\hat{L}^{2}=2 \hbar^{2} \hat{I}$, where \hat{I} is the identity matrix.

Problem (2)

Given the operator $\hat{L}_{+}=\hat{L}_{x}+i \hat{L}_{y}$

1. Is it hermitian?
2. Express it in the matrix representation, and find its eigenvalues.
3. Express it in the x representation.
4. let $\Psi=\hat{L}_{+} \Phi_{\ell, m}$, find Ψ in terms of the eigenstates $\Phi_{\ell, m}$.

Problem (3)

Show that the spherical harmonics Y_{1}^{0} and Y_{1}^{1} are orthogonal.

Problem (4)

An electron having $\ell=2$, write and draw all the L_{z} eigenstates m_{ℓ} for this electron, indicating the angles.

Problem (5)

Show that

$$
\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{x}=0
$$

Problem (6)

Given the spin state $\chi=\binom{i \sqrt{2}}{\sqrt{2}}$

1. Normalise it
2. write it in terms of the eigenstates α and β.
3. Calculate ΔS_{x} w.r.t χ.
