KING SAUD UNIVERSITY. DEPARTMENT OF PHYSICS

Quantum Mechanics H.W $\mathbb{N}^{0}4$

Salwa Al Saleh

PROBLEM (1)

We can represent the angular momentum operators \hat{L}_i as matrices as follows

$$\hat{L}_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \qquad \hat{L}_y = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix}, \qquad \hat{L}_z = \hbar \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix}$$

Using this matrix representation Show that

1.
$$[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z$$

2. $\hat{L}^2 = 2\hbar^2 \hat{I}$, where \hat{I} is the identity matrix.

PROBLEM (2)

Given the operator $\hat{L}_{+} = \hat{L}_{x} + i\hat{L}_{y}$

- 1. Is it hermitian?
- 2. Express it in the matrix representation, and find its eigenvalues.
- 3. Express it in the *x* representation.
- 4. let $\Psi = \hat{L}_+ \Phi_{\ell,m}$, find Ψ in terms of the eigenstates $\Phi_{\ell,m}$.

PROBLEM (3)

Show that the spherical harmonics Y_1^0 and Y_1^1 are orthogonal.

PROBLEM (4)

An electron having $\ell = 2$, write and draw all the L_z eigenstates m_ℓ for this electron, indicating the angles.

PROBLEM (5)

Show that

 $\sigma_x \sigma_y + \sigma_y \sigma_x = 0$

PROBLEM (6)

Given the spin state $\chi = \begin{pmatrix} i\sqrt{2} \\ \sqrt{2} \end{pmatrix}$

- 1. Normalise it
- 2. write it in terms of the eigenstates α and β .
- 3. Calculate ΔS_x w.r.t χ .